CS4513
Distributed Computer
Systems

File Systems

File Systems

® Abstraction to disk (convenience)

- “The only thing friendly about a disk is that
it has persistent storage.”

- Devices may be different: tape, IDE/SCSI,
NFS

® Users
- don't care about detail
- care about interface
M . 0s
I - cares about implementation (efficiency)

WP

TN IR =

Motivation

Processes store, retrieve information
Process capacity restricted to vmem size
When process terminates, memory lost
Multiple processes share information

Requirements:
- large

- persistent
- concurrent access

Solution? File
System!

WP

R N e

File System Concepts

® Files - store the data
® Directories - organize files
® Partitions - separate collections of

directories (also called “volumes”)
- all directory information kept in partition
— mount file system to access

Protection - allow/restrict access for files,
directories, partitions

WP

Outline

- File system implementation
® Directories
® Disk space management
Misc

® Files -
- User's point of view
- Example “Under the Hood”
=]

WP

R N e

Files: The User’s Point of View

Naming: how do I refer to it?

- blah, BLAH, Blah

- file.c, file.com

Structure: what's inside?

- Sequence of bytes (most modern OSes)
- Records - some internal structure

- Tree - organized records

WP

Files: The User's Point of View

® Type:
- ascii - human readable
- binary - computer only readable
- “magic number” or extension (executable, c-file ...)
® Access Method:
- sequential (for character files, an abstraction of
170 of serial device such as a modem)
- random (for block files, an abstraction of 1/0 to
block device such as a disk)
® Attributes:
- time, protection, owner, hidden, lock, size ...

WP

Example: Unix open()
int open(char *path, int flags [, int node])

® pat h is name of file
® f| ags is bitmap to set switch
- O_RDONLY, O_WRONLY...
- O_CREATE then use node for perms

® on success, returns index
& ® on failure, returns -1

I WP

Example: Windows Cr eat eFi | e()

| ® Returns file object handle:
HANDLE CreateFile (
| pFi | eNane, /1l name of file
dwDesi redAccess, // read-wite
dwShar eMode, /'l shared or not
| pSecurity, /] perm ssions

)
® File objects used for all: files,
m directories, disk drives, ports, pipes,
I sockets and console

WP

File Operations

® Create ® Seek - for random access
Delete ® Get attributes

Truncate ® Set attributes

Open

Read

Write

Append

WP

TN IR =

Unix open() - Under the Hood

int fid = open(“blah”, flags);
read(fid, .);

User Space

System Space

W N~ O

N
File Structure
(where
blocks are)

(index) (attributes)
(Per process) (Per device)

R N e

File System Implementation

Process Open File
Control Block Table

File Descriptor Disk
Table

Open
File
Pointer
Array

(per process) (in memory
copy,

one per

device)

I Next up: file descriptors!

TN IR =

File System Implementation

® Which blocks with which file?
® File descriptor implementations:

- Contiguous
- Linked List
- Linked List with Index
- I-nodes
File
Descriptor

TN I F =

Linked List Allocation
® Keep a linked list with disk blocks

W s 2 e

* Good:

- Easy: remember 1 number (location)

- Efficient: no space lost in fragmentation
* Bad:

- Slow: random access bad
WP

Contiguous Allocation

® Store file as contiguous block

- ex: w/ 1K block, 50K file has 50 consecutive
blocks
File A start 0, length 2
File B: start 14, length 3

® Good:
- Easy: remember location with 1 number
- Fast: read entire file in 1 operation (length)
® Bad:
- Static: need to know file size at creation
® or tough to grow!
- Fragmentation: remember why we had

aging?
paging WP

TN IR =

attributes

I-nodes

single

i-node indirect block

® Fast for small
files

® Can hold big files

2
B ® Size?
2 -
5 double indirec 4 kbyte block
I block
triple indirect
Block) wp

Linked List Allocation with Index
Physical
Block
0 ® Table in memory
1 - faster random access
2 - can be large!
3 ® 1k blocks, 500MB disk
4 ® = 2MB!
5 - Windows:
m ¢ ®MS-DOS FAT
7 ®\Win98 VFAT
I wp
Outline
® Files (done)
® Directories -
® Disk space management
I ® Misc
|
I wP

TN IR =

Directories

® Just like files, only have special bit set so
you cannot modify them (what?)

