
1

Aspects of Networking in Multiplayer Computer
Games

Jouni Smed, Timo Kaukoranta, Harri Hakonen

Abstract— Distributed, real-time multiplayer computer
games (MCGs) are in the vanguard of utilizing the network-
ing possibilities. Although related research have been done
in military simulations, virtual reality systems, and com-
puter supported cooperative working, the suggested solu-
tions diverge from the problems posed by MCGs. With this
in mind, this paper provides a concise overview of four as-
pects affecting networking in MCGs. Firstly, networking re-
sources (bandwidth, latency, and computational power) set
the technical boundaries within which the MCG must op-
erate. Secondly, distribution concepts encompass commu-
nication architectures (peer-to-peer, client/server, server-
network), and both data and control architectures (central-
ized, distributed, replicated). Thirdly, scalability allows the
MCG to adapt to the resource changes by parametrization.
Finally, security aims at fighting back against cheating and
vandalism, which are common in online gaming.

Keywords— Computer games, networking, online enter-
tainment, distributed interactive simulation, virtual envi-
ronments.

I. Introduction

WITH the advent of Internet and wireless communica-
tion, multiplayer computer games (MCGs) are be-

coming more popular. Commercially published computer
games are expected to offer a multiplayer option, and, at
the same time, online game sites like Electronic Arts’ Ul-
tima Online, Blizzard Entertainment’s Battle.net or Mi-
crosoft’s MSN Gaming Zone boast of having hundreds of
thousands users. Similarly, the new game console releases
rely heavily on the appeal of online gaming, and a whole
new branch of mobile entertainment has emerged with in-
tention to develop distributed multiplayer games for wire-
less applications [1]. In this respect, MCGs will continue
to provide both technical and practical challenges in the
future.

Generally speaking, MCGs belong to shared-space tech-
nologies. Figure 1 illustrates a broad classification of
shared-space technologies by Benford et al. [2]. The trans-
portation axis indicates the level to which the participants
leave behind their local space, and the artificiality axis
the level to which a space is computer generated. By us-
ing these two dimensions, four strands of technology can
be classified: Physical reality resides in the local, physi-
cal world (i.e., the things are tangible and the participants
are corporeal). Conversely, virtual reality allows the par-

J. Smed and T. Kaukoranta are with the Department of Math-
ematical Sciences and Turku Centre for Computer Science (TUCS),
University of Turku, Lemminkäisenkatu 14 A, FIN-20520 Turku, Fin-
land. E-mail: jouni.smed@cs.utu.fi, timo.kaukoranta@cs.utu.fi. Tel:
+358-2-3338684, +358-2-3338797. Fax: +358-2-3338600.

H. Hakonen is with Oy L M Ericsson Ab, Telecom R&D, Jou-
kahaisenkatu 1, FIN-20520 Turku, Finland. E-mail: harri.hako-
nen@lmf.ericsson.se.

Augmented
Reality

Virtual
Reality

Physical
Reality

Tele-
presence

Transportation

Artificiality

local
(remain in the

physical world)

remote
(leave your

body behind)

synthetic
(generated from
computer data)

physical
(generated from
the real world)

Augmented
Reality

Virtual
Reality

Physical
Reality

Tele-
presence

Transportation

Artificiality

local
(remain in the

physical world)

remote
(leave your

body behind)

synthetic
(generated from
computer data)

physical
(generated from
the real world)

Fig. 1. Classification of shared-space technologies according to trans-
portation and artificiality [2].

ticipants to be immersed in a remote, synthetic world. In
telepresence, the participants are present at a real world lo-
cation remote from their physical location (e.g., operating
a rover on Mars from Earth). In augmented reality, syn-
thetic objects are overlaid on the local environment (e.g.,
a head-up display indicating the whereabouts of selected
targets).

Within this framework, the “virtual reality” category
houses various distributed interactive systems, and three
branches of research can be easily traced:
• military simulations,
• virtual reality (VR), and
• computer supported collaborative work (CSCW).

Since the 1980s the United States Department of Defense
has developed military applications using a protocol for dis-
tributed interactive simulation (DIS), which was issued as
an IEEE standard in 1992 [3], [4]. After that, the military
research has concentrated on developing high-level archi-
tecture (HLA), which aims at providing a general archi-
tecture and services for distributed data exchange. While
the DIS protocol is closely linked with the properties of
military units and vehicles, the rationale behind HLA is
that it could be also used with non-military applications—
like computer games. Although these promises have yet
to be fulfilled, there has been fruitful cooperation between
military and entertainment industries [5].

In turn of the 1990s emerged a new branch of VR re-
search which concentrates on distributed virtual environ-
ments (DVEs). It has given birth to various experimental
systems with the likes of DIVE [6], GreenSpace [7], Spline
[8], Community Place [9], and MASSIVE [10]. While the
military research focuses on diverse large-scale systems,

2

DVEs are mainly designed for local use and support only a
small number of participants. In addition, DVEs pay closer
attention to the virtual representations of the participants
(i.e., avatars) and the ways of interaction and communica-
tion.

