Provisioning On-line Games: A Traffic Analysis of a Busy Counter-Strike Server

Wu-chang Feng, Francis Chang, Wu-chi Feng, Jonathan Walpole

OGI SCHOOL OF SCIENCE & ENGINEERING OREGON HEALTH & SCIENCE UNIVERSITY

Why games?

- Rapidly increasing in popularity
 - Forrester Research: 18 million on-line in 2001
 - Consoles on-line
 - Playstation 2 on-line (9/2002)
 - Xbox Live (12/2002)
 - Cell phones

OpenOffice.org

• Nokia Doom port (yesterday)

Goal

• Understand the resource requirements of a popular on-line FPS (first-person shooter) game

Why FPS?

• Gaming traffic dominated by first-person shooter genre (FPS) [McCreary00]

About the game...

- Half-Life modification
- Two squads of players competing in rounds lasting several minutes
- Rounds played on maps that are rotated over time
- Each server supports up to 32 players

The trace

- cs.mshmro.com (129.95.50.147)
 - Dedicated 1.8GHz Pentium 4 Linux server
 - OC-3
 - 70,000+ unique players (WonIDs) over last 4 months
- One week in duration 4/11 4/18
- 500 million packets
- 16,000+ sessions from 5800+ different players

About the game...

- Centralized server implementation
 - Clients update server with actions from players
 - Server maintains global information and determines game state
 - Server broadcasts results to each client
- Sources of network traffic
 - Real-time action and coordinate information
 - Broadcast in-game text messaging
 - Broadcast in-game voice messaging
 - Customized spray images from players
 - Customized sounds and entire maps from server

Implications

- ISPs, game services
 - Must examine "lookup" utilization in addition to link utilization
 - Concentrated deployments of game servers may be problematic
 - Large server farms in a single co-lo
 - America's Army, UT2K3, Xbox

Implications

- Routers, firewalls, etc. must be designed to handle large bursts at millisecond levels
 - Game requirements do not allow for loss or delay (lag)
 - Should not be provisioned assuming a large average packet size [Partridge98]
 - If there are buffers anywhere, they must...
 - Use ECN
 - Be short (i.e. not have a bandwidth-delay product of buffering)
 - Employ an AQM that works with short queues

On-going work

- Other pieces in the provisioning puzzle
 - Aggregate player populations
 - Geographic distributions of players over time (IP2Geo)
- Impact on route and packet classification caching
- Other FPS games
 - HL-based: Day of Defeat
 - UT-based: Unreal Tournament 2003, America's Army
 - Quake-based: Medal of Honor: Allied Assault
 - Results apply across other FPS games and corroborated by other studies

Questions?

Future work

- Games as passive measurement infrastructure
 - Only widespread application with continuous in-band ping information being delivered (measurement for free)
 - "Ping times" of all clients broadcast to all other clients every 2-3 seconds
 - 20,000+ servers, millions of clients
- Games as active measurement infrastructure
 - Thriving FPS mod community and tools
 - Server modifications [Armitage01]

Provisioning On-line Games: A Traffic Analysis of a Busy Counter-Strike Server

Wu-chang Feng, Francis Chang, Wu-chi Feng, Jonathan Walpole

Goal

• Understand the resource requirements of a popular on-line FPS (first-person shooter) game

Why games?

- Rapidly increasing in popularity
 - Forrester Research: 18 million on-line in 2001
 - Consoles on-line
 - Playstation 2 on-line (9/2002)
 - Xbox Live (12/2002)
 - Cell phones
 - Nokia Doom port (yesterday)

Why FPS?

• Gaming traffic dominated by first-person shooter genre (FPS) [McCreary00]

Why CS?

Why CS?

Serverspy HL mod rankings (10/31/2002)

Networked FPS lineage

Unreal Tournament 2003 + America's Army: Operations

8 of top 10 games derived from one of two lineages

Counter-Strike

About the game...

- Half-Life modification
- Two squads of players competing in rounds lasting several minutes
- Rounds played on maps that are rotated over time
- Each server supports up to 32 players

About the game...

- Centralized server implementation
 - Clients update server with actions from players
 - Server maintains global information and determines game state
 - Server broadcasts results to each client
- Sources of network traffic
 - Real-time action and coordinate information
 - Broadcast in-game text messaging
 - Broadcast in-game voice messaging
 - Customized spray images from players
 - Customized sounds and entire maps from server

The trace

- cs.mshmro.com (129.95.50.147)
 - Dedicated 1.8GHz Pentium 4 Linux server
 - OC-3
 - 70,000+ unique players (WonIDs) over last 4 months
- One week in duration 4/11 4/18
- 500 million packets
- 16,000+ sessions from 5800+ different players

Variance time plot

Normalized to base interval of 10ms

Digging deeper

- Periodic server bursts every 50ms
 - Game must support high interactivity
 - Game logic requires predictable updates to perform lag compensation

Digging deeper

- Low utilization every 30 minutes
 - Server configured to change maps every 30 minutes
 - Traffic pegged otherwise....

Finding the source of predictability

- Games must be fair across all mediums (i.e. 56kers)
 - Aggregate predictability due to "saturation of the narrowest last-mile link"
- Histogram of average per-session client bandwidth

Packet sizes

- Supporting narrow last-mile links with a high degree of interactivity *requires* small packets
 - Clients send small single updates
 - Servers aggregate and broadcast larger global updates

Implications

- Routers, firewalls, etc. must be designed to handle large bursts at millisecond levels
 - Game requirements do not allow for loss or delay (lag)
 - Should not be provisioned assuming a large average packet size [Partridge98]
 - If there are buffers anywhere, they must...
 - Use ECN
 - Be short (i.e. not have a bandwidth-delay product of buffering)
 - Employ an AQM that works with short queues

Implications

- ISPs, game services
 - Must examine "lookup" utilization in addition to link utilization
 - Concentrated deployments of game servers may be problematic
 - Large server farms in a single co-lo
 - America's Army, UT2K3, Xbox

On-going work

- Other pieces in the provisioning puzzle
 - Aggregate player populations
 - Geographic distributions of players over time (IP2Geo)
- Impact on route and packet classification caching
- Other FPS games
 - HL-based: Day of Defeat
 - UT-based: Unreal Tournament 2003, America's Army
 - Quake-based: Medal of Honor: Allied Assault
 - Results apply across other FPS games and corroborated by other studies

Future work

- Games as passive measurement infrastructure
 - Only widespread application with continuous in-band ping information being delivered (measurement for free)
 - "Ping times" of all clients broadcast to all other clients every 2-3 seconds
 - 20,000+ servers, millions of clients
- Games as active measurement infrastructure
 - Thriving FPS mod community and tools
 - Server modifications [Armitage01]

Questions?