Provisioning On-line Games: A Traffic Analysis of a Busy Counter-Strike Server

Wu-chang Feng, Francis Chang, Wu-chi Feng, Jonathan Walpole

Goal

- Understand the resource requirements of a popular on-line FPS (first-person shooter) game

Why games?

- Rapidly increasing in popularity
 - Forrester Research: 18 million on-line in 2001
 - Consoles on-line
 - Playstation 2 on-line (9/2002)
 - Xbox Live (12/2002)
 - Cell phones
 - Nokia Doom port (yesterday)

Why FPS?

- Gaming traffic dominated by first-person shooter genre (FPS) [McCreary00]
Networked FPS lineage

Doom
- **Doom II**
 - Quake
 - + Quake/World variants
 - + Team Fortress
 - + Capture the Flag
 - + Quake II
 - + Soldier of Fortune
 - + Heretic II
 - Quake III Arena
 - + Medal of Honor: Allied Assault
 - + Return to Castle Wolfenstein
 - + Soldier of Fortune 2
 - + Jedi Knight II
 - Doom III

Unreal
- **Unreal Tournament**
 - Unreal Tournament 2003
 - + America's Army: Operations

Half-Life
- **Counter-Strike**
 - + Counter-Strike
 - + Day of Defeat
 - + Urban Terror
 - + Team Fortress Classic
 - + Team Fortress 2

8 of top 10 games derived from one of two lineages
About the game...

- Half-Life modification
- Two squads of players competing in rounds lasting several minutes
- Rounds played on maps that are rotated over time
- Each server supports up to 32 players

Centralized server implementation
- Clients update server with actions from players
- Server maintains global information and determines game state
- Server broadcasts results to each client

Sources of network traffic
- Real-time action and coordinate information
- Broadcast in-game text messaging
- Broadcast in-game voice messaging
- Customized spray images from players
- Customized sounds and entire maps from server

The trace

- cs.mshmro.com (129.95.50.147)
 - Dedicated 1.8GHz Pentium 4 Linux server
 - OC-3
 - 70,000+ unique players (WonIDs) over last 4 months
- One week in duration 4/11 – 4/18
- 500 million packets
- 16,000+ sessions from 5800+ different players

A week in the life...
Variance time plot

Normalized to base interval of 10ms

Digging deeper

- Periodic server bursts every 50ms
 - Game must support high interactivity
 - Game logic requires predictable updates to perform lag compensation

Finding the source of predictability

- Games must be fair across all mediums (i.e. 56kers)
 - Aggregate predictability due to “saturation of the narrowest last-mile link”
- Histogram of average per-session client bandwidth

Digging deeper

- Low utilization every 30 minutes
 - Server configured to change maps every 30 minutes
 - Traffic pegged otherwise....
Packet sizes

- Supporting narrow last-mile links with a high degree of interactivity requires small packets
 - Clients send small single updates
 - Servers aggregate and broadcast larger global updates

Implications

- Routers, firewalls, etc. must be designed to handle large bursts at millisecond levels
 - Game requirements do not allow for loss or delay (lag)
 - Should not be provisioned assuming a large average packet size [Partridge98]
 - If there are buffers anywhere, they must...
 - Use ECN
 - Be short (i.e. not have a bandwidth-delay product of buffering)
 - Employ an AQM that works with short queues

Implications

- ISPs, game services
 - Must examine “lookup” utilization in addition to link utilization
 - Concentrated deployments of game servers may be problematic
 - Large server farms in a single co-lo
 - America's Army, UT2K3, Xbox

On-going work

- Other pieces in the provisioning puzzle
 - Aggregate player populations
 - Geographic distributions of players over time (IP2Geo)
- Impact on route and packet classification caching
- Other FPS games
 - HL-based: Day of Defeat
 - UT-based: Unreal Tournament 2003, America's Army
 - Quake-based: Medal of Honor: Allied Assault
 - Results apply across other FPS games and corroborated by other studies
Future work

- Games as passive measurement infrastructure
 - Only widespread application with continuous in-band ping information being delivered (measurement for free)
 - “Ping times” of all clients broadcast to all other clients every 2-3 seconds
 - 20,000+ servers, millions of clients
- Games as active measurement infrastructure
 - Thriving FPS mod community and tools
 - Server modifications [Armitage01]
Provisioning On-line Games: A Traffic Analysis of a Busy Counter-Strike Server

Wu-chang Feng, Francis Chang, Wu-chi Feng, Jonathan Walpole

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY
Goal

• Understand the resource requirements of a popular on-line FPS (first-person shooter) game
Why games?