- data in directory is information / links to
files

- modify through system call
- (Seel s. c sample)
® Organized for:
- efficiency - locating file quickly
- convenience - user patterns
®groups (. c, .exe), same names
® Tree structure directory the most flexible

- aliases allow files to appear at more than one
location (more on this later)

TN I F =

Simple Directory

® No hierarchy (all “root”)
® Entry

- hame

- block count

- block numbers

! block number!

(What are the drawbacks?)
WP

TN IR =

Hierarchical Directory (Unix)

® Tree
® Entry:

- name

- inode number (try “Is —=I"or“ls —iad .")
® example:

/ usr/ bob/ nbox

WP

Directories

® Before reading file, must be opened

® Directory entry provides information to
get blocks
- disk location (block, address)
- i-node number

® Map ascii name to the file descriptor

TN IR =

WP

Hierarchical Directory (MS-DOS)

® Tree

® Entry:
- name - date
- type (extension) - block number (W/FAT)
- time

R N e

WP
Unix Directory Example
-
I-node 6 l 1-node 26 .
. Aha!
I Looking up
Looking up bob gives h;;n(?c?:tsgts
usr gives Relevant I-node 26 /usr/ bob is b
1-node 6 data (/ usr) inblock 406 0T MPOX
isin
block 132
WP

TN IR =

Storing Files

(Not really a
tree

- Directed Acyclic
Graph)

“alias’

® Whatif ..
a) Directory entry contains disk blocks?
b) Directory entry points to file descriptor?
c) Have new type of file “link”?

WP
Outline
® Files (done)
® Directories (done)
® Disk space management -
I ® Misc
=]
I WP
Choosing Block Size
® Large blocks
- faster throughput, less seek time
- wasted space (internal fragmentation)
® Small blocks
- less wasted space
- more seek time since more blocks
Disk Space
Utilization
- Data Rate
I Block size =—— WP

Issues

a) Directory entry contains disk blocks?

- contents (blocks) may change

b) Directory entry points to file descriptor?
- if removed, refers to non-existent file

- must keep count, remove only if O

- hard link

- Similar if delete file in use (show example)
c) Have new type of file “link”?

- contains alternate name for file

- overhead, must parse tree second time

- soft link

- often have max link count in case loop (show example)

WP

I N W

Disk Space Management

n bytes
- contiguous
- blocks
Similarities with memory management
- contiguous is like variable-sized partitions
® but moving on disk very slow!
® so use blocks
- blocks are like paging
® how to choose block size?
® (Note, disk block size typically 512 bytes, but file
system logical block size chosen when formatting)

WP

R N e

Keeping Track of Free Blocks

Two methods
- linked list of disk blocks
® one per block or many per block
- bitmap of disk blocks
Linked List of Free Blocks (many per block)
- 1K block, 16 bit disk block number
= 511 free blocks/block
® 200 MB disk needs 400 free blocks = 400k
® Bit Map
® 200 MB disk needs 20 Mbits
® With linked list, 30 blocks = 30k
® 1 bit vs. 16 bits

(note, these are
stored on the disk)

WP

R N e

TN IR =

Tradeoffs

Only if the disk is nearly full does linked
list scheme require fewer blocks

If enough RAM, bitmap method preferred
1T only 1 “block” of RAM, and disk is full,
bitmap method may be inefficient since
have to load multiple blocks

- linked list can take first in line
Sometimes, combine both (Linux)

WP

TN I F =

Modified LRU

Is the block likely to be needed soon?

- if no, put at beginning of list

Is the block essential for consistency of
file system?

- write immediately

Occasionally write out all

—sync

WP

TN IR =

Partitions

nount , unmount
- load “super-block” from disk
- pick “access point” in file-
system
Super-block /
r

/ (root)
- file system type ust o

. me ‘ w
- block size = -
- free blocks — —

- free I-nodes

WP

File System Performance

Disk access 100,000x slower than memory
- reduce number of disk accesses needed!
Block/buffer cache

- cache to memory

Full cache? FIFO, LRU, 2nd chance ...

