CS4513
Distributed Computer
Systems

TN I F =

Synchronization
[|
(Ch 5)
|| WP
Outline
® Intro (done)
® Clock Synchronization (next)

Global Time and State
Election Algorithms
Mutual Exclusion
Distributed Transactions

WP

TN IR =

Physical Clocks

“Exact” time was computed by astronomers
- Take “noon” for two days, divide by 24*60*60
->Mean solar second
But ..
- Earth is slowing! (35 days over 300 million years)
- Short term fluctuations (Magma core, and such)
- Could take many days for average, but still erroneous
Physicists take over (Jan 1, 1958)
- Count transitions of cesium 133 atom
® 9,192,631,770 == 1 solar second
- 50 cesium 133 clocks averaged
® International Atomic Time (TAI)
- To stop day from “shifting” (remember, earth is

slowing) translate TAI into Universal Coordinated Time
(UTC)

UTC is broadcast (shortwave radio pulses)

WP

TN IR =

Introduction

® Communication not enough. Need
cooperation - Synchronization

® Distributed synchronization needed for
- transactions (bank account via ATM)
- access to shared resource (network printer)

- ordering of events (network games where
players have different ping times)

WP

R N e

Clock Synchronization

® When each machine has its own clock, an event that
occurred after another event may nevertheless be assigned
an earlier time

® Consider nake
- Compiling machine compares time stamps

Cempuai an Haq 2145 2105 HAT - Time o0 dhieg
whih compder * - + + 1D bl clack
nny b

AR § created
Coomparer o= Fal s 2143 2nad ral - R Tima nccording
wibch sdior i & § § o bl clock

s b
S o

® Same holds when using NFS mount

® Canwe set all clocks in a distributed system to have the
same time?

WP

R N e

Clock Synchronization Algorithms

® Not every machine has UTC receiver
- If one, then keep others synchronized
® Computer timers go off H times/sec, incr counter
® ldeally, if H=60, 216,000 per hour (dC/dt = 0)
® But typical errors, 10°°, so 215,998 to 216,002

oy * Specs can give you
Clockame, & x %=y maximum drift rate(r)
e '
-f' Jﬁ « Every Dt seconds, will
.Q;\'. QJ') e :c, 1 be at most 2r Dt apart

ot * If want drift of d, re-
synchronize every d/2r

-> Various algs (next)

WP

uTE

TN IR =

Cristian"s Algorithm

Every d/2r, ask server for time
® What are the problems?

values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock
Cristian’'s and Berkeley's are centralized. Problems?

® Major
- Client clock is fast
- What to do?
® Minor
- Non-zero amount of time to sender
- What to do?
WP
The Berkeley Algorithm
Timrm dmarnan
| 55"’ F, 00 ?f'l] ?'Z:J 5
-] - -
aon 1] - i 1™ 18
300 I 25 I B
o [Pewoik] g | | €] [»
250 F Z50 e 305 L5
(al i} I
a) The time daemon asks all the other machines for their clock
]

b
Time sereer —_—
- Themid =
1, Irgemugt handlng tme

® Want one-way - (T, - Tg)/2. Problems?
- Tol=T,? Ignore.
- Variance? Take average. Or smallest.
- 17 Can subtract, but need to determine time. WP

Cristian’s Algorithm
Bath Toand Ty ane mesdieed wiih e sars clock
! Ty Ty
Climnt T —
Request Cusc
=]

® Collect time samples for some time time
s
® Take average and set time
® Can discard m so m faulty clocks don't hurt
® Can improve by computing (T, - T)/2
- Need probes to obtain
® Used by Network Time Protocol (NTP)
- Worldwide accuracy of 1-50 msec

I WP

Decentralized Algorithms
| . Periodically (every R seconds), each
machine broadcasts current time
=]

WP
Outline
| ® Intro (done)
® Clock Synchronization (done)
® Global Time and State (next)
® Election Algorithms
® Mutual Exclusion
® Distributed Transactions
2]
I WP

Lamport Timestamps

« Often don’t need time, but orderinga->b (happens before)

2 (impossible) -

a) Each processes with own clock with different rates.
b) Lamport’s algorithm corrects the clocks.
c) Canadd machine ID to break ties WP

R N e

TN IR =

Use Example: Totally-Ordered

Lipoate 1 Updabs 2 .
(+$100) (+1%)
¥ F L5
|« v !
Updatie 115 Replicmed databass Lipdate 2 s
partormad bafors parformed Bl
ugedEie 7 update 1
(San Francisco) (New York)
® San Fran customer adds $100, NY bank adds 1% interest
- San Fran will have $1,111 and NY will have $1,110
® Updating a replicated database and leaving it in an
inconsistent state.
® Canuse Lamport's to totally order

TN I F =

Consistent Global State (2)

Incorming Outgoing

message Process Stats message
A _r F

I 1 Ny - = -

HHHE 'S = e

=i Lizeal
Marker EREEE fieaystem

ia)

Processes all connected. Can initiate state message

(M)

