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® Intro (done)
® Clock Synchronization (next)

Global Time and State
Election Algorithms
Mutual Exclusion
Distributed Transactions
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Physical Clocks

“Exact” time was computed by astronomers
- Take “noon” for two days, divide by 24*60*60
->Mean solar second
But ..
- Earth is slowing! (35 days over 300 million years)
- Short term fluctuations (Magma core, and such)
- Could take many days for average, but still erroneous
Physicists take over (Jan 1, 1958)
- Count transitions of cesium 133 atom
® 9,192,631,770 == 1 solar second
- 50 cesium 133 clocks averaged
® International Atomic Time (TAI)
- To stop day from “shifting” (remember, earth is

slowing) translate TAI into Universal Coordinated Time
(UTC)

UTC is broadcast (shortwave radio pulses)
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Introduction

® Communication not enough. Need
cooperation - Synchronization

® Distributed synchronization needed for
- transactions (bank account via ATM)
- access to shared resource (network printer)

- ordering of events (network games where
players have different ping times)
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Clock Synchronization

® When each machine has its own clock, an event that
occurred after another event may nevertheless be assigned
an earlier time

® Consider nake
- Compiling machine compares time stamps

Cempuai an Haq 2145 2105 HAT - Time o0 dhieg
whih compder * - + + 1D bl clack
nny b

AR § created
Coomparer o= Fal s 2143 2nad ral - R Tima nccording
wibch sdior i & § § o bl clock

s b
S o

® Same holds when using NFS mount

® Canwe set all clocks in a distributed system to have the
same time?
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Clock Synchronization Algorithms

® Not every machine has UTC receiver
- If one, then keep others synchronized
® Computer timers go off H times/sec, incr counter
® ldeally, if H=60, 216,000 per hour (dC/dt = 0)
® But typical errors, 10°°, so 215,998 to 216,002

oy * Specs can give you
Clockame, & x %=y maximum drift rate(r)
e '
-f' Jﬁ « Every Dt seconds, will
.Q;\'. QJ') e :c, 1 be at most 2r Dt apart

ot * If want drift of d, re-
synchronize every d/2r

-> Various algs (next)
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Cristian"s Algorithm

Every d/2r, ask server for time
® What are the problems?

values
b)  The machines answer
c) The time daemon tells everyone how to adjust their clock
Cristian’'s and Berkeley's are centralized. Problems?

® Major
- Client clock is fast
- What to do?
® Minor
- Non-zero amount of time to sender
- What to do?
WP
The Berkeley Algorithm
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a) The time daemon asks all the other machines for their clock
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® Want one-way - (T, - Tg)/2. Problems?
- Tol=T,? Ignore.
- Variance? Take average. Or smallest.
- 17 Can subtract, but need to determine time. WP

Cristian’s Algorithm
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® Collect time samples for some time time
s
® Take average and set time
® Can discard m so m faulty clocks don't hurt
® Can improve by computing (T, - T)/2
- Need probes to obtain
® Used by Network Time Protocol (NTP)
- Worldwide accuracy of 1-50 msec

I WP

Decentralized Algorithms
| . Periodically (every R seconds), each
machine broadcasts current time
=]

WP
Outline
| ® Intro (done)
® Clock Synchronization (done)
® Global Time and State (next)
® Election Algorithms
® Mutual Exclusion
® Distributed Transactions
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Lamport Timestamps

« Often don’t need time, but orderinga->b (happens before)

2 (impossible) -

a) Each processes with own clock with different rates.
b) Lamport’s algorithm corrects the clocks.
c) Canadd machine ID to break ties WP
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Use Example: Totally-Ordered

Lipoate 1 Updabs 2 .
(+$100) (+1%)
¥ F L5
|« v !
Updatie 115 Replicmed databass Lipdate 2 s
partormad bafors parformed Bl
ugedEie 7 update 1
(San Francisco) (New York)
® San Fran customer adds $100, NY bank adds 1% interest
- San Fran will have $1,111 and NY will have $1,110
® Updating a replicated database and leaving it in an
inconsistent state.
® Canuse Lamport's to totally order
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Consistent Global State (2)

