Why Study Multimedia?

- Improvements:
 - Telecommunications
 - Environments
 - Communication
 - Fun
- Outgrowth from industry
 - telecommunications
 - consumer electronics
 - television

Continuous Media

- Subset of multimedia
- Includes timing relationship between server and client
- Stream:
 - video: mpeg, H.261, avi
 - audio: MP3, µ-law

Multimedia Resource Requirements

<table>
<thead>
<tr>
<th>Bytes for 1 Page</th>
<th>text</th>
<th>graphics</th>
<th>color</th>
<th>audio</th>
<th>video</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>2K</td>
<td>38K</td>
<td>300K</td>
<td>720K</td>
<td>7000K</td>
</tr>
</tbody>
</table>

- Step up in media requires more bytes
- But not as much as some applications
 - Graphics or transaction processing

Influences on Quality

An End-To-End Problem

- Server Application
- Operating System
- Network Protocol
- Client Application
- Operating System
- Network Protocol
- Routers
Traditional OS Support

- **Same:**
 - arbitrate resource demands (efficient)
 - abstractions of low-level devices (convenient)
- **Different:**
 - no longer just protect memory of process
 - negotiated slice of CPU time
 - I/O bandwidth
 - timing!

OS Problems in Supporting Multimedia

- Process Scheduling (now)
- Memory Management (later)
- Storage Scheduling (later, cs4513)
- Network Interface (later, cs4514)

Process Scheduling Shortcomings

- Multi-level feedback queue
- Typical time slice 100 ms
- Dispatch latency 100 ms!
 - Varies (Jitter)

Jitter vs. Processor Load

Process Scheduling Fix?

- Priority to multimedia processes
- nice
Memory Management

- Paging:
 - page faults cause jitter
 - allocation causes jitter
 - global vs. local
 - solution: lock in pages
- Memory allocation generally not tied to scheduling priority

Network Interface

- TCP
 - guarantees delivery
 - stream semantics
 - fixed flow control
 - unicast
 - ... big bleah!
- UDP
 - multicast add-on
 - checksum cannot be turned off
 - no notion of priority
 - no flow control
 - ... little bleah!
- RTP
 - multicast add-on
 - packet sequence
 - flow control

Storage Scheduling

- Disk scheduling and layout
- DBMS

Disk Arm Scheduling

- Read time:
 - seek time (arm to cylinder)
 - rotational delay (time for sector under head)
 - transfer time (takes bits off disk)
- Seek time dominates
- How does disk arm scheduling affect ...
First-Come First-Served (FCFS)

- $14 + 13 + 2 + 6 + 3 + 12 + 3 = 53$
- Service requests in order that they arrive
- Little can be done to optimize
- What if many requests?

Shortest Seek First (SSF)

- $1 + 2 + 6 + 9 + 3 + 2 = 23$
- Suppose many requests?
 - Stay in middle
 - Starvation!

SCAN (Elevator)

- $1 + 2 + 6 + 3 + 2 + 17 = 31$
- Usually, a little worse than SSF
- C-SCAN has less variance
- Note, seek getting faster, rotational not
 - Someday, change algorithms

Redundant Array of Inexpensive Disks (RAID)

- 38 disks
- Pull data in parallel
- Form 32 bit word, 6 check bits

Conclusion

- Much work to be done
 - scheduling
 - memory management
 - network
 - disk
- MQP anyone?
 - One piece in OS support puzzle