
Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

1 of 11 10/28/2003 02:03 PM

"Linux Gazette...making Linux just a little more fun!"

Journal File Systems
By Juan I. Santos Florido

INTRODUCTION

As Linux grows up, it aims to satisfy different users and potential situations’ needs. During recent years, we
have seen Linux acquire different capabilities and be used in many heterogeneous situations. We have Linux
inside micro-controllers, Linux router projects, one floppy Linux distribution, partial 3-D hardware speedup
support, multi-head Xfree support, Linux games and a bunch of new window managers as well. Those are
important features for end users. There has also been a huge step forward for Linux server needs — mainly as a
result of the 2.2.x Linux kernel switch. Furthermore, sometimes as a consequence of industry support and others
leveraged by Open Source community efforts, Linux is being provided with the most important commercial
UNIX and large server’s features. One of these features is the support of new file systems able to deal with
large hard-disk partitions, scale up easily with thousands of files, recover quickly from crash, increase I/O
performance, behave well with both small and large files, decrease the internal and external fragmentation and
even implement new file system abilities not supported yet by the former ones.

This article is the first in a series of two, where the reader will be introduced to the Journal File Systems: JFS,
XFS, Ext3, and ReiserFs. Also we will explain different features and concepts related to the new file systems
above. The second article is intended to review the Journal File Systems behaviour and performance through
the use of tests and benchmarks.

GLOSSARY

Internal fragmentation

The logical block is the minimum allocation unit presented by the file system through the system calls. That
means that, storing fewer bytes than the logical block’s within a file, would take a logical block’s size of disk
space to appear allocated. Therefore, if our block size doesn’t divide a particular file (file size MOD block size
!= 0), the file system would allocate a new block that won’t be completely full, causing a waste of space. That
waste of space is internal fragmentation. Notice that the bigger the logical block is, the bigger the internal
fragmentation should be.

External fragmentation

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

2 of 11 10/28/2003 02:03 PM

External fragmentation is a situation in which logical blocks of a particular file are scattered all over the disk,
causing operations over that file to be slower, since more hard-disk header movements are needed.

Extents

Extents are sets of contiguous logical blocks used by several file systems and even database engines. An extent
descriptor is something like beginning, extent size, offset, where beginning is the block address
where the extent begins, the extent size is the size in blocks, and offset is the offset that the first byte of the
extent occupies within the file.

Extents enhance spatial locality, since the blocks within an extent are all contiguous. That increase will lead to
better scan times, as fewer header movements need to be performed. Realise that using extents reduces the
external fragmentation drawback, since more blocks are kept spatially together. But notice that extents usage
isn’t always a benefit. In case our applications request extents near in size to logical block’s, we would lose the
extents benefits, resulting in many small extents that would merely appear as logical blocks. To close the
performance increase benefits, extents improve multi-sector transfer chances and reduce the amount of hard
disk cache misses.

Finally, I would like you to realise that extents also provide for a way to organise large amounts of free
contiguous space efficiently. Using extents will help us reduce the amount of disk space required to track free
blocks, and will even enhance performance.

B+Trees

B+Tree diagram: the leaf node’s keys are ordered within the tree
improving scan times, since the scan is no longer sequential. Leaf nodes
are chained using pointers to each other.

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

3 of 11 10/28/2003 02:03 PM

The B+tree structure has been used on databases indexing structures for a long time. This structure provided
databases with a scalable and fast manner to access their records. B+tree stands for Balanced Tree. The + sign
means that the Btree is a modified version of the original Btree, or more precisely, consists of maintaining
pointers from each leaf node to the next, in order not to sacrifice sequential accesses. As Btrees and B+Trees
have been inherited from database technology, we are going to use a database analogy to explain them.