Incorming Outgoing

message  Process Stats message
A _r F
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Processes all connected. Can initiate state message

(M)
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Mutual Exclusion

a) Organization of a process and channels for a
distributed snapshot W
Outline

® Intro (done)
® Clock Synchronization (done)
® Global Time and State (done)
® Election Algorithms (next)
[ ]
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Distributed Transactions

WP

Consistent Global State

» Need for state of distributed system, say, for termination detection
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[=2] a) A consistent cut
b) An inconsistent cut
* How do ensure always a consistent cut? WP
I Consistent Global State (3)
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b) Process Q receives M for the first time and
records its local state. Sends M on all outgoing
links
c) Q records all incoming messages
d) Q receives M for its incoming channel and
finishes recording the state of the incoming
2] channel
« Can then send state to initiating process
«  System can still proceed normally WP
Election Algorithms
® Often need one process as a coordinator
® All processes in distributed systems may
be equal
- Assume have some “ID” that is a number
® Need way to “elect” process with the
highest number as leader
=]
I WP
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®  Process 4 notices 7 down
Process 4 holds an election
Process 5 and 6 respond, telling 4 to stop
® Now 5 and 6 each hold an election
WP
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A Ring Algorithm

® Coordinator down, start ELECTION
- Send message down ring, add 1D
- Once around, change to COORDINATOR (biggest)
[ELE-] 'l 1
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® Even if two ELECTIONS started at once, everyone
will pick same leader

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical region.
The coordinator does not reply. (Or, can say “denied”)

c)  When process 1 exits the critical region, it tells the coordinator,
when then replies to 2.

. But centralized, single point of failure

WP
Mutual Exclusion:
A Centralized Algorithm
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d) Process 6 tells process 5 to stop
. e) Process 6 wins and tells everyone
. Eventually “biggest” (bully) wins
. If processes 7 comes up, starts elections again
I wp
Outline
® Intro (done)
® Clock Synchronization (done)
® Global Time and State (done)
® Election Algorithms (done)
® Mutual Exclusion (next)
® Distributed Transactions
=]
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A Distributed Algorithm
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Processes 0 and 2 want to enter the same critical region
at the same moment.

Process 1 doesn't want to, says “OK". Process O has the
lowest timestamp, so it wins. Queues up “OK” for 2.
When process 0 is done, it sends an OK to 2 so can now
enter the critical region.

(Again, can modify to say “denied”)

WP
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A Token Ring Algorithm

L] H]
a) Anunordered group of processes on a network.
b) A logical ring constructed in software.
e Process must have token to enter.
. If don't want to enter, pass token along.

. If host down, recover ring. If token lost,
regenerate token. If in critical section long? WP

Mutual Exclusion Algorithm

Messages per Delay before entry (in
Algorithm entry/exit message times) Problems
Centralized 3 2 Coordinator crash
Distributed 2(n-1) 2(n-1) Process crash
Lost token,
Token ring 1to¥ Oton-1
process crash
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® Centralized most efficient

® Token ring efficient when many want to use
critical region
WP
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Outline

® Intro (done)
® Clock Synchronization (done)
® Global Time and State (done)
® Election Algorithms (done)
® Mutual Exclusion (done)
Distributed Transactions (next)
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The Transaction Model

® Gives you mutual exclusion plus...
® Consider using PC (Quicken) to:
- Withdraw $a from account 1
- Depost $a to account 2
® |finterrupt between 1) and 2), $a gone!
® Multiple items in single, atomic action
- It all happens, or none
- If process backs out, as if never started

WP

Transaction Primitives

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise
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® Above may be system calls, libraries or statements
in a language (Sequential Query Language or SQL)

WP
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Example: Reserving Flight from
White Plains to Nairobi

