Operating Systems

Processes
(Ch 4.1)

Processes
• “A program in execution”
• Modern computers allow several at once
 – “pseudoparallelism”

”A program in execution”
• “more” than a program: ls, tcsh
• “less” than a program: gcc blah.c
 (cpp, cc1, cc2, ln ...)
 “A sequential stream of execution in its own address space”

Process States
• Consider:
cat /etc/passwd | grep claypool

Process States
• Consider:
cat /etc/passwd | grep claypool

Design Technique: State Machines
• Process states
• Move from state to state based on events
 – Reactive system
• Can be mechanically converted into a program
• Other example: string parsing, pre-processor

Unix Process Creation
• System call: fork()
 – creates (nearly) identical copy of process
 – return value different for child/parent
• System call: exec()
 – over-write with new process memory
• Shell
 – uses fork() and exec()
 – simple!
• (Hey, you, show demos!)
Process Scheduler

• All services are processes
• Small scheduler handles interrupts, stopping and starting processes

Process Control Block

• Each process has a PCB
 – state
 – program counter
 – registers
 – memory management
 – ...
• OS keeps a table of PCB’s, one per process
• (Hey! Simple Operating System, “system.h”)

Question

• Usually the PCB is in OS memory only.
• Assume we put the PCB into a processes address space.
• What problems might this cause?

Interrupt Handling

• Stores program counter (hardware)
• Loads new program counter (hardware)
 – jump to interrupt service procedure
• Save PCB information (assembly)
• Set up new stack (assembly)
• Set “waiting” process to “ready” (C)
• Re-schedule (probably awakened process) (C)
• If new process, called a context-switch

Context Switch

• Pure overhead
• So … fast, fast, fast
 – typically 1 to 1000 microseconds
• Sometimes special hardware to speed up
• How to decide when to switch context to another process is process scheduling

Processes in Linux

• PCB is struct task_struct
 – states: RUNNING, INTERRUPTIBLE, UNINTERRUPTIBLE
 – priority: when it runs
 – counter: how long it runs
• Environment inherited from parent
• NR_TASKS max, 2048
 – 1/2 is max per user
Processes in NT

- States: ready, standby (first in line), running, waiting, transition, terminated
- Priority - when it runs
- Processes are composed of threads
 – (revisit threads after scheduling)

True or False

- Unix is a “simple structure” OS
- Micro Kernels are faster than other OS structures
- Virtual Machines are faster than other OS structures