%
Operating Systems

Memory Management
(Ch8.1-86)

Overview

+ Provide Services  (done)

— processes (done)
—files (donein cs4513)
+ Manage Devices
— processor (done) ,
— memory (next!)
—disk %

Simple Memory Management

+ Oneprocessinmemory, usingit al
— each program needs |/O drivers
— until 1960

iyvers
!
RAM
\!

Simple Memory Management

+ Small, protected OS, drivers
- DOS

+ “Mono-programming” -- No multiprocessi ngk!u
+ Early efforts used “ Swapping”, but sloooo0

Multiprocessing w/Fixed Partitions
Simple!

900k

500k

300k
200k

@
* Unequd queues * Weste Iargg ti

PD-Sal QDS

Hey, processes can bein different memory location:

Address Binding

+ Compile Time
— maybe absolute binding (. com)
+ Link Time
— dynamic or static libraries
+ Load Time
— relocatable code
+ RunTime
— relocatable memory segments
—overlays
— paging

-

Compile




Logical vs. Physical Addresses

+ Compile-Time + Load Time addresses same
+ Runtimeaddressesdifferent

Logical | Relocation | physical
Address | Register [ Address

———
346 14346

MMU

+ User goesfrom 0 tomax
+ Physical goesfrom R+0 to R+mex

Relocatable Code Basics

+ Allow logical addresses
+ Protect other processes

address

er ror

+ Addresses must be contiguous!

Design Technique: Static vs. Dynamic

+ Staticsolutions
— compute ahead of time
— for predictable situations
+ Dynamic solutions
— compute when needed
— for unpredictable situations

+ Some situations use dynamic becausog
too restrictive (mal | oc) g

Review

+ What isarelocation register?

+ What are some of the sectionsin an object
module?

+ What are some of the stepsthat occur
during linking? ,

=

L\)

Variable-Sized Partitions

+ |dea: want to remove “wasted” memory that
isnot needed in each partition
+ Definition:
— Hole - ablock of available memory
— scattered throughout physical memory I
+ New process dlocated memory from
large enough tofit it

+ OSkeepstrack of:
— allocated partitions
— free partitions (holes)
— queues!




Variable-Sized Partitions

+ Given alist of free holes:

BN =

+ How do you satisfy arequest of sizes? ;
— 20k, 130k, 70k

Variable-Sized Partitions

Bl =

+ Requests: 20k, 130k, 70k
— Firstfit: alocate first hole that is big enough
— Best-fit: allocate smallest hole that isbig
— Worst-fit: allocate largest hole (say, 120&%)(

Variable-Sized Partitions

+ First-fit: might not search theentirelist
+ Best-fit: must search the entirelist
+ Worst-fit: must search theentirelist

+ First-fit and Best-ft better than Worst-fit i
termsof speed and storage utilizatio

Memory Request?

+ What if areguest for additional memory?

> malloq(20k)?

Internal Fragmentation

+ Have some“empty” space for each
processes

Allocatedto A Room for growth

+ Interna Fragmentation - allocated
may be dlightly larger than request
memory and not being used.

External Fragmentation

+ External Fragmentation - total memory
space existsto satisfy request but it isnot
contiguous

125k ' ?

50k




Review

+ What isthe Memory Management Unit?
+ What is external fragmentation?
+ What isinternal fragmentation?

Where Are We?

+ Memory Management

— fixed partitions (done)
— linking and loading (done)
— variable partitions -

+ Paging

+ Misc

Analysis of External Fragmentation

+ Assume:
— system at equilibrium
— processin middle
— if N processes, 1/2 time process, 1/2 hole
«==>1/2 N holes!
— Fifty-percent rule /

— Fundamental:
« adjacent holes combined
« adjacent processes not combined \ ]

Compaction

+ Shuffle memory contentsto placeall free
memory together in one large block

+ Only if relocation dynamic!
+ Same|/O DMA problem

50k

90k
125k

60k

00k

of Comp

50k
90k
60k
100k

+ 128 MB RAM, 100 nsed/access
=> 1.5 secondsto compact!
+ Disk much slower!