During the 1990s an effort to combine CSCW with
VR has given a rise to collaborative virtual environments
(CVEs) [11], [12]. CVEs differ from DVEs in that they
focus on the collaboration between the avatars (e.g., oper-
ating at the same time with a shared object). For example,
CVEs have been used in product development [13], in 3D
editing [14], and even in game designing [15].

All these advances have come about almost unbeknownst
to the MCG developers. Obviously, MCGs have the same
qualities as DIS, DVEs or CVEs, but—rather than being
lumped together with them—they represent a fourth class
of distributed, real-time computer applications. Although
the problems of MCGs and online gaming have now been
realized by the entertainment industry, it is surprising that
they have been dealt marginally in the scientific literature.
The academic research concentrates on simple games and
limited problem settings [16], [17], [18], [19]. However, peo-
ple working in the entertainment industry have recently
started to publish more openly their ideas and solutions in
the trade magazines and conferences [20], [21], [22], [23].

In this paper, we intend to narrow this gap and iden-
tify relevant aspects of networking affecting the MCGs. In
Section II, we discuss networking resources which constrain
the designs for MCGs. Section III focuses on distribution
concepts and presents models for communication, data and
control architectures. We touch upon scalability issues in
Section IV. In Section V, we discuss network security in
MCGs. Concluding remarks appear in Section VI.

II. Networking Resources

Distributed simulations face three resource limitations:
network bandwidth, network latency, and host processing
power for handling the network traffic [24]. These resources
refer to the technical attributes of the underlying network
and they impose physical restrictions, which the system
cannot overcome and which must be considered in the de-
sign.

A. Bandwidth

Bandwidth refers to the transmission capacity of a com-
munication line such as a network. Simply put, bandwidth
is the proportion of the amount of data transmitted or
received per unit time. In WANs (wide area networks),
bandwidths range from tens of kbps (bits per second) of
dial-up modems up to 1.5 Mbps of T1 and 44.7 Mbps of
T3. In LANs (local area networks), bandwidths are much
larger ranging from 10 Mbps to 10 Gbps. However, LANs
have a limited size and they support a limited number of
users, whereas WANs allow global connections.

In addition to how often and how large messages are sent,
bandwidth requirements depend on the number and distri-
bution of users. Moreover, bandwidth requirements also
depend on the transmission technique (see Fig. 2). Early

c1

c2

c3

c4

c5

ne
tw

o
rk

c1

c2

c3

c4

c5

ne
tw

o
rk

c1

c2

c3

c4

c5

ne
tw

o
rk

(a) (b) (c)

c1

c2

c3

c4

c5

ne
tw

o
rk

c1

c2

c3

c4

c5

ne
tw

o
rk

c1

c2

c3

c4

c5

ne
tw

o
rk

(a) (b) (c)

Fig. 2. Transmission techniques: (a) In unicasting, the message is
sent to a single receiver. (b) In multicasting, the message is sent
to one or more receivers that have joined a multicast group. (c) In
broadcasting, the message is sent to all nodes in the network.

implementations in LAN environments broadcast the mes-
sages to all participants [25]. Obviously, this leads to prob-
lems as the number of participants grows. Unicast commu-
nication between a single sender and a single receiver allows
to control and direct the traffic. However, since most of
the messages are intended to multiple receivers, unicasting
wastes bandwidth by sending redundant messages. During
the 1990s multicasting [26], which is communication be-
tween a single sender and multiple receivers, matured as
a technique and gradually gained popularity in distributed
systems. Multicasting allows receivers to join groups that
interest them. The sender sends only one message (as in
unicast) to a group, which is received by multiple receivers
(as in broadcast) belonging to the group. There are numer-
ous examples of distributed applications utilizing multicast
[3], [6], [8], [10], [27].

B. Latency

Networking latency indicates the length of time (or de-
lay) that incurs when a message gets from one designated
node to another. In addition, the variance of latency over
time (i.e., jitter) is another feature that affects interactive
applications. Latency cannot be totally eliminated. For ex-
ample, speed-of-light propagation delays and the slowdown
of electrical signal in a cable alone yield a latency of 25–
30 ms for crossing the Atlantic. Moreover, routing, queuing
and packet processing delays add dozens of milliseconds to
the overall latency (e.g., in August 2001 a measured aver-
age Trans-Atlantic round trip latency1 was 79.955 ms).

For interactive real-time systems such as MCGs, the rule
of thumb is that latency between 0.1 and 1.0 seconds is ac-
ceptable. For instance, the DIS standard specifies that the
network latency should be less than 100 ms [4]. Latency
affects the user’s performance nonlinearly: Continuous and
fluid control is possible when the latency does not exceed
200 ms, after which the interaction becomes more observa-
tional and cognizant. Consequently, the threshold of when
latency become inconvenient for the user depends on the
type of application. In a real-time strategy (RTS) game,
a higher latency (even up to 500 ms) may be acceptable
as long as it remains static (i.e., jitter is low) [22]. Inter-
estingly, experiments on CVEs have yielded similar results
[12], [28]. On the other hand, games requiring a tight hand-
eye motor control such as first person shooters (FPSs) de-

1http://www.uu.net/network/latency

3

mand that the latency runs closer at 100 ms.

