
1

Operating Systems

Parallel Systems
(Soon to be basic OS knowledge)

Parallelism

F Multiple processes concurrently

Process 1

Process 2

CPU1

CPU1

CPU1 CPU1

CPU1 CPU1

Process 1

Process 2

CPU1

CPU2

Ps
eu

do
-

Pa
ra

lle
lis

m
T

ru
e

Pa
ra

lle
lis

m
Parallel Hardware

CPU1
Registers Registers

CPU2

Memory
Disk

 Controller Disk

• Symmetric Multi-Processors
• Increasingly common.
• How to modify OS to handle new hardware?

Two Operating Systems

F Divide memory in two
F Run an independent OS in each
F Each has it’s own processes
F Drawbacks

– Twice as much memory used for OS
– IPC tough
– Who controls memory and disk? (convenient)
– Inefficient scheduling (efficient)

Sharing the Operating System

Processor 1

Program
Counter

Stack Pointer

Processor 2

Program
Counter

Stack Pointer

Main Memory

OS Code

OS Common Data

P1’s OS Data

P2’s OS Data

P1’s OS Stack

P2’s OS Stack

Shared? (see sample code)
stack process table
current process device queues

Race
Conditions!

Example Multiprocessor OSes

F Almost all new OSes !
F Designed from start

– Windows NT
– Mach

F Unix
– AT&T System V
– Sun Solaris

– HP Unix
– Digital Unix

– IBM AIX
– SGI Irix

2

Threads

Software Multi-Processors

Threads (Lightweight Processes)

F Basic unit of CPU utilization
– (“What?!” you say)

F Own
– program counter
– register set
– stack space

F Shares
– code section
– data section
– OS resources

text segment

data segment

Program
Counter

(Threads)

C
 s

ta
ck

B
 s

ta
ck

A
 s

ta
ck

A B C

A B C

“Multithreaded Program”

Process

Stack
A(int tmp) {
 B();

printf(tmp)
;

}
B() {
 C();
}
C() {
 A(2);
}

A: tmp = 2

C

B

A: tmp = 1

Example: A Threaded Spreadsheet

Command
Thread

Spreadsheet
Data

Other
Data

Display
Thread

Recalculate
Thread

What Kinds of Programs to Thread?

F Independent tasks
– ex: debugger needs gui, program, perf monitor…
– especially when blocking for I/O!

F Single program, concurrent operation
– Servers

u ex: file server, web server

– OS kernels
u concurrent requests by multiple users -- no protection

needed in kernel

Thread Benefits
F “What about just using processes with

shared memory?”
– fine
– debugging tougher (more thread tools)
– processes slower

u 30 times slower to create on Solaris

u slower to destroy
u slower to context switch among

– processes eat up memory
u few thousand processes not ok
u few thousand threads ok

3

Threads Standards
F POSIX (Pthreads)

– Common API
– Almost all Unix’s have thread library

F Win32 and OS/2
– very different from POSIX, tough to port
– commercial POSIX libraries for Win32
– OS/2 has POSIX option

F Solaris
– started before POSIX standard
– likely to be like POSIX

Do they Work?
F Operating systems

– Mach, Windows NT, Windows 95, Solaris,
IRIX, AIX, OS/2, OSF/1

– Millions of (unforgiving) users

F NFS, SPECfp, SPECint

1 4 8 12 16 20 24 CPUs

Levels of Threads
User Level Thread

Thread

Kernel Thread

Process A Process B