The B+trees have two different types of nodes: the internal nodes and the leaf nodes. Both of them consist of
sets of pairs like (key, pointer), ordered by the key value in an ascending manner and a final pointer which does
not have a corresponding key. Whereas the internal node pointers are used to point to others’ internal or leaf
nodes, the leaf node pointers point to the final information directly. Every single pair’s key is used to organise
the information within the B+Tree. In databases, each record has a key field, a field where the value is used to
distinguish that record from the same kind of records. Btrees take advantage of that key to index database
records for better access times.

[In the diagram, the keys are file names. The bottom row above the red boxes contains a key for
every file in the directory: these are the leaf nodes. Above these are the internal nodes, keys that have
been chosen by the system to make finding other keys faster. -Ed.]

As we said earlier, an internal node pair (key, pointer) is used to point out either another internal node or a final
leaf node. In both cases, the key that comes with the pointer will be greater than all the keys stored in the target
node. Therefore, records with an equal key value to a certain pair’s should be addressed by the next pair within
the node. This is the main reason for a final pointer with no corresponding key to exist. Notice that once a key is
used within a pair, there should be another pointer to address the records with that key value. That final pointer,
is used in the leaf nodes to point to the next. That way, we can still visit the contents organised sequentially.

B+Trees also have to be balanced. That means the length of the path taking us from the tree’s root to any leaf
node should always be the same. Moreover, the nodes within a BTree must contain a minimum number of pairs
in order to exist. Whenever a node’s content gets below that minimum, the pairs contained would be shifted to
another existing node.

In order to locate a specific record, we would do the following. Let’s suppose we are looking for a record with a
certain key, "K". We would begin at the root node, and then begin sequentially scanning the keys stored within.
We scan throughout that node until we found a key that was greater than "K". Then we go to the node (internal
or leaf; we don’t know yet) pointed by the accompanying pointer. Once there, if we were taken to another
internal node, we repeat the same operation. Finally, we get directed to a leaf node, where we scan sequentially
until we found the desired key "K". As fewer blocks have to be retrieved to get the desired one, this technique is
of lower complexity than sequential scanning, where in the worst case, we should visit all the entries.

UNIX File System (UFS)

The name of the file system SCO, System V and some other UNIXes used at the beginning. The Linux kernel
includes optional support for UFS. Most UNIXes continue to use UFS, although now with custom minor
enhancements.

Virtual File System (VFS)

A kernel layer that provides a unified application programming interface for file system services, irrespective of
which file system a file resides in. All file system implementations (vfat, ext2fs, jfs, etc) must therefore provide
certain VFS routines in order to be usable under Linux. VFS is the kernel layer that makes user applications
able to understand so many different file systems, even file systems that are comercial.

THE JOURNAL

What is a Journal File System?

I think we all know what a write cache is; a buffer allocated in the main memory intended to speed I/O

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

4 of 11 10/28/2003 02:03 PM

operations up. This kind of buffer is commonly used in file systems — the disk cache — and databases to
increase overall performance. The problem appears if there is a system crash, before the buffers have been
written to disk, that would cause the system to behave in an inconsistent way after system reboot. Think of a file
deleted in the cache, but remaining in the hard disk. That’s why databases and file systems have the ability to
recover the system back to a consistent state. Although databases have recovered quickly for years, the file
systems and more precisely UFS-like ones tend to increase their recover time as file system size grows. The
fsck recover tool for ext2fs has to scan through the entire disk partition in order to take the file system back to a
consistent state. This time-consuming task often creates a lack of availability for large servers with hundreds of
gigabytes or sometimes terabytes. This is the main reason for the file systems to inherit database recover
technology, and thus the appearance of Journal File Systems.

How does it work?

Most serious database engines use what is called a transaction. A transaction is a set of single operations that
satisfy several properties. The so-called ACID properties of transactions stands for Atomicity, Consistency,
Isolation and Durability. The most important feature for our explanation is the Atomicity. This property implies
that all operations belonging to a single transaction are completed without errors or cancelled, producing no
changes. This feature, together with Isolation, make the transactions look as if they were atomic operations that
can’t be partially performed. This transaction properties are held on databases, due to the problems related to
keeping consistency while exploiting concurrency. Databases take advantage of this, logging every single
operation within the transaction into a log file. Not only the operation names are logged in, but also the
operation argument’s content before the operation’s execution. After every single transaction, there must be a
commit operation, making the buffers be written to disk. Therefore, if there is a system crash, we could trace the
log back to the first commit statement, writing the argument’s previous content back to its position in the disk.