BEGIN_TRANSACTION BEGIN_TRANSACTION

reserve WP > JFK; reserve WP -> JFK;

reserve JFK -> Nairobi; reserve JFK -> Nairobi;

reserve Nairobi -> Malindi; reserve Nairobi -> Malindi full =>
END_TRANSACTION ABORT_TRANSACTION

(@ (b)

a) Transaction to reserve three flights commits

b) Transaction aborts when third flight is
unavailable

®  The “all-or-nothing” is one property. Others:

WP
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Transaction Properties

1) Atomic -
e Others don't see intermediate results, either
2) Consistent
« System invariants not violated
* Ex: no money lost after operations)
3) Isolated
« Operations can happen in parallel but as if were
done serially
4) Durability
*  Once commits, move forward
¢ (Ch 7, won't cover more)
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® ACID
WP
Distributed Transactions
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® Nested transaction gives you a hierarchy

- Can distribute (example: WP - JFK, JFK-> Nairobi )

- But may require multiple databases
® Distributed transaction is “flat” but across

distributed data (example: JFK and Nairobi dbase)j{JJ
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Private Workspace (1)

® File system with transaction across
multiple files

- Normally, updates seen + No way to undo
Private Workspace - Copy files

Only update Public Workspace once done
I abort transaction, remove private copy.
But copy can be expensive!

- How to ix?

WP

Classification of Transactions

® Flat Transactions
- Limited
- Example: what if want to keep first part of
flight reservation? If abort and then
restart, those might be gone.

- Example: what if want to move a Web page.
All links pointing to it would need to be
updated. It could lock resources for a long
time

® Also Distributed and Nested Transactions

WP
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Outline

Intro (done)
Clock Synchronization (done)
Global Time and State (done)
Election Algorithms (done)
® Mutual Exclusion (done)
® Distributed Transactions

- Overview (done)

- Implementation (next)

R N e

WP

Private Workspace (2)

FPren
WFVEIE0R
=

a) Original file index (descriptor) and disk blocks
b)  Copy descriptor only. Copy blocks only when written.
*  Modified block 0 and appended block 3
c)  Replace original file (new blocks plus descriptor) after

commit wp
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Writeahead Log

- Don't make copies. Instead, record action plus old and new
values.

x=0; Log Log Log
y=0

BEGIN_TRANSACTION;

X=x+1; x=0/1] [x=01/1] [x=01/1]
y=y+2 [y =0/2] [y=0/2]
X=y*y, [x = 1/4]

END_TRANSACTION;
@ (b) (© (C)

a) A transaction

b) - d) log before each statement is executed

. If transaction commits, nothing to do

. If transaction is aborted, use log to rollback

WP
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Concurrency Control (2)

® General organization of managers for
handling distributed transactions.
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Concurrency Control (1)

Transaobors
rr

L |
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END_TRANSACTION
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® General organization of managers for
handling transactions. WP
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Serializability
Allow parallel execution, but end result asif serial

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
=0; x=0; x=0;

X=x+1;

H X=x+2 x=x+3
END_TRANSACTION

ENDiTR/‘\NSACTION ENDiTR/‘\NSACTION
@ ® ©
a) - ¢) Three transactions T,, T,, and T5 Answer
could be 1, 2 or 3. All valid.

Schedule 1 X =0, x=x+1 x=0 x=x+2 x=0 x=x+3

Legal

Schodule 2 XTO0 XS0 XTXTTL X=XTZ X0 X=x73 [Lega

Schedule 3 X=0, X=0, X=X+1L X=0, X=X+2 X=X%3 |flega

® If in parallel, only some possible schedules
® 2isserialized

® Concurrency controller needs to manage WP
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Two-Phase Locking

Lock poirt
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Acquire locks (ex: in previous example). Perform update.
Release.

Can lead to deadlocks (use OS techniques to resolve)
Can prove: if used by all transactions, then all schedules will

be serializable
WP

Timestamp Ordering

® Pessimistic
- Every read and write gets a timestamp
(unique, using Lamport's alg)
- If conflict, abort sub-operation and re-try
® Optimistic
- Allow all operations since conflict rate
- At end, if conflict, roll-back
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