C. Computational Power

Network traffic handling puts additional computational
strain on the computer running a distributed system. This
limited resource can be easily overlooked and usually the
network alone is deemed as the source of problems. By us-
ing quite conservative estimates, Singhal [24] demonstrates
how a simulation handling the network traffic of 100,000
entities (i.e., participating objects) can require up to 80
percent of the total CPU time on a 500 MHz processor.
Furthermore, packet delivery demands are unlikely to be
satisfied in the future due to increasing processing require-
ments in distributed systems (e.g., more participants, more
interaction) and the slow increase in hardware memory
speeds.

III. Distribution Concepts

There is not much we can do about the aforemen-
tioned resource limitations. Therefore, the problems of dis-
tributed interactive systems should be tackled on a higher
level, which means choosing architectures for communica-
tion, data, and control. Still, sometimes the architecture
alone cannot rid the system of resource limitations, and
compensatory techniques are needed to relax the require-
ments.

A. Communication Architectures

A communication architecture can be chosen among dif-
ferent models, which can be arranged as communication
graphs according to their degree of deployment (see Fig. 3).
In a communication graph, the nodes represent the pro-
cesses running on remote computers and the links denote
that the nodes can exchange messages. In the simplest con-
figuration, there is only a single node (i.e., one computer
and no network). An example of an MCG at this level
can employ a split screen to enable two or more players to
participate the game.

In peer-to-peer architecture, we have a set of equal nodes
connected by a network. Since no node is more special than
the others, they must be connected to each other. There is
no intermediary and each node broadcasts (or multicasts)
its messages to every node in the network. Peer-to-peer
is widely used in MCGs, because it easy to realize and to
expand from a single player game. However, it does not
scale up easily due to the lack of hierarchical structure.
It is useful when the number participants is small or they
communicate in a LAN.

In client/server architecture, we have promoted one
node to the role of a server. Now, all communication is
handled through this server node, while the other nodes
remain in the role of a client. For each client, the commu-
nication with the server is the most important element, and
it needs not worry about the other clients. In contrast, the
server becomes the critical part, if it cannot keep up with
the network traffic. The client/server architecture is used
in the commercial online servers as well as in the classic
MUDs (multiuser dungeons).

(a) (b)

(c) (d)

c

c

c c

c

s s

c

c c

c

s

p

p p

p

(a) (b)

(c) (d)

c

c

c c

c

s s

c

c c

c

s

p

p p

p

(a) (b)

(c) (d)

ccc

c

c c

c

s s

c

c c

c

s s

c

c c

c

s

c

c c

c

s

p

p p

pp

p p

p

Fig. 3. Degrees of deployment: (a) a split screen on a single com-
puter, (b) a peer-to-peer architecture, (c) a client/server architecture,
and (d) a server-network architecture.

In server-network (or server pool) architecture, there are
several interconnected servers. Here, the communication
graph can be thought as a peer-to-peer network of servers
over a set of client/server subnetworks. A client is con-
nected to a local server, which is connected to the remote
servers and, through them, the remote clients. Server-
network reduces the capacity requirements imposed to a
server. In consequence, this provides better scalability but
increases the complexity of handling the network traffic.

B. Data and Control Architectures

Two attributes define the models for data and control
architecture: consistency and responsiveness. To achieve
high consistency, the architecture must guarantee that pro-
cesses running on remote nodes are tightly coupled. This
usually requires high bandwidth, low latency, and a small
number of remote nodes. To achieve high responsiveness
(or timeliness [29]), the queries made to the data must be
responded quickly, which leads to loosely coupled nodes.
In this case, the nodes include more computation to re-
duce the bandwidth and latency requirements. In reality,
an architecture cannot achieve both high consistency and
high responsiveness at the same time, and the choice of
architecture is a trade-off between these two attributes.

Figure 4 illustrates the problem. An application running
in a local node sends control messages into a relay and re-
ceives data messages from it. In turn, the relay communi-
cates with the relays of other nodes via a network. Here,
a relay is a logical concept which illustrates how the con-
trol affects the data. There are two alternative structures
for the relay (Fig. 5). A two-way relay acts as a simple
intermediary between the node and the network. For ex-
ample, a dumb terminal sends the characters typed on the
keyboard to a mainframe, which sends back the characters
to be displayed on the monitor. A short-circuit relay does
effectively the same, but it also conveys the input locally

4

data

control

local global

network

relay

data

control

local global

network

relay

Fig. 4. Architecture defines how messages are relayed between local
and remote nodes.