Journal file systems use the same technique above to log file system operations, causing the file system to be
recoverable in a small period of time.

One major difference between databases and file systems journaling is that databases log users and control data,
while file systems tend to log metadata only. Metadata are the control structures inside a file system: i-nodes,
free block allocation maps, i-nodes maps, etc.

KNOWN PROBLEMS--SATISFYING THE SCALABILITY
NEEDS

UNIX File System (UFS) and ext2fs were designed when hard disks and other storage media weren’t as big in
capacity. The growth in storage media capacity led to bigger files, directories and partition sizes, causing
several file-system-related problems. These problems are a consequence of the internal structures those file
systems laid over. Yet, although those structures were adequate for old files and directories’ average sizes, they
have proven inefficient for new ones.

There are two major problems with old structures:

They are unable to cope with new storage capacities: as we said above, old fs were designed with certain
file, directory and partition sizes in mind. File system structures have a fixed number of bits to store file
size information, a fixed number of bits to store the logical block number, etc. As a consequence of that
fixed number of bits, file sizes, partition sizes and the number of directory entries are limited. Old
structures often lack the number of bits required to manage certain object sizes.
They are inadequate to manage with new storage capacities: although old structures are sometimes able to
manage with new object sizes, they are sometimes inadequate to manage with them for performance
reasons. The main reason is that certain structures behave well with old sizes, but with the new ones lead
to performance losses.

New-generation file systems have been designed to overcome those problems, keeping scalability in mind.
Several new structures and techniques have been included in those fs. Therefore, we are going to explain deeper

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

5 of 11 10/28/2003 02:03 PM

the problems described above and the file system techniques used to overcome them.

Solving the inability

Most new file systems have widened their number of bits for some fields, in order to overcome previous
limitations. The new limits for those file systems are:

 Max. file system
size

Block sizes Max. file
size

XFS 18 thousand
petabytes

512 bytes to 64KB 9 thousand
petabytes

JFS

512 bytes blocks
/ 4 petabytes

512, 1024, 2048, 4096 bytes

512 Tb with
512 bytes
blocks

4KB blocks / 32
petabytes

4 petabytes
with 4KB

blocks

ReiserFS 4GB of blocks,
16 Tb

Up to 64KB
Currently fixed 4KB

4GB, 2^10
petabytes in

ReiserFS
(3.6.xx)

Ext3FS 4Tb 1KB-4KB 2GB

Actually, the maximum block device size limits the file system size to 2Tb, and there is also a VFS limit of 2GB
for file sizes. The good news is that we now have file systems able to scale up, and once the 2.4 kernels come
out, I am sure the limits will be extended. Notice also that JFS and XFS are commercial file systems ports; they
were designed for other operating systems where these limitations didn’t exist.

Avoiding inadequate use

The free blocks structure

Most file systems maintain structures where free blocks are tracked. The structures often consist of a list, where
all the free blocks’ numbers are kept. That way, the file system is able to satisfy the applications storage
requests. UFS and ext2fs use what is called a bitmap, for free blocks tracking. The bitmap consists of an array
of bits, where each bit corresponds to a logical block within the file system’s partition. Each block’s allocation
state would be reflected in its related bit. Therefore, a logical "1" value could mean the logical block is being
used, and a "0" could mean the block is free. The main problem with this kind of structure is that as the file
system size grows, the bitmap would grow in size as well, since every single block within the file system must
have a corresponding bit within the bitmap. As long as we use a "sequential scan algorithm" for free blocks, we
would notice a performance decrease, since the time needed to locate a free block would grow as well
(worst-case complexity O(n), where n is the bitmap’s size). Notice that this bitmap approach isn’t that bad when
the file system size is moderate, but as size grows, the structure behaves worse.

