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CS4513
Distributed Computer 

Systems

Synchronization
(Ch 5)

Introduction
• Communication not enough.  Need 

cooperation à Synchronization
• Distributed synchronization needed for

– transactions (bank account via ATM)
– access to shared resource (network printer)
– ordering of events (network games where 

players have different ping times)

Outline
• Intro (done)
• Clock Synchronization (next)
• Global Time and State
• Election Algorithms
• Mutual Exclusion
• Distributed Transactions

Clock Synchronization
• When each machine has its own clock, an event that 

occurred after another event may nevertheless be assigned 
an earlier time

• Consider make
– Compiling machine compares time stamps

• Same holds when using NFS mount
• Can we set all clocks in a distributed system to have the 

same time?

Physical Clocks
• “Exact” time was computed by astronomers

– Take “noon” for two days, divide by 24*60*60
àMean solar second

• But  …
– Earth is slowing! (35 days over 300 million years)
– Short term fluctuations (Magma core, and such)
– Could take many days for average, but still erroneous

• Physicists take over (Jan 1, 1958)
– Count transitions of cesium 133 atom

• 9,192,631,770 == 1 solar second
– 50 cesium 133 clocks averaged

• International Atomic Time ( TAI)
– To stop day from “shifting” (remember, earth is 

slowing) translate TAI into Universal Coordinated Time 
(UTC)

• UTC is broadcast (shortwave radio pulses)

Clock Synchronization Algorithms
• Not every machine has UTC receiver

– If one, then keep others synchronized
• Computer timers go off H times/sec, incr counter
• Ideally, if H=60, 216,000 per hour (dC/dt = 0)
• But typical errors, 10–5, so 215,998 to 216,002

• Specs can give you
maximum drift rate (ρ)
• Every ∆t seconds, will
be at most 2ρ∆t apart
• If want drift of δ, re-
synchronize every δ/2ρ

à Various algs (next)
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Cristian's Algorithm

• Every δ/2ρ, ask server for time
• What are the problems?
• Major

– Client clock is fast
– What to do?

• Minor
– Non-zero amount of time to sender
– What to do?

Cristian's Algorithm

• Want one-way à (T1 – T0)/2.  Problems?
– T0!= T1? Ignore.
– Variance? Take average.  Or smallest.
– I? Can subtract, but need to determine time.

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock 
values

b) The machines answer
c) The time daemon tells everyone how to adjust their clock
Cristian’s and Berkeley’s are centralized .  Problems?

Decentralized Algorithms

• Periodically (every R seconds), each 
machine broadcasts current time

• Collect time samples for some time time 
(S)

• Take average and set time
• Can discard m so m faulty clocks don’t hurt
• Can improve by computing (T1 – T0)/2

– Need probes to obtain
• Used by Network Time Protocol (NTP)

– Worldwide accuracy of 1-50 msec

Outline
• Intro (done)
• Clock Synchronization (done)
• Global Time and State (next)
• Election Algorithms
• Mutual Exclusion
• Distributed Transactions

Lamport Timestamps

a) Each processes with own clock with different rates.
b) Lamport's algorithm corrects the clocks.
c) Can add machine ID to break ties

• Often don’t need time, but ordering aàb (happens before)

(impossible)
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Use Example: Totally-Ordered 
Multicasting

• San Fran customer adds $100, NY bank adds 1% interest
– San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an 
inconsistent state.

• Can use Lamport’s to totally order

(San Francisco) (New York)

(+$100) (+1%)

Consistent Global State

a) A consistent cut
b) An inconsistent cut
• How do ensure always a consistent cut?

• Need for state of distributed system, say, for termination detection

Consistent Global State (2)

• Processes all connected.  Can initiate state message 
(M)

a) Organization of a process and channels for a 
distributed snapshot

Consistent Global State (3)

b) Process Q receives M for the first time and 
records its local state.  Sends M on all outgoing 
links

c) Q records all incoming messages
d) Q receives M for its incoming channel and 

finishes recording the state of the incoming 
channel

• Can then send state to initiating process
• System can still proceed normally

Outline
• Intro (done)
• Clock Synchronization (done)
• Global Time and State (done)
• Election Algorithms (next)
• Mutual Exclusion
• Distributed Transactions

Election Algorithms

• Often need one process as a coordinator
• All processes in distributed systems may 

be equal
– Assume have some “ID” that is a number

• Need way to “elect” process with the 
highest number as leader
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The Bully Algorithm (1)

• Process 4 notices 7 down
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

The Bully Algorithm (2)

d) Process 6 tells process 5 to stop
e) Process 6 wins and tells everyone
• Eventually “biggest” (bully) wins
• If processes 7 comes up, starts elections again

A Ring Algorithm
• Coordinator down, start ELECTION 

– Send message down ring, add ID
– Once around, change to COORDINATOR (biggest)

• Even if two ELECTIONS started at once, everyone 
will pick same leader

Outline
• Intro (done)
• Clock Synchronization (done)
• Global Time and State (done)
• Election Algorithms (done)
• Mutual Exclusion (next)
• Distributed Transactions

Mutual Exclusion: 
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical 
region.  Permission is granted

b) Process 2 then asks permission to enter the same critical region.  
The coordinator does not reply.  (Or, can say “denied”)

c) When process 1 exits the critical region, it tells the coordinator, 
when then replies to 2.