i loca l

o loca l i globa l

ogloba l
f

g

i loca l

o loca l i globa l

ogloba l

h

f

g

ogloba l = f(i loca l)

o loca l = g(i globa l)

ogloba l = f(i loca l)

o loca l = g(i globa l) × h(i loca l)

(a)

(b)

i loca l

o loca l i globa l

ogloba l
f

g

i loca l

o loca l i globa l

ogloba l

h

f

g

ogloba l = f(i loca l)

o loca l = g(i globa l)

ogloba l = f(i loca l)

o loca l = g(i globa l) × h(i loca l)

(a)

(b)

Fig. 5. The relay has two alternatives for a structure: (a) A two-way
relay sends the local control messages to the network, which sends
back data messages to the node. (b) A short-circuit relay sends the
local control messages to the network and passes them locally back
to the node.

back to the node. This short circuiting can be realized with
immediate feedback (the DIS standard), acknowledgments
[6], or buckets delaying arrival of local messages [27].

It is important to differentiate these two structures:
A high consistency architecture requires a two-way relay,
because all updates require confirmation from the other
nodes. On the other hand, high responsiveness entails a
short-circuit relay, because the local control messages must
appear promptly in the local data. With this in mind, we
can now look at the three data and control architectures:
centralized, distributed, and replicated.

In a centralized architecture, only one node holds the
data. Basically, it is shared database that keeps the system
consistent at all times. The nodes must use a two-way
relay for networking due to the consistency requirements.
Obviously, a centralized architecture lacks responsiveness,
which is elemental for real-time applications like MCGs.

Distributed and replicated architectures suit better for
MCGs because they allow to use the short-circuit relay
and, consequently, provide higher responsiveness. In a dis-
tributed architecture, each node holds a subset of the data.
In a replicated architecture, a copy of the same data exist
in all nodes. The distinction between these architectures
is that distributed architecture adapts more easily, for in-
stance, player controlled entities, whose behavior is unpre-
dictable and for whom there can be only one source of com-
mands [30]. Conversely, non-player characters (NPCs) and
other computer generated entities are predictable and need
not send frequent control messages, and a replicated archi-

tecture provides a better alternative. To put it briefly, in-
determinism leads to distribution and determinism to repli-
cation.

C. Compensatory Techniques

Architectures aim at reducing resource requirements. In
most cases, they are not enough and we must reduce com-
munication traffic between nodes. Compensatory tech-
niques provide methods for doing this coherently. We re-
view these techniques briefly (for further details, see [29]).

C.1 Message Compression and Aggregation

By compressing the messages the distributed system can
save bandwidth at the cost of computational power. Mes-
sage aggregation reduces transmission frequency by merg-
ing information from multiple messages. Bundling up mes-
sages saves bandwidth (less header information) but re-
quires extra computation and weakens the responsiveness.

C.2 Interest Management

Interest management includes techniques that allow the
nodes to express interest in only the subset of information
that is relevant to them [11], [31]. They aim at reducing the
number of transmitted messages by specifying the (poten-
tially) interested receivers. An expression of data interest
is called the aura or the area of interest, and it usually
correlates with the sensing capabilities of the system be-
ing modeled. Simply put, an aura is an subspace where
interaction occurs (Fig. 6). Thus, when two players’ auras
intersect, they can be aware of each others actions.

Interest management with auras is always symmetric: If
the auras intersect, both parties receive messages from each
other. However, aura can be divided further into a focus
and a nimbus, which represent observer’s perception and
observed object’s perceptivity [10]. Thus, the player’s fo-
cus must intersect with another player’s nimbus in order to
aware of him. By using foci and nimbi it possible to con-
struct a finer-grade message filtering, since the awareness
needs not to be symmetric (Fig. 7).

C.3 Dead Reckoning

Dead reckoning methods are based on a navigational
technique of estimating one’s position based on a known
starting point and velocity. The same idea can be applied
to predicting the data from the other nodes, which allows to
prolong the interval of message transmissions and abolish
the network latency at the cost of data consistency. When
a message is received, the local data is updated accord-
ingly (i.e., we set the known starting point). The message
can also include some delta information (e.g., the velocity)
which is used in predicting the change of data over time
(see Fig. 8). Alternatively, this information can be omit-
ted and the known history be used for extrapolating the
data [24]. Moreover, the transmission interval needs not
be constant but the messages can be sent only when dead
reckoning exceeds some error threshold.

5

(a) By using formulae the aura can be expressed precisely, like the circle
around the sailboat which indicates the observable range. However, the
implementation can be complex and the required computation hard.

(b) The space can be divided into static, discrete cells. The sailboat is
interested in the cells that intersect its aura. Cell-based filtering is easier
to implement but it is less discriminating than formula-based. The cell
grid can also be hexagonal.

(c) Extents approximate the actual aura with rectangles (i.e., it is a
bounding box). The computation is simpler than by using formulae and
the filtering better than by using cells.

Fig. 6. Auras (or areas of interest) can be expressed using formulae,
cells or extents.