The solution provided by the new-generation file systems is the use of extents together with B+Tree
organization. The extents approach is useful since it can be used to locate several free blocks at a same time.
Also, extents use provide a way to reduce the structure’s size, since more logical blocks are tracked with fewer
information. Therefore, a bit for each block is no longer needed. Furthermore, with extents use, the free block’s
structure size no longer depends on the file system size (structure size would depend on the number of extents
maintained). Nevertheless, if the file system were so fragmented that an extent existed for every single block in
the file system, the structure would be bigger than the bitmap approach’s. Notice that the performance should

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

6 of 11 10/28/2003 02:03 PM

be significantly increased if our structure kept the free blocks only, since fewer items had to be visited. Also,
with extents use, even when they were organised into a list and sequential scan algorithms were used, the
performance would be increased, since the structure would pack several blocks within an extent, reducing the
time to locate a certain number of free blocks.

The second approach to overcome the free blocks problem is the use of complex structures that lead to
lower-complexity scan algorithms. We all know there are better ways of organising a set of items that will need
to be located later than the use of lists with sequential scan algorithms. The B+Trees are used since they are
able to locate objects quickly. Thus, the free blocks are organised into B+Trees instead of lists, in order to take
advantage of better scan algorithms. When several free blocks are requested by the applications, the file system
would traverse the main "free blocks B+Tree" in order to locate the free space required. Also, there is a
"B+Trees + Extents" approach, where not blocks but extents are organised within the tree. This approach makes
different indexing techniques possible. Indexing by extent size, and also by extent position, are implemented
techniques that make the file system able to locate several free blocks, either by size or by their location,
quickly.

Large number of directory entries

All file systems use a special fs object called directory. The directories, from the file system view, is a set of
directory entries. These directory entries are pairs (i-node number, file name), where the "i-node number" is the
number of the i-node — fs internal structure — used to maintain file-relevant information. Once an application
wants to look for a certain file within a directory, given its file name, the "directory entries structure" needs to
be traversed. Old file systems organised the directory entries within a directory into a list, leading then to
sequential scan algorithms. As a consequence, with large directories where thousands of files and other
directories are stored, the performance would be really low. This problem, as the one described with the free
blocks, is tightly related to the structure used. New-generation fs need better structures and algorithms to locate
files within a directory quickly.

Solution provided: The file systems being reviewed use B+Trees to organise the directory entries within a
directory, leading to better scan times. In those fs, the directory entries for every single directory are organised
into a B+Tree, indexing the directory entries by name. Thus, when a certain file under a given directory is
requested, the directory B+Tree would be traversed to locate the file’s i-node quickly. Also, new fs usage of
B+Trees is file system dependent. There are file systems that maintain a B+Tree for each single directory, while
others maintain a single file system B+Tree for the whole file system directory tree.

Large files

Some old file systems were designed with certain patterns of file usage in mind. Ext2fs and UFS were designed
with the idea that the file systems would contain small files mainly. That’s why the ext2fs and UFS i-nodes look
as they do. For those of you who still don’t know what an i-node is, we are going to explain the i-node structure
briefly.

An i-node is the structure used by UFS and ext2fs to maintain file-dependent information. The i-node is where
the file permissions, file type, number of links, and pointers to the fs blocks used by the file are maintained. An
i-node contains some direct pointers that are pointers (block addresses) to a file system’s logical blocks used by
the file it belongs to. i-nodes also contain indirect pointers, double-indirect pointers and even a triple-indirect
pointer. Indirect pointers are pointers (addresses) to blocks where other pointers to logical blocks are stored.
Thus, double-indirect pointers are pointers to blocks that contain indirect pointers, and triple-indirect pointers
are pointers to blocks containing double-indirect pointers. The problem with this addressing technique is that as
the file size grows, indirect, double-indirect and even triple-indirect pointers are used. Notice that the use of
indirect pointers leads to a higher number of disk accesses, since more blocks have to be retrieved in order to
get the block required. This would lead to an increasing retrieval time as file sizes grow. You could be
wondering why ext2fs designers didn’t use direct pointers only, as they have been proven faster. The main
reason is that i-nodes have a fixed size, and the use of only direct pointers would take i-nodes to be as big in
size as the number of direct pointers that could be used, wasting much space for small files.