- Unlike in VM, exact LRU can be done (why?)
® LRU inappropriate sometimes

- crash w/i-node can lead to inconsistent

TN IR =

state
- some rarely referenced (double indirect
block)
WP
Outline
® Files (done)
® Directories (done)
® Disk space management (done)
® Misc -
- partitions (f di sk, nount)
- maintenance
- quotas
® Linux and WinNT/2000
=]
I WP

- logical (extended) partition inside physical partition
® Specify number of cylinders to use
® Specify type

- magic number recognized by OS

(Hey, show example)

Partitions: f di sk
® Partition is large group of sectors allocated for a
specific purpose
- IDE disks limited to 4 physical partitions
=]

WP

TN IR =

File System Maintenance

® Format:
- create file system structure: super block, I-nodes
— format (Win), nke2fs (Linux)
® “Bad blocks”
- most disks have some
— scandi sk (Win) or badbl ocks (Linux)
- add to “bad-blocks” list (file system can ignore)
® Defragment
- arrange blocks efficiently
® Scanning (when system crashes)
- lost+found, correcting file descriptors...
— e2f sck (Linux) or fsck (Win)

WP

TN I F =

Linux: Virtual File System

® File system e
independent layer

® Generic inode and
directory entry i e
for all o
- Even if not inode

based

® Specific file
systems register I
with VFS

E

Linux File System: ext 2 directories

® Special file with names (+ length) and
inodes

o
‘u ‘15 ‘5 ‘m: \z‘4a‘14‘v=ry,\wng,nam=

incdetable

See:
- struct ext2_dir_entry_2
Cached. See:

- struct dentry

WP

Disk Quotas

® Table 1: Open file table in memory
- when file size changed, charged to user
- user index to table 2

® Table 2: quota record

- soft limit checked, exceed allowed
w/warning

- hard limit never exceeded

® Overhead? Again, in memory, so relatively
fast

® Limit: blocks, files, i-nodes

WP

TN IR =

Linux File System: ext 2f s

a2 _pnode

® “Extended =
(from Minix) Owner nts
file system,v2” e

® Uses inodes
- mode for file,

Ditect Blocks

3

directory,

symbolic link ...
® (See: Indirect blocks I al
- struct inode) Dbl Tndect

Triple Indiect

-
I E1E]]

R N e

- clusters adjacent requests (block groups)
® Keep data blocks close to inodes
® Keep file inodes close to directory inodes
® Group has:
- bit-map of ‘
free blocks
and I-nodes /
- copy of

super block

Block
Gronpo

Block
Group N-1

GroupN

Block ‘

T

oz ‘

Block
Bitnap

Tnode
Bitmap

Tnode
Table

Super
Block

Group

Deseriptors Blocks

wr

Linux File System: ext 2 blocks
® Default is 1 Kb blocks
| - small!
® For higher performance
- performs 170 in chunks (reduce requests)
=]

TN IR =

Linux File System: ext 2 Superblock

® Magic Number
- allow mounting check that is an EXT2 file system
® Revision Level
- major and minor revision levels for compatibility check
® Mount Count and Maximum Mount Count
- Runesfsck if reach max
® Block Size
- Block size in bytes, for example 1024 bytes
® Blocks per Group
- Blocks in a group. Fixed when the file system is created
® Free Blocks
- Free blocks in the file system
® Free Inodes
- Free Inodes in the file system
® First Inode
- Firstinodein the file system. Points to root dir

(Seestruct super bl ock) WP

TN IR =

Linux Filesystem: / pr oc

® Contents of “files” not stored, but
computed

® Provide interface to kernel statistics

® Allows access to “text” using Unix tools

® Again, enabled by “virtual file system”

® (NT/2000 has perfmon to access registry)
® (show example in/ proc)

® (show bi t eMe module example)

WP

TN I F =

WInNT/2000 Filesystem: NTFS

® Volume (partition) can cover part, all or multiple
disks
® Basic allocation unit called a cluster (block)
® Each file has structure, made up of attributes
- Examples: time modified, permissions, author...
- attributes are a stream of bytes
- stored in Master File Table, 1 entry per file
® Metadata (free blocks, etc) kept in MFT for volume
- each has unique 1D

® part for MFT index, part for “version” of file for
caching and consistency

® Hierarchical directory with internal structure
stored as B+ tree (for efficiency)

® Supports compression plus encryption wp

R N e

WInNT/2000 Filesystem: Recovery

® Avoid the need to f di sk

® Use database notion of “transaction” (all or none)
- Before data committed, record start in log
- Also contain redo or undo information
- After data written, write to log that done

® If a crash, redo or undo ops that did not finish

® Periodically (5 sec by default) record checkpoint
- Can the discard log

® Note, does not guarantee data is ok, only metadata

® Linux has:

— resi serfs (journaling of metadata) + ext 3
(journaling metadata + data)

® (See “samples” for journaling + file system stuff)

WP