TN IR =

Mutual Exclusion

a) Organization of a process and channels for a
distributed snapshot W
Outline

® Intro (done)
® Clock Synchronization (done)
® Global Time and State (done)
® Election Algorithms (next)
[]

[]

Distributed Transactions

WP

Consistent Global State

» Need for state of distributed system, say, for termination detection

Corristin Gl 1800 EA0 W Dol
(=] Terey L3 P Toray L3
S o
i b}] i h it
P C] L] M
3 ml
i 1) 1
Seraier ol e canaai
b wharvabend wath fham ol
(L] [.1]
[=2] a) A consistent cut
b) An inconsistent cut
* How do ensure always a consistent cut? WP
I Consistent Global State (3)
= blicim J : : W d = "_'F : L3 ':" :
— 1 — _——T |
B - liEEe i {1 1T
Racorded
® © i
b) Process Q receives M for the first time and
records its local state. Sends M on all outgoing
links
c) Q records all incoming messages
d) Q receives M for its incoming channel and
finishes recording the state of the incoming
2] channel
« Can then send state to initiating process
« System can still proceed normally WP
Election Algorithms
® Often need one process as a coordinator
® All processes in distributed systems may
be equal
- Assume have some “ID” that is a number
® Need way to “elect” process with the
highest number as leader
=]
I WP

z F] 2 1 o
.em‘.“'“ s S L 5 pton
Fecton g - aK = " ; 2
% o P
. %: a a 3 L] g 13
¥ 7 T
Fus fa . SO Endnd
M crawhed
- W K
® Process 4 notices 7 down
Process 4 holds an election
Process 5 and 6 respond, telling 4 to stop
® Now 5 and 6 each hold an election
WP

TN I F =

A Ring Algorithm

® Coordinator down, start ELECTION
- Send message down ring, add 1D
- Once around, change to COORDINATOR (biggest)
[ELE-] 'l 1
o
41 1=

Prewiqus cordnaior (o -
has crazhes P |5.8)

ko responas | B F]

® Even if two ELECTIONS started at once, everyone
will pick same leader

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical region.
The coordinator does not reply. (Or, can say “denied”)

c) When process 1 exits the critical region, it tells the coordinator,
when then replies to 2.

. But centralized, single point of failure

WP
Mutual Exclusion:
A Centralized Algorithm
1] i] o i z o 1 Z
[Fmgum «
Tty al il [¥ “L b %el:\:lae' ol
3 3 5
o Cue & 2
Crondinator ey
I fad (151} [1x1)
2]

WP

a)
b)

c)

| 1 1
2 5 2. 5[
kow 3
4 A a el Coord imator | &
F
o 5 or* 3
7 T
() ol
d) Process 6 tells process 5 to stop
. e) Process 6 wins and tells everyone
. Eventually “biggest” (bully) wins
. If processes 7 comes up, starts elections again
I wp
Outline
® Intro (done)
® Clock Synchronization (done)
® Global Time and State (done)
® Election Algorithms (done)
® Mutual Exclusion (next)
® Distributed Transactions
=]
I wp
A Distributed Algorithm
Eriern
crigcal
. regian
(3
o o [
3 2 oA % o fue
[By 4 Emsn
4 il o 1 1 o w2 1 2 | crikcsl
2 i # m@mn
) ! 1] i

Processes 0 and 2 want to enter the same critical region
at the same moment.

Process 1 doesn't want to, says “OK". Process O has the
lowest timestamp, so it wins. Queues up “OK” for 2.
When process 0 is done, it sends an OK to 2 so can now
enter the critical region.

(Again, can modify to say “denied”)

WP

TN IR =

A Token Ring Algorithm

L] H]
a) Anunordered group of processes on a network.
b) A logical ring constructed in software.
e Process must have token to enter.
. If don't want to enter, pass token along.

. If host down, recover ring. If token lost,
regenerate token. If in critical section long? WP

Mutual Exclusion Algorithm

Messages per Delay before entry (in
Algorithm entry/exit message times) Problems
Centralized 3 2 Coordinator crash
Distributed 2(n-1) 2(n-1) Process crash
Lost token,
Token ring 1to¥ Oton-1
process crash

TN IR =

® Centralized most efficient

® Token ring efficient when many want to use
critical region
WP

TN I F =

Outline

® Intro (done)
® Clock Synchronization (done)
® Global Time and State (done)
® Election Algorithms (done)
® Mutual Exclusion (done)
Distributed Transactions (next)

WP

R N e

The Transaction Model

® Gives you mutual exclusion plus...
® Consider using PC (Quicken) to:
- Withdraw $a from account 1
- Depost $a to account 2
® |finterrupt between 1) and 2), $a gone!
® Multiple items in single, atomic action
- It all happens, or none
- If process backs out, as if never started

WP

Transaction Primitives

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

TN IR =

® Above may be system calls, libraries or statements
in a language (Sequential Query Language or SQL)

WP

R N e

Example: Reserving Flight from
White Plains to Nairobi

BEGIN_TRANSACTION BEGIN_TRANSACTION

reserve WP > JFK; reserve WP -> JFK;

reserve JFK -> Nairobi; reserve JFK -> Nairobi;

reserve Nairobi -> Malindi; reserve Nairobi -> Malindi full =>
END_TRANSACTION ABORT_TRANSACTION