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

7 of 11 10/28/2003 02:03 PM

i-node diagram (ext2fs): bigger file sizes require more disk accesses,
since more indirect, double-indirect and even triple-indirect blocks need

to be accessed to retrieve the data.

Solution provided: New file systems must then keep using space efficiently, and provide better addressing
techniques for bigger files. The main difference with old fs is, once more, the use of B+Trees. The file systems
we are studying contain B+Trees to organise the file blocks. The blocks are indexed by the offset within the
file; then, when a certain offset within the file is requested, the file system routines would traverse the B+Tree
to locate the block required. The techniques provided to overcome the problem described above are file system
dependent, too.

In order to minimise the use of indirect pointers, we could think of using bigger logical blocks. This would lead
to a higher information per block ratio, resulting in fewer indirect pointers usage. But, bigger logical blocks
increase the internal fragmentation, so other techniques are used. The use of extents to collect several logical
blocks together is one of those techniques. Using extents instead of block pointers would cause the same effect
as bigger blocks, since more "information per addressed unit" ratio is achieved. Some of the reviewed file
systems use extents to overcome the large file addressing problems. Moreover, extents can be organised within
a B+Tree indexing by their offset within the file, leading to better scan times. New i-nodes usually maintain
some direct pointers to extents, and in case the file needs more extents, those would be organised within a
B+Tree. In order to keep performance high when accessing small files, the new-generation file systems store
file data within the i-node itself. Consequently, whenever we get a file’s i-node, we would also get its data. This
is an especially useful technique for symbolic links, where the data within the file is really small.

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

8 of 11 10/28/2003 02:03 PM

Techniques/file
system

free blocks
management

Extents
for free
space

Btrees
for

directory
entries

Btrees for
file’s
blocks

addressing

Extents
for file’s
blocks

addressing

Data
within
inode
(small
files)

Symbolic
links data

within
the

i-node

Directory
entries
within
i-node
(small

directories)

XFS

B+Trees,
indexed by
offset and
indexed by

size

YES YES YES YES YES YES YES

JFS
Tree +
Binary

Buddy. *(1)
NO YES YES YES NO YES Up to 8

ReiserFS *(2) Bitmap
based

Not
supported

yet

As a
subtree
of the

main fs
tree

Within the
file

system
main tree

To come
with

release 4
*(3) *(3) *(3)

Ext3fs
Ext3fs isn’t a file system designed from scratch; it lies over ext2fs, so it doesn’t support
any of the techniques above. The point is that Ext3fs provides ext2fs with journaling
support, while preserving backwards compatibility.

(1) JFS uses a different approach to organise the free blocks. The structure is a tree, where the leaf nodes are
pieces of bitmap instead of extents. Actually the leaf nodes are the representation of the binary buddy technique
for that specific partition (Binary Buddy is the technique used to track and then collect together contiguous
groups of free logical blocks, in order to achieve a bigger group). As we said when discussing the bitmap-based
technique, every single bit on the bitmap corresponds to a logical block on disk. The value of a single bit could
then be "1", meaning the block is allocated, or it could be "0", meaning the block is free. The pieces of bitmap,
each of which contains 32 bits, could be understood as a hex number. Therefore, a value of "FFFFFFFF"
would mean that the blocks corresponding to the bits on that sub-bitmap are all allocated. Finally, making use
of that allocation number and other information, JFS builds a tree where a group of contiguous blocks of a
certain size can be located quickly.