Solution?

+ Want to minimize externd fragmentation
— Large Blocks
— But internal fragmentation!

+ Tradeoff

— Sacrifice some internal fragmentation for !
reduced external fragmentation

— Paging !

S
~—




Paging

+ Logical address space noncontiguous,
process gets memory wherever available
— Divide physical memory into fixed size blocks

« sizeisapower of 2, between 512 and 8192 bytes
+ called Frames

— Divide logical memory into bocks of same size,/
« called Pages

Paging
+ Address generated by CPU divided into:
— Page number (p) - index to pagetable

« page table contains base address of each pagein
physical memory (frame)

— Page offset (d) - offset into page/frame

hH

A

pagetable

Paging Example

+ Pagesize 4 bytes
+ Memory size 32 bytes (8 pages)

w N

Page2 Pagel PageO

Page 3

Paging Example

000
001
010
011
100
101
110
111

Page Table
Logical Physical
Memory Memory

4
5
6
Logical Page Table 7
Memory
Paging Hardware

+ address space 2™
+ pagesize2"
+ pageoffset 2m™n

m-n n

+ note: not losing any bytes!

Paging Example

+ Consider:
— Physical memory = 128 bytes
— Physical address space = 8 frames
+ How many bitsin an address?
+ How many bitsfor page number? !
+ How many bitsfor page offset?

+ Canalogical address space have only9,
pages? How big would the pagetable b;a?_,




Page Table Example  ©=7

g
3

Page Table

m-n=3 n=4
= .
[P ] :

Process A Page Table

Process B

Paging Tradeoffs

+ Advantages
— no external fragmentation (no compaction)
— relocation (now pages, before were processes)
+ Disadvantages
— internal fragmentation
« consider: 2048 byte pages, 72,766 byte proc
— 35 pages + 1086 bytes = 962 bytes !
« avg: 1/2 page per process
« small pages!
— overhead
+ pagetable/ process (context switch + space)
« lookup (especially if page to disk)

Another Paging Example

+ Consider:
— 8bitsin an address
— 3 bitsfor the frame/page number

How many bytes (words) of physical memory?
How many frames are there?

How many bytes is a page? ,
How many bits for page offset?

If aprocess pagetableis 12 bits, how m
logica pages does it have?

+ 4+ 4

Implementation of Page Table

+ Pagetable kept in registers

+ Fast!

+ Only good when number of framesissmall
+ Expensive!

B

Implementation of Page Table

+ Pagetable kept in main memory
+ Page Table Base Register (PTBR)

0
1

Logicd  pageTable
Memory

+ Page Table Length R
+ Two memory accesses per datalinst acgess—
— Solution? Associative Registers

Associative Registers

10-20% memtime

physical
address

associative
e S oS

. >
miss

page table




Associative Register Performance

+ Hit Ratio - percentage of timesthat apage
number isfound in associative registers

Effective accesstime=

hit ratio x hit time + miss ratio x misstime

+ hit time =reg time + memtime

+ misstime=reg time+ memtime* 2 /
+ Example:

— 80% hit ratio, regtime = 20 nanosec,
= 100 nanosec

—.80* 120+ .20 * 220 = 140 nanosecond:

Protection

+ Protection bitswith each frame
+ Storein pagetable Protection
+ Expand to more perms Bit

0

0
1
1
2 /
2
3
; 3
Logical Page Table
Memory Pavst
M

Large Address Spaces

+ Typical logical address spaces:
— 4 Gbytes => 2% address bits (4-byte address)
+ Typica pagesize:
— 4 Kbytes = 212 bits
+ Pagetable may have:
— 232 [ 22 =220 = 1million entries /
+ Each entry 3 bytes=> 3MB per proc
+ Do not want that all in RAM