• Rapidly increasing in popularity
 – Forrester Research: 18 million on-line in 2001
 – Consoles on-line
 • Playstation 2 on-line (9/2002)
 • Xbox Live (12/2002)
 – Cell phones
 • Nokia Doom port (yesterday)
Why FPS?

- Gaming traffic dominated by first-person shooter genre (FPS) [McCreary00]
Why CS?

Serverspy FPS rankings (10/31/2002)

- Half-Life
- MedalOfHonor: Allied Assault
- Quake III Arena
- Battlefield 1942
- Unreal Tournament
- Return to Castle Wolfenstein
- Unreal Tournament 2003
- Soldier of Fortune 2: Double Helix
- America’s Army: Operations
- Neverwinter Nights

of players
Why CS?

Serverspy HL mod rankings (10/31/2002)

- Counter-Strike
- Day of Defeat
- Team Fortress Classic
- Deathmatch
- The Specialists
- Firearms
- SvenCo-op
- Vampire Slayer
- Front Line Force
- Action Half-Life

of players
Networked FPS lineage

Doom

Doom II

Quake
 + QuakeWorld variants
 + Team Fortress
 + Capture the Flag

Quake II
 + Soldier of Fortune
 + Heretic II

Quake III Arena
 + Medal of Honor Allied Assault
 + Return to Castle Wolfenstein
 + Soldier of Fortune 2
 + Jedi Knight II

Doom III

Unreal

Unreal Tournament

Unreal Tournament 2003
 + America's Army: Operations

8 of top 10 games derived from one of two lineages
Counter-Strike
About the game...

• Half-Life modification
• Two squads of players competing in rounds lasting several minutes
• Rounds played on maps that are rotated over time
• Each server supports up to 32 players
About the game...

• Centralized server implementation
 – Clients update server with actions from players
 – Server maintains global information and determines game state
 – Server broadcasts results to each client

• Sources of network traffic
 – Real-time action and coordinate information
 – Broadcast in-game text messaging
 – Broadcast in-game voice messaging
 – Customized spray images from players
 – Customized sounds and entire maps from server
The trace

- cs.mshmro.com (129.95.50.147)
 - Dedicated 1.8GHz Pentium 4 Linux server
 - OC-3
 - 70,000+ unique players (WonIDs) over last 4 months
- One week in duration 4/11 – 4/18
- 500 million packets
- 16,000+ sessions from 5800+ different players
A week in the life...
Variance time plot

Normalized to base interval of 10ms
Digging deeper

- Periodic server bursts every 50ms
 - Game must support high interactivity
 - Game logic requires predictable updates to perform lag compensation
Digging deeper

- Low utilization every 30 minutes
 - Server configured to change maps every 30 minutes
 - Traffic pegged otherwise....

Interval size=1sec
Interval size=30min
Finding the source of predictability

- Games must be fair across all mediums (i.e. 56kers)
 - Aggregate predictability due to “saturation of the narrowest last-mile link”
- Histogram of average per-session client bandwidth
Packet sizes

- Supporting narrow last-mile links with a high degree of interactivity *requires* small packets
 - Clients send small single updates
 - Servers aggregate and broadcast larger global updates
Implications

- Routers, firewalls, etc. must be designed to handle large bursts at millisecond levels
 - Game requirements do not allow for loss or delay (lag)
 - Should not be provisioned assuming a large average packet size [Partridge98]
 - If there are buffers anywhere, they must...
 - Use ECN
 - Be short (i.e. not have a bandwidth-delay product of buffering)
 - Employ an AQM that works with short queues
Implications

• ISPs, game services
 – Must examine “lookup” utilization in addition to link utilization
 – Concentrated deployments of game servers may be problematic
 • Large server farms in a single co-lo
 • America's Army, UT2K3, Xbox
On-going work

• Other pieces in the provisioning puzzle
 – Aggregate player populations
 – Geographic distributions of players over time (IP2Geo)

• Impact on route and packet classification caching

• Other FPS games
 – HL-based: Day of Defeat
 – UT-based: Unreal Tournament 2003, America's Army
 – Quake-based: Medal of Honor: Allied Assault
 – Results apply across other FPS games and corroborated by other studies
Future work

- Games as passive measurement infrastructure
 - Only widespread application with continuous in-band ping information being delivered (measurement for free)
 - “Ping times” of all clients broadcast to all other clients every 2-3 seconds
 - 20,000+ servers, millions of clients

- Games as active measurement infrastructure
 - Thriving FPS mod community and tools
 - Server modifications [Armitage01]
Questions?