(@ (b)

a) Transaction to reserve three flights commits

b) Transaction aborts when third flight is
unavailable

® The “all-or-nothing” is one property. Others:

WP

TN IR =

Transaction Properties

1) Atomic -
e Others don't see intermediate results, either
2) Consistent
« System invariants not violated
* Ex: no money lost after operations)
3) Isolated
« Operations can happen in parallel but as if were
done serially
4) Durability
* Once commits, move forward
¢ (Ch 7, won't cover more)

TN I F =

® ACID
WP
Distributed Transactions
Hesled BN Diedrizased raniasion
Selvarmacten Subliansasion Subbrormmation - . kleencion,
. A = =
Mirbre daabase’ | Howl dutshase A= =2k

[t bolind dutabues

Twe difaren | red men
oria b

T Sl p dipal el
i o | ol i L e
[E]] {L:1]

® Nested transaction gives you a hierarchy

- Can distribute (example: WP - JFK, JFK-> Nairobi)

- But may require multiple databases
® Distributed transaction is “flat” but across

distributed data (example: JFK and Nairobi dbase)j{JJ

TN IR =

Private Workspace (1)

® File system with transaction across
multiple files

- Normally, updates seen + No way to undo
Private Workspace - Copy files

Only update Public Workspace once done
I abort transaction, remove private copy.
But copy can be expensive!

- How to ix?

WP

Classification of Transactions

® Flat Transactions
- Limited
- Example: what if want to keep first part of
flight reservation? If abort and then
restart, those might be gone.

- Example: what if want to move a Web page.
All links pointing to it would need to be
updated. It could lock resources for a long
time

® Also Distributed and Nested Transactions

WP

TN IR =

Outline

Intro (done)
Clock Synchronization (done)
Global Time and State (done)
Election Algorithms (done)
® Mutual Exclusion (done)
® Distributed Transactions

- Overview (done)

- Implementation (next)

R N e

WP

Private Workspace (2)

FPren
WFVEIE0R
=

a) Original file index (descriptor) and disk blocks
b) Copy descriptor only. Copy blocks only when written.
* Modified block 0 and appended block 3
c) Replace original file (new blocks plus descriptor) after

commit wp

-
e o §
e
o
- =T b4
a
A
=
o
£l
- il 0

Writeahead Log

- Don't make copies. Instead, record action plus old and new
values.

x=0; Log Log Log
y=0

BEGIN_TRANSACTION;

X=x+1; x=0/1] [x=01/1] [x=01/1]
y=y+2 [y =0/2] [y=0/2]
X=y*y, [x = 1/4]

END_TRANSACTION;
@ (b) (© (C)

a) A transaction

b) - d) log before each statement is executed

. If transaction commits, nothing to do

. If transaction is aborted, use log to rollback

WP

TN I F =

Concurrency Control (2)

® General organization of managers for
handling distributed transactions.

i Tr
Tramescton
nags

[

v £ -
Schadeie Schedaier Scheduisr

& T v 4 ¥ ¥ i

L Y R a ¥

Caix Cuta Tuia
FLAALM TG Lt
Machire & Machice Bl Machine C

WP

Concurrency Control (1)

Transaobors
rr

L |
READAWRITE | Transacton | BESIN_ TRANSACTION
END_TRANSACTION

manager
¥ &
LOCHIRELEASE
Sehwduler or
Tirestamp aperations
¥ &
ks Execule readberibe
rarager

® General organization of managers for
handling transactions. WP

TN IR =

Serializability
Allow parallel execution, but end result asif serial

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
=0; x=0; x=0;

X=x+1;

H X=x+2 x=x+3
END_TRANSACTION

ENDiTR/‘\NSACTION ENDiTR/‘\NSACTION
@ ® ©
a) - ¢) Three transactions T,, T,, and T5 Answer
could be 1, 2 or 3. All valid.

Schedule 1 X =0, x=x+1 x=0 x=x+2 x=0 x=x+3

Legal

Schodule 2 XTO0 XS0 XTXTTL X=XTZ X0 X=x73 [Lega

Schedule 3 X=0, X=0, X=X+1L X=0, X=X+2 X=X%3 |flega

® If in parallel, only some possible schedules
® 2isserialized

® Concurrency controller needs to manage WP

T IR =

TN IR =

Two-Phase Locking

Lock poirt
“

3_‘ Growing phane oo Frmkngphos
-] |

E Al lackn pre reieaned

3 &, thi S e bime

o -

Tirne —#

Acquire locks (ex: in previous example). Perform update.
Release.

Can lead to deadlocks (use OS techniques to resolve)
Can prove: if used by all transactions, then all schedules will

be serializable
WP

Timestamp Ordering

® Pessimistic
- Every read and write gets a timestamp
(unique, using Lamport's alg)
- If conflict, abort sub-operation and re-try
® Optimistic
- Allow all operations since conflict rate
- At end, if conflict, roll-back

WP

R N e