+ Solution? Pagethe pagetable
— Multilevel paging

Multilevel Paging Trandlation

outer page
table inner page

table

Multileyel Paging
10 10 12
Logica
Mzgrlmry Ou}rvearblli‘:ge
Page Table
Inverted Page Table

+ Page table mapsto physical addresses

" T

> Al

searcl

+ Still need page per process-->backi nagtqr_g
+ Memory accesseslonger! (search +




Memory View

+ Paging lost users’ view of memory

+ Need “logica” memory unitsthat grow and
contract

ex: stack,

shared library

* Solution?
« Segmentation!

Segmentation

+ Logical address: <segment, offset>

+ Segment table - magpstwo-dimensional user
defined addressinto one-dimensiond
physicd address
— base - starting physical location
— limit - length of segment

+ Hardware support
— Segment Table Base Register &
— Segment Table Length Register Lu

Segmentation

Software Interrupts
+ Sendlnterrupt (pid, num
— type numto process pi d,
—ki I'l () inUnix
+ Handl el nterrupt (num handl er)
— type num use functionhandl er
—signal () inUnix
+ Typica handlers:
—ignore
— terminate (maybe w/core dump)
— user-defined
— (Hey, demos!)

Operating Systems

Software Signds

Unreliable Signals

+ Before POSIX. 1 standard:
signal (SIG@ NT, sig_int);

sig_int() {
/* re-establish handler */
signal (SIG@NT, sig_int);
}

+ Another signal could come befor

handler re-established!
—




Memory Management Outline
+ Basic

— Fixed Partitions

— Variable Partitions
+ Paging

—Basic

— Enhanced
+ Specific

— WIinNT

— Linux
+ Virtua Memory

SN SSS

J

Memory Management in WinNT

+ 32 bit addresses (2% = 4 GB address space)
— Upper 2GB shared by all processes (kernel mode)
— Lower 2GB private per process

+ Pagesizeis4 KB (2%, so offset is 12 hits)

+ Multilevel paging (2 levels)
— 10 bitsfor outer page table (page directory) /
— 10 bitsfor inner page table 4
— 12 hits for offset Lu

Memory Management in WinNT

+ Each pagetable entry has 32 bits
— only 20 needed for address translation
— 12 bits“left -over”
+ Characterigtics
— Access: read only, read-write ,
— States: valid, zeroed, free ...
+ Inverted page table )
— pointsto page table entries \
— list of freeframes

Memory Management in Linux

+ Pagesize:
— Alpha AXP has 8 Kbytepage
— Intel x86 has4 Kbytepage
+ Multilevel paging (3 levels)
— Makes code more portable ,

— Even though no hardware support on x86,
+ “middle-layer” defined to be 1 =

L\j

Memory Management in Linux

+ Buddy-heap

+ Buddy-blocks are combined to larger block
+ Linked list of freeblocks at each size

+ If not small enough, broken down

Object Module

+ Information required to “load” into memory
+ Header Information

+ Machine Code

+ Initidized Data

+ Symbol Table !
+ Relocation Information .

+ (see SOS sample) Ry




Linking an Object Module

+ Combines several object modulesinto load
module

+ Resolve external references

+ Relocation - each object module assumes starts
at 0. Must change.

+ Linking - modify addresses where one
refersto another (example - external)

/

Normal Linking and Loading

= Linker < X Window code:

- 500K minimum
- 450KA1

L oader

Run-Time Dynamic Linking

Save disk space.
Startup fast. /
Mig

Loading an Object
+ Resolvereferences of object module
On Disk In Memory

7

Load Time Dynamic Linking

gce cc
. —_ * Save disk space.
ar Linker < * Librariesmove?
* Moving code? ,

ALoi

Memory Linking Performance
Comparisons

Linking Disk Load Run Run Run Time
Method Space Time Time Time (O used)

4 used 2 used

10