IV. Scalability

Scalability is the ability to adapt to the resource changes.
In MCGs this concerns, for example, how to construct an
online server that dynamically adapts to varying amount of
players, or how to allocate the computation of non-player
characters among the nodes. To achieve this kind of scal-
ability there must be physical (i.e., hardware-based) par-
allelism that enables logical (i.e., software) concurrency of
computation.

A. Serial and Parallel Execution

The potential speedup obtained by applying multiple
nodes is bounded by the system’s inherently sequential
computations. The time required by the serially executed
parts cannot be reduced by parallel computation. Thus,
the theoretical speedup S gained is

S(n) =
T (1)
T (n)

≤ 1
n

(1)

Seeker’s focus

Hider’s focus

Seeker’s nimbus
Hider’s nimbus Seeker’s focus

Hider’s focus

Seeker’s nimbus
Hider’s nimbus

Fig. 7. In hide-and-seek, the nimbus of the hiding person is smaller
than the seeker’s, and the seeker cannot interact with the hider. In-
stead, the hider can observe the seeker, since the seeker’s nimbus is
larger and intersects the hider’s focus.

Fig. 8. Dead reckoning is used to calculate positions between the
update message. The actual movement (indicated by the gray ar-
rows) differs from the movement predicted by dead reckoning (black
arrows). The dotted lines indicate a position change (i.e., a “warp”)
caused by update message.

where T (1) the time to execute with one node and T (n)
with n nodes. The execution time can be divided into a
serializable part Ts and parallel part Tp. Let Ts + Tp = 1
and α = Ts/(Ts +Tp). If the system is serialized optimally,
the equation can be rewritten

S(n) =
Ts + Tp

Ts + Tp/n
=

1
α + (1− α)/n

≤ 1
α

. (2)

This is called Amdahl’s law for a fixed problem setting [32].
Ideally, the serializable part should be non-existent and,

thus, everything would be computed in parallel. However,
in that case there cannot exist any coordination between
the nodes. The only example of such MCG is that each
player is playing their own game regardless of the others.
The other extreme is that there is no parallel part with
respect to the game state, which is the case in a round-
robin or a turn-based game. Between these extremes are
the MCGs which provide real-time interaction and which,
consequently, comprise both parellel and serial computa-
tion (see Fig. 9).

For the serializable parts, the nodes must agree on the se-
quence of events. The most simple approach to realize this
is to utilize a client/server architecture, where the server
can control the communication by forwarding, filtering and
modifying the messages. It should be noted that even in
a peer-to-peer architecture the network acts like a server
(i.e., the peers share the same serializing communication
channel), unless the nodes are connected to each other by
a direct physical cable or they communicate by using mul-
ticast.

6

player 1

player 2

player 3

time

player 1

player 2

player 3

time

(a) Separate real-time games can run in parallel but without interaction.

player 1

player 2

player 3

time

player 1

player 2

player 3

time

(b) A turn-based game is serialized and interactive but not real-time,
unless the turns are very short.

player 1

player 2

player 3

time

player 1

player 2

player 3

time

(c) An interactive real-time game runs both in serial and in parallel.

Fig. 9. Serial and parallel execution in MCGs.

To concretize, let us calculate the communication capac-
ity in a client/server architecture using unicast. Suppose
that each client sends 5 packets per second using IPv6 com-
munication protocol in a 10 Mbps Ethernet. Each packet
takes at least a frame of size 68 · 8+26 · 8 = 752 bits (or 94
bytes). Let d equal the number of bits in a message, f the
transmission frequency, n the number of unicast connec-
tions and C the maximum capacity of the communication
channel. Obviously, the following condition must hold

d · f · n ≤ C. (3)

By using values d = 752 + 32 (i.e., the payload comprises
one 32-bit integer value), f = 5 and C = 107, we can solve
the upper bound for the number of clients. Thus, if we are
using a client/server architecture, one server can provide
serializability for at most 2,551 clients.

B. Communication Capacity

Because the coordination of serialized parts require com-
munication, scalability is limited by the communication
capacity requirements of the chosen deployment. Hence-
forth, we assume that clients are allowed to send messages
freely at any moment (i.e., asynchronous messaging). In
the worst case, all nodes try to communicate at the same
time and the network architecture must handle this traffic
without saturation.

Table I collects the magnitudes of communication ca-
pacity requirements for different deployment architectures.
Obviously, a single node needs no networking. In peer-to-
peer, ∼ n is reached when all n nodes have direct con-
nections to the other nodes or the communication is han-
dled by multicasting; otherwise, peers use unicasting which
yields ∼ n2. In client/server, the server-end requires a ca-
pacity of ∼ n, because each client has a dedicated con-
nection to it. In server-network, the server pool has m
servers, and n clients are divided evenly among them. If the

TABLE I

Communication capacity requirements for different

deployment architectures.