(2)This file system’s core is based on B*Trees (an enhanced version of B+tree).The main difference is that
every file system object is placed within a single B*Tree. That means there aren’t different trees for each
directory, but each directory has a sub-tree of the main file system one. That sort of use requires Reiserfs to
have more complex indexing techniques. Another major difference is that Reiserfs does not use extents, though
they are planned to be supported.

(3)ReiserFS organizes every file system object within a B*Tree. Those objects, directories, file blocks, file
attributes, links, etc. are all organised within the same tree. Hashing techniques are used to obtain the key field
needed to organise items within a BTree. The best of it is that by changing the hashing method applied, we are
changing the way the fs organises the items, and their relative position within the tree. There are hashing
techniques that help maintain spatial locality for items related (directory attributes with directory entries, file
attributes with file data, etc.).

OTHER IMPROVEMENTS

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

9 of 11 10/28/2003 02:03 PM

There are other limitations on "UFS-like" file systems. Amongst these are the inability to manage sparse files as
a special case, and the fixed number of i-nodes problem.

Sparse files support

Let’s suppose we create a new file, and write a couple of bytes at the beginning. Everything is okay until then.
What about if we now write at offset "10000" within that file? The file system should now look for as many
blocks as needed to cover the gap between offset 2 and offset 10000. That could take a while. The question now
is, why should the fs allocate those blocks in the middle, if we were not interested in them? The answer to that
question is the sparse file support provided by the new file systems.

The sparse file support is tightly related to the extent addressing technique for the file’s blocks. The sparse file
support takes advantage of the field "offset within the file" of extent descriptors. Thus, whenever the file system
must look for free blocks just to fill the gap opened by a situation like the one described above, the file system
just sets up a new extent with the corresponding "offset within the file" field. Thereafter, whenever an
application tries to read one of the bytes within the gap, a "null" value should be returned, as there is no
information there. Finally, the gap would be filled in by other applications that wrote at offsets within the gap.

The ReiserFS internal fragmentation solution

When we discussed the internal fragmentation and file system performance, we said administrators often have
to choose between performance and space waste. If we now look at the first table, we would see that new fs are
able to manage blocks up to 64KB in size. That size of block and even smaller would produce a significant
waste of space due to internal fragmentation. In order to make the use of big block sizes feasible, ReiserFS
implements a technique that solves the problem.

As we said earlier, ReiserFS uses a B*Tree to organise the file system objects. These objects are the structures
used to maintain file information — access time, file permissions, etc. In other words, the information
contained within an i-node-, directories and the file’s data. ReiserFS calls those objects, stat data items,
directory items and direct/indirect items, respectively. The indirect items consist of pointers to unformatted
nodes. Unformatted nodes are logical blocks with no given format, used to store file data, and the direct items
consist of file data itself. Also, those items are of variable size and stored within the leaf nodes of the tree,
sometimes with others in case there is enough space within the node. This is why we said before that file
information is stored close to file data, since the file system always tries to put stat data items and the
direct/indirect items of the same file together. Realise that opposed to direct items, the file data pointed by
indirect items is not stored within the tree. This special management of direct items is due to small file support.

The direct items are intended to keep small file data and even the tails of the files. Therefore, several tails could
be kept within the same leaf node, producing an important decrease of wasted space. The problem is that using
this technique of keeping the file’s tails together would increase external fragmentation, since the file data is
now further from the file tail. Moreover, the task of packing tails is time-consuming and leads to performance

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

10 of 11 10/28/2003 02:03 PM

decrease. This is a consequence of the memory shifts needed when someone appends data to a file. Anyway, the
tails packing technique can be disabled if the administrator wants to do so. Consequently, it’s once again an
administrator choice.

