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Operating Systems

Parallel Systems
(Soon to be basic OS knowledge)

Parallelism

F Multiple processes concurrently
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Parallel Hardware
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• Symmetric Multi-Processors
• Increasingly common.
• How to modify OS to handle new hardware?

Two Operating Systems

F Divide memory in two
F Run an independent OS in each
F Each has it’s own processes
F Drawbacks

– Twice as much memory used for OS
– IPC tough
– Who controls memory and disk? (convenient)
– Inefficient scheduling (efficient)

Sharing the Operating System
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Shared? (see sample code)
stack process table
current process device queues

Race
Conditions!

Example Multiprocessor OSes

F Almost all new OSes !
F Designed from start

– Windows NT
– Mach

F Unix
– AT&T System V
– Sun Solaris

– HP Unix
– Digital Unix

– IBM AIX
– SGI Irix
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Threads

Software Multi-Processors

Threads (Lightweight Processes)

F Basic unit of CPU utilization
– (“What?!” you say)

F Own
– program counter
– register set
– stack space

F Shares
– code section
– data section
– OS resources
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“Multithreaded Program”

Process

Stack
A(int tmp) {
  B();

printf(tmp)
;

}
B() {
  C();
}
C() {
  A(2);
}

A: tmp = 2

C

B

A: tmp = 1

Example: A Threaded Spreadsheet

Command
Thread

Spreadsheet
Data

Other
Data
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Thread

Recalculate
Thread

What Kinds of Programs to Thread?

F Independent tasks
– ex: debugger needs gui, program, perf monitor…
– especially when blocking for I/O!

F Single program, concurrent operation
– Servers

u ex: file server, web server

– OS kernels
u concurrent requests by multiple users -- no protection

needed in kernel

Thread Benefits
F “What about just using processes with

shared memory?”
– fine
– debugging tougher (more thread tools)
– processes slower

u 30 times slower to create  on Solaris

u slower to destroy
u slower to context switch among

– processes eat up memory
u few thousand processes not ok
u few thousand threads ok
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Threads Standards
F POSIX (Pthreads)

– Common API
– Almost all Unix’s have thread library

F Win32 and OS/2
– very different from POSIX, tough to port
– commercial POSIX libraries for Win32
– OS/2 has POSIX option

F Solaris
– started before POSIX standard
– likely to be like POSIX

Do they Work?
F Operating systems

– Mach, Windows NT, Windows 95, Solaris,
IRIX, AIX, OS/2, OSF/1

– Millions of (unforgiving) users

F NFS, SPECfp, SPECint
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Levels of Threads
User Level Thread

Thread

Kernel Thread

Process A Process B