Deployment architecture Capacity requirement
Single node 0
Peer-to-peer ∼ n . . . n2

Client/server ∼ n
Peer-to-peer server-network ∼ n

m + m . . . n
m + m2

Hierarchical server-network ∼ n

servers are connected as peer-to-peer, the server communi-
cation requires ∼ m . . .m2 in addition to ∼ n/m capacity
for client communication. If the servers are connected hi-
erarchically (e.g., as a tree), the server at the root is the
bottleneck requiring a capacity of ∼ n.

Earlier we calculated that a server can support up to
2,551 clients. This demonstrates that, in practice, linear
capacity requirement is too large. Therefore, the heart of
scalability is to achieve sublinear communication. In effect,
this means that a client cannot be aware of all the other
clients all the time.

To guarantee sublinear communication in a hierarchical
server-network we must limit the communication between
the servers. Let us suppose that the hierarchy is a k-ary
tree. If we can now guarantee that a server sends to its
parent 1/k th part of its children’s messages, we have a log-
arithmic capacity requirement (i.e., communication in the
root is ∼ log n). Now, the problem is how to realize this
reduction. This where the compensatory techniques pro-
vide an answer: Children’s messages can be compressed
and aggregated, if we can guarantee that the size reduc-
tion is 1/k on each server level—which is quite unlikely. A
more usable solution is, at each step, to apply first interest
management (e.g., refrain from passing messages whose po-
tential receivers are already inside the subtree), and then
select one of the outgoing messages for the server to pass
on. For each suppressed message, the nodes can approxi-
mate the information by using dead reckoning.

V. Security and Cheating

Online security has become a major concern for the en-
tertainment industry. The gamesites periodically report
on attacks and warn their users against misbehavior and
cheating. This problem is unique for MCGs, and it has
not been addressed at all in the related research. On the
contrary, the military simulations and the DIS standard do
not even consider cheating nor security violations—which
is understandable since the simulations are not run over a
public network and the participants, most of whom belong
to military personnel, are considered trustworthy.

Kirmse and Kirmse [33] recognize two security goals for
online games: protecting sensitive information (e.g., credit
card numbers) and providing a fair playing field (i.e., mak-
ing cheating is as difficult as possible). Naturally, security
and safety inside the game world is also an important issue
but that falls out of the scope of this paper (see [34]). The

7

online cheaters are usually motivated by vandalism or dom-
inance. Only a minority of cheaters try to create open and
immediate havoc, whereas most of them want to achieve a
dominating, superhuman position and hold sway over the
other players.

In the following, we go over the common methods used
in online cheating. The sectioning is based on the observa-
tions made by Pritchard [35] and Kirmse [36].

A. Packet and Traffic Tampering

In FPS games, a usual way to cheat is to enhance the
player’s reactions with reflex augmentation. For example,
an aiming proxy can monitor the network traffic and keep
a record of the opponents’ positions. When the cheater
fires, the proxy uses this information and sends additional
rotation and movement control packets before the fire com-
mand thus improving the aim. Reversely, in packet inter-
ception the proxy prevents certain packets from reaching
the cheating player. For example, if the packets containing
damage information are suppressed, the cheater becomes
invulnerable. In a packet replay attack, the same packet is
sent repeatedly. For example, if a weapon can be fired only
once in a second, the cheater can send the fire command
packet hundred times a second to boost its firing rate.

A common method for breaking the control protocol is
to change bytes in a packet and observe the effects. A
straightforward way to prevent this is to use checksums.
For this purpose, the MD5 algorithm [37] is widely recom-
mended, because it is well tested, publicly available and
fast enough for real-time MCGs. However, there are two
weaknesses that cannot be prevented with checksums alone:
the cheaters can reverse engineer the checksum algorithm
or they can attack with packet replay.

By encrypting the command packets, the proxies have a
lesser chance to record and forge information. However, the
packet replay attack requires that the packets carry some
state information so that even the packets with a similar
payload appear to be different. Instead of serial number-
ing, pseudo random numbers (e.g., the linear congruential
method [38]) provide a better alternative. Random num-
bers can also be used to modify the packets so that even
identical packets do not appear the same. Dissimilarity
can be further induced by adding a variable amount of
junk data to the packets, which eliminates the possibility
of analyzing their contents by the size.

B. Information Exposure

A cracked client software may allow a cheater to gain ac-
cess to the replicated, hidden game data (e.g., the status of
other players). On the surface, this kind of passive cheating
does not tamper with the network traffic, but the cheaters
can base their decisions on more accurate knowledge than
they are supposed to have. For example, typical exposed
data in RTS games are the variables controlling the visible
area on the screen (i.e., the fog of war). This problem is
common also in FPSs, where compromised graphics ren-
dering drivers may allow the player to see through walls.