Dynamic i-node allocation

One major problem of "UFS-like" file systems is the use of a fixed number of i-nodes. As we explained before,
the i-nodes contain the information related to every file system object. Thus, a fixed number of i-nodes
constrains the maximum number of objects that can be maintained within the file system. In case we used all
the i-nodes of the file system, we would have to back up the partition, and then reformat with a higher number
of i-nodes. The reason for this fixed number is that "UFS" uses fixed-size structures to track i-nodes state — the
same manner as free blocks. Also, "UFS" allocates i-nodes at well-known positions for the file system, so no
i-node to logical blocks mapping is needed. The problem appears when system administrators have to guess the
maximum number of objects their file systems should manage. Notice that it is not always a good policy to
create the biggest number of i-nodes possible, since the disk space needed for the i-nodes is reserved (can’t be
used for other purposes), and this would waste much space.

To overcome that problem, dynamic i-node allocation appeared. The dynamic allocation of i-nodes avoids the
need for system administrators to guess the maximum number of objects at format time. But the use of dynamic
techniques leads to other problems: i-node to logical block mapping structures, i-node tracking structures, etc.
The file systems reviewed use B+Trees to organise the allocated i-nodes of the file system. Furthermore, JFS
uses "i-node extents" that form the leaf nodes of the B+Tree and keep up to 32 i-nodes together. There are also
structures that help allocate i-nodes close to other file system objects. Consequently, the use of dynamic i-node
is complex and time-consuming, but helps broaden old file systems’ limits.

Other techniques
Dynamic
i-node

allocation

Dynamic i-node
tracking structures

Support for
sparse files

XFS YES B+Tree YES

JFS YES B+Tree with
i-node extents YES

ReiserFS YES its main
B*tree*(4)

YES*(5)

Ext3FS NO NO NA

*(4) As we explained in "the ReiserFS internal fragmentation solution" section, ReiserFS makes use of
stat_data items to store file-dependent information. The number of hard links, the file owner id, the owner
group id, file type, permissions, file size, etc, are all stored within a stat_data item for the corresponding file.
The stat_data item then replaces the inode’s usage, except for the pointer to file blocks. Furthermore, the
ReiserFS items are created dynamically and organised within the main file system B*tree, which leads us to
dynamic inode allocation. Finally, every single file system item has a related key field, which serves to locate
the item within the B*tree. This key has a number of bits at the end, dedicated to item-type identification and to
let us know if the item is an stat_data, direct, indirect, etc. Therefore, we could say that inode organisation is
performed by the B*tree usage.

*(5) Currently, ReiserFS sparse files support is not as fast as it was intended to be. This problem is scheduled
to be fixed with ReiserFS release 4.

REFERENCES

File system home pages

Journal File Systems LG #55 http://www.linuxgazette.com/issue55/florido.html

11 of 11 10/28/2003 02:03 PM

ext2fs
ReiserFS
xfs
jfs

Bibliography

JFS overview and layout white papers by Steve Best and Dave Kleikamp
XFS: A Next Generation Journalled 64-Bit Filesystem With Guaranteed Rate I/O by Mike Holton and Raj
Das. SGI, Inc.
Scalability in the XFS File System by Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike
Nishimoto, and Geoff Peck. SGI, Inc.
Scalability and Performance in Modern File Systems by Philip Trautman and Jim Mostek; ReiserFS web
site papers.
Design and Implementation of the Second Extended Filesystem by Rémy Card, Theodore Ts’o, Stephen
Tweedie
ReiserFS developers mailing list. To join, send e-mail to reiserfs-subscribe@devlinux.com.
JFS mailing list. To subscribe, send e-mail to majordomo@oss.software.ibm.com with "subscribe" in the
Subject: line and "subscribe jfs-discussion" in the body.
Fundamentos de Bases de Datos by Henry F. Korth and Abraham Silberschatz. McGraw-Hill, 1993.

The author would like to thank Stephen C. Tweedie, Dave Kleikamp, Steve Best, Hans Reiser, the JFS and the
ReiserFS mailing list guys for the fruitful conversations and answers.

Copyright © 2000, Juan I. Santos Florido
Published in Issue 55 of Linux Gazette, July 2000