• But centralized, single point of failure

A Distributed Algorithm

a) Processes 0 and 2 want to enter the same critical region 
at the same moment.

b) Process 1 doesn’t want to, says “OK”. Process 0 has the 
lowest timestamp, so it wins.  Queues up “OK” for 2.

c) When process 0 is done, it sends an OK to 2 so can now 
enter the critical region.

• (Again, can modify to say “denied”)
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A Token Ring Algorithm

a) An unordered group of processes on a network.  
b) A logical ring constructed in software.
• Process must have token to enter.
• If don’t want to enter, pass token along.
• If host down, recover ring.  If token lost, 

regenerate token. If in critical section long?

Mutual Exclusion Algorithm 
Comparison

• Centralized most efficient
• Token ring efficient when many want to use 

critical region

Lost token, 

process crash
0 to n – 11 to ∞Token ring

Process crash2 ( n – 1 )2 ( n – 1 )Distributed

Coordinator crash23Centralized

Problems
Delay before entry (in 
message times)

Messages per 
entry/exitAlgorithm

Outline
• Intro (done)
• Clock Synchronization (done)
• Global Time and State (done)
• Election Algorithms (done)
• Mutual Exclusion (done)
• Distributed Transactions (next)

The Transaction Model

• Gives you mutual exclusion plus…
• Consider using PC (Quicken) to:

– Withdraw $a from account 1
– Depost $a to account 2

• If interrupt between 1) and 2), $a gone!
• Multiple items in single, atomic action

– It all happens, or none
– If process backs out, as if never started

Transaction Primitives

• Above may be system calls, libraries or statements 
in a language (Sequential Query Language or SQL)

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

Example: Reserving Flight from 
White Plains to Nairobi 

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is 

unavailable
• The “all-o r-nothing” is one property.  Others:

BEGIN_TRANSACTION

reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION

(b)

BEGIN_TRANSACTION

reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION

(a)
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Transaction Properties
1) Atomic –

• Others don’t see intermediate results, either
2) Consistent 

• System invariants not violated
• Ex: no money lost after operations)

3) Isolated
• Operations can happen in parallel but as if were 

done serially
4) Durability

• Once commits, move forward
• (Ch 7, won’t cover more)

• ACID

Classification of Transactions

• Flat Transactions
– Limited
– Example: what if want to keep first part of 

flight reservation?  If abort and then 
restart, those might be gone.

– Example: what if want to move a Web page.  
All links pointing to it would need to be 
updated.  It could lock resources for a long 
time

• Also Distributed and Nested Transactions

Distributed Transactions

• Nested transaction gives you a hierarchy
– Can distribute (example: WPàJFK, JFKàNairobi )
– But may require multiple databases

• Distributed transaction is “flat” but across 
distributed data (example: JFK and Nairobi dbase)

Outline
• Intro (done)
• Clock Synchronization (done)
• Global Time and State (done)
• Election Algorithms (done)
• Mutual Exclusion (done)
• Distributed Transactions

– Overview (done)
– Implementation (next)

Private Workspace (1)

• File system with transaction across 
multiple files
– Normally, updates seen + No way to undo

• Private Workspace à Copy files  
• Only update Public Workspace once done
• If abort transaction, remove private copy.
• But copy can be expensive!  

– How to ix?

Private Workspace (2)

a) Original file index (descriptor) and disk blocks
b) Copy descriptor only.  Copy blocks only when written.

• Modified block 0 and appended block 3
c) Replace original file (new blocks plus descriptor) after 

commit
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Writeahead Log

a) A transaction
b) – d) log before each statement is executed
• If transaction commits, nothing to do
• If transaction is aborted, use log to rollback

Log

[x = 0 / 1]

[y = 0/2]

[x = 1/4]

(d)

Log

[x = 0 / 1]

[y = 0/2]

(c)   

Log

[x = 0 / 1]

(b)

x = 0;

y = 0;

BEGIN_TRANSACTION;

x = x + 1;

y = y + 2

x = y * y;

END_TRANSACTION;

(a) 

- Don’t make copies.  Instead, record action plus old and new
values.

Concurrency Control (1)

• General organization of managers for 
handling transactions. 

Concurrency Control (2)
• General organization of managers for 

handling distributed transactions.

Serializability

a) – c) Three transactions T1 , T2, and T3. Answer 
could be 1, 2 or 3.  All valid.

BEGIN_TRANSACTION
x =  0 ;

x  =  x  +  3 ;
END_TRANSACTION

(c)

BEGIN_TRANSACTION
x =  0 ;

x  =  x  +  2 ;
END_TRANSACTION

(b)

BEGIN_TRANSACTION
x =  0 ;

x  =  x  +  1 ;
END_TRANSACTION

(a)

Illegalx = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3;Schedule 3

Legalx = 0;  x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3;Schedule 2

Legalx = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3Schedule 1

Allow parallel execution, but end result as if serial

• If in parallel, only some possible schedules
• 2 is serialized

• Concurrency controller needs to manage

Two-Phase Locking 

• Acquire locks (ex: in previous example).  Perform update.  
Release.

• Can lead to deadlocks (use OS techniques to resolve)
• Can prove: if used by all transactions, then all schedules will 

be serializable

Timestamp Ordering

• Pessimistic
– Every read and write gets a timestamp 

(unique, using Lamport’s alg)
– If conflict, abort sub-operation and re-try

• Optimistic
– Allow all operations since conflict rate
– At end, if conflict, roll-back