Strictly speaking, information exposure problems stem
from the software and cannot be prevented with network-
ing alone. Clearly, the sensitive data should be encoded
and its location in the memory should be hard to detect.
Nevertheless, it is always susceptible to ingenious hackers
and, therefore, requires some additional countermeasures.
In a centralized architecture, an obvious solution is to uti-
lize the server, which can check whether a client issuing a
command is actually aware of the object with which it is
operating. For example, if a player has not seen the oppo-
nent’s base, he cannot give an order to attack it—unless he
is cheating. When the server detects cheating, it can drop
out the cheating client. A democratized version of the same
method can be applied in a replicated architecture: Every
node checks the validity of each other’s commands, and if
some discrepancy is detected, the nodes vote whether its
source should be debarred from participating the game.

C. Design Defects

Network traffic and software are not the only vulnera-
ble places in a MCG, but design defects can create loop-
holes which the cheaters are apt to exploit. For example,
if the clients are designed to trust each other, the game
is unshielded from client authority abuse. In that case, a
compromised client can exaggerate the damage caused by
a cheater, and the rest accept this information as such. Al-
though this problem can be tackled by using checksums to
ensure that each client has the same binaries, it is more
advisable to alter the design so that the clients can issue
command requests, which the server puts into operation.

In addition to poor design, distribution—especially the
heterogeneity of network environments—can be the source
of unexpected behavior. For instance, there may be fea-
tures that become eminent only when the latency is ex-
tremely high or when the server is under a denial-of-service
attack.

VI. Concluding Remarks

This paper provided an overview of the problems of net-
working in MCGs and offered a cursory glance to the topics.
We discussed the connection of MCGs to the relevant re-
search on other distributed systems. First, we presented
three aspects of MCGs ranging from networking resources
to distribution and scalability. Lastly, we described the
problems of ensuring security in MCGs.

MCGs open up possibilities for future work. Ideas orig-
inating from the related research should be evaluated and
their applicability in MCGs tested. Also, a closer look at
the work done on cryptography could yield better methods
for online security. Finally, the practicers should be made
aware of the advances in research and be invited to bring
their own insights into the discussion.

References

[1] Peter Clarke, “Mobile giants pick each other for universal
games,” EE Times, Mar. 21, 2001,
http://www.eetimes.com/story/OEG20010321S0069.

[2] Steve Benford, Chris Greenhalgh, Gail Reynard, Chris Brown,
and Boriana Koleva, “Understanding and constructing shared

8

spaces with mixed-reality boundaries,” ACM Transactions on
Computer-Human Interaction, vol. 5, no. 3, pp. 185–223, 1998.

[3] Michael R. Macedonia, A Network Software Architecture for
Large Scale Virtual Environments, Ph.D. thesis, Naval
Postgraduate School, Monterey, CA, June 1995.

[4] David L. Neyland, Virtual Combat: A Guide to Distributed
Interactive Simulation, Stackpole Books, Mechanicsburg, PA,
1997.

[5] Michael Capps, Perry McDowell, and Michael Zyda, “A future
for entertainment-defense research collaboration,” IEEE
Computer Graphics and Applications, vol. 21, no. 1, pp. 37–43,
2001.

[6] Emmanuel Frécon and Mårten Stenius, “DIVE: A scaleable
network architecture for distributed virtual environments,”
Distributed Systems Engineering, vol. 5, no. 3, pp. 91–100,
1998.

[7] Jon Mandeville, Thomas Furness, Masahiro Kawahata, Dace
Campbell, Paul Danset, Austin Dahl, Jens Dauner, Jim
Davidson, Jon Howell, Kigen Kandie, and Paul Schwartz,
“GreenSpace: Creating a distributed virtual environment for
global applications,” in Proceedings of Networked Reality
Workshop, Boston, MA, Oct. 1995.

[8] John W. Barrus, Richard C. Waters, and David B. Anderson,
“Locales: Supporting large multiuser virtual environments,”
IEEE Computer Graphics and Applications, vol. 16, no. 6, pp.
50–7, 1996.

[9] Rodger Lea, Yasuaki Honda, and Kouichi Matsuda, “Virtual
Society: Collaboration in 3D space on the Internet,” Computer
Supported Cooperative Working, vol. 6, no. 2/3, pp. 227–50,
1997.

[10] Chris Greenhalgh, “Awareness-based communication
management in the MASSIVE systems,” Distributed Systems
Engineering, vol. 5, no. 3, pp. 129–37, 1998.

[11] Steve Benford, Chris Greenhalgh, Tom Rodden, and James
Pycock, “Collaborative virtual environments,”
Communications of the ACM, vol. 44, no. 7, pp. 79–85, 2001.

[12] Shervin Shirmohammadi and Nicolas D. Georganas, “An
end-to-end communication architecture for collaborative virtual
environments,” Computer Networks, vol. 35, no. 2–3, pp.
351–67, 2001.

[13] John Maxfield, Terrence Fernando, and Peter Dew, “A
distributed virtual environment for collaborative engineering,”
Presence, vol. 7, no. 3, pp. 241–61, 1998.

[14] Ricardo Galli, Data Consistency Methods for Collaborative 3D
Editing, Ph.D. thesis, Universitat de les Illes Balears, Palma de
Mallorca, Spain, Nov. 2000.

[15] Kamen Kanev and Tomoyuki Sugiyama, “Design and
simulation of interactive 3D computer games,” Computers &
Graphics, vol. 22, no. 2–3, pp. 281–300, 1998.

[16] Eric J. Berglund and David R. Cheriton, “Amaze: A
multiplayer computer game,” IEEE Software, vol. 2, no. 3, pp.
30–9, 1985.

[17] Bjørn Stabell and Ken Ronny Schouten, “The story of XPilot,”
ACM Crossroads, vol. 3, no. 2, 1996,
http://www.acm.org/crossroads/xrds3-2/xpilot.html.

[18] Emmanuel Léty, Laurent Gautier, and Christophe Diot,
“MiMaze, a 3D multi-player game on the Internet,” in
Proceedings of the 4th International Conference on Virtual
System and Multimedia, Gifu, Japan, Nov. 1998, vol. 1, pp.
84–9.

[19] Simon Powers, Mike Hinds, and Jason Morphett, “DEE: An
architecture for distributed virtual environment gaming,”
Distributed Systems Engineering, vol. 5, no. 3, pp. 107–17,
1998.

[20] Jonathan Blow, “A look at latency in networked games,”
Game Developer, vol. 5, no. 7, pp. 28–40, July 1998.

[21] Peter Lincroft, “The Internet sucks: Or, what I learned coding
X-Wing vs. TIE Fighter,” Gamasutra, Sep. 3, 1999,
http://www.gamasutra.com/features/19990903/
lincroft 01.htm.

[22] Paul Bettner and Mark Terrano, “1500 archers on a 28.8:
Network programming in Age of Empires and beyond,” in The
2001 Game Developer Conference Proceedings, San Jose, CA,
Mar. 2001.

[23] Yahn W. Bernier, “Leveling the playing field: Implementing lag
compensation to improve the online multiplayer experience,”
Game Developer, vol. 8, no. 6, pp. 40–50, June 2001.

[24] Sandeep K. Singhal, Effective Remote Modeling in Large-Scale
Distributed Simulation and Visualization Environments, Ph.D.
thesis, Standford University, Standford, CA, Aug. 1996.

[25] Michael R. Macedonia and Michael J. Zyda, “A taxonomy for
networked virtual environments,” IEEE Multimedia, vol. 4, no.
1, pp. 48–56, 1997.

[26] Steve Deering, “Host extensions for IP multicasting,” Internet
RFC 1112, Aug. 1989, ftp://ftp.isi.edu/in-notes/rfc1112.txt.

[27] Christophe Diot and Laurent Gautier, “A distributed
architecture for multiplayer interactive applications on the
Internet,” IEEE Networks Magazine, vol. 13, no. 4, pp. 6–15,
1999.

[28] Kyoung Shin Park and Robert V. Kenyon, “Effects of network
characteristics on human performance in a collaborative virtual
environment,” in Proceedings of IEEE International
Conference on Virtual Reality, Houston, TX, Mar. 1999.

[29] Sandeep Singhal and Michael Zyda, Networked Virtual
Environments: Design and Implementation, Addison Wesley,
1999.

[30] Didier Verna, Yoann Fabre, and Guillaume Pitel, “Urbi et
Orbi: Unusual design and implementation choices for
distributed virtual environments,” in VSMM 2000: Sixth
International Conference on Virtual Systems and Multimedia,
Hal Thwaites, Ed., Gifu, Japan, Oct. 2000, pp. 714–24.

[31] Katherine L. Morse, Lubomir Bic, and Michael Dillencourt,
“Interest management in large-scale virtual environments,”
Presence, vol. 9, no. 1, pp. 52–68, 2000.

[32] John L. Gustafson, “Reevaluating Amdahl’s law,”
Communications of the ACM, vol. 31, no. 5, pp. 532–3, 1988.

[33] Andrew Kirmse and Chris Kirmse, “Security in online games,”
Game Developer, vol. 4, no. 4, pp. 20–8, July 1997.

[34] Derek Sanderson, “Online justice systems,” Game Developer,
vol. 6, no. 4, pp. 42–9, Apr. 1999.

[35] Matt Pritchard, “How to hurt hackers: The scoop on Internet
cheating and how you can combat it,” Gamasutra, July 24,
2000, http://www.gamasutra.com/features/20000724/
pritchard 01.htm.

[36] Andrew Kirmse, “A network protocol for online games,” in
Game Programming Gems, Mark DeLoura, Ed., pp. 104–8.
Charles River Media, 2000.

[37] Ronald Rivest, “The MD5 message digest algorithm,” Internet
RFC 1321, 1992,
http://theory.lcs.mit.edu/˜rivest/Rivest-MD5.txt.

[38] Donald E. Knuth, Seminumerical Algorithms, vol. 2 of The Art
of Computer Programming, Addison-Wesley, Reading, MA,
1969.

