
1

Operating Systems

Memory Management
(Ch 8.1 - 8.6)

Overview

F Provide Services (done)
– processes (done)
– files (done in cs4513)

F Manage Devices
– processor (done)
– memory (next!)
– disk

Simple Memory Management

F One process in memory, using it all
– each program needs I/O drivers
– until 1960

RAM User
Prog

I/O drivers

Simple Memory Management
F Small, protected OS, drivers

– DOS

OS

OS

RAM

ROM
Device
Drivers ROM

OS

RAM RAM

User
Prog User

Prog

User
Prog

F “Mono-programming” -- No multiprocessing!
F Early efforts used “Swapping”, but slooooow

Multiprocessing w/Fixed Partitions

OS

Partion 1

Partion 2

Partion 3

Partion 4

200k
300k

500k

900k

OS

Partion 1

Partion 2

Partion 3

Partion 4

(a) (b)

• Unequal queues • Waste large partition
• Skip small jobs

Simple!

Hey, processes can be in different memory locations!

Address Binding
F Compile Time

– maybe absolute binding (.com)

F Link Time
– dynamic or static libraries

F Load Time
– relocatable code

F Run Time
– relocatable memory segments
– overlays
– paging

Source

Object

RAM
Binary

Compile

Load

Load
Module

Link

Run

2

Logical vs. Physical Addresses
F Compile-Time + Load Time addresses same
F Run time addresses different

CPU

Relocation
Register

+

14000

MMU

Logical
Address

346

Physical
Address

Memory
14346

F User goes from 0 to max
F Physical goes from R+0 to R+max

Relocatable Code Basics
F Allow logical addresses
F Protect other processes

CPU

Limit Reg

<

error

no

Reloc Reg

+
yes

physical
address

Memory

F Addresses must be contiguous!

Design Technique: Static vs. Dynamic
F Static solutions

– compute ahead of time
– for predictable situations

F Dynamic solutions
– compute when needed
– for unpredictable situations

F Some situations use dynamic because static
too restrictive (malloc)

F ex: memory allocation, type checking

Review

F What is a relocation register?
F What are some of the sections in an object

module?
F What are some of the steps that occur

during linking?

Variable-Sized Partitions

F Idea: want to remove “wasted” memory that
is not needed in each partition

F Definition:
– Hole - a block of available memory
– scattered throughout physical memory

F New process allocated memory from hole
large enough to fit it

Variable-Sized Partitions
OS

process 5

process 8

process 2

OS
process 5

process 2

8 done

OS
process 5

process 2

process 9
9 arrv

OS

process 2

process 9
10 arrv

process 10
5 done

F OS keeps track of:
– allocated partitions
– free partitions (holes)
– queues!

3

Variable-Sized Partitions

F How do you satisfy a request of sizes?
– 20k, 130k, 70k

F Given a list of free holes:

100k 75k110k 25k140k

Variable-Sized Partitions

F Requests: 20k, 130k, 70k
– First-fit: allocate first hole that is big enough
– Best-fit: allocate smallest hole that is big enough
– Worst-fit: allocate largest hole (say, 120k)

100k 75k110k 25k140k

Variable-Sized Partitions

F First-fit: might not search the entire list
F Best-fit: must search the entire list
F Worst-fit: must search the entire list

F First-fit and Best-ft better than Worst-fit in
terms of speed and storage utilization

Memory Request?

F What if a request for additional memory?

OS

process 2

process 3

process 8

malloc(20k)?

Internal Fragmentation
F Have some “empty” space for each

processes

F Internal Fragmentation - allocated memory
may be slightly larger than requested
memory and not being used.

OS

A program

A data

A stack

Room for growthAllocated to A

External Fragmentation

F External Fragmentation - total memory
space exists to satisfy request but it is not
contiguous OS

process 2

process 3

process 8

50k

100k

Process 9125k ?

4

Review

F What is the Memory Management Unit?
F What is external fragmentation?
F What is internal fragmentation?

Where Are We?
F Memory Management

– fixed partitions (done)
– linking and loading (done)

– variable partitions ←
F Paging
F Misc

Analysis of External Fragmentation

F Assume:
– system at equilibrium
– process in middle
– if N processes, 1/2 time process, 1/2 hole

u ==> 1/2 N holes!

– Fifty-percent rule
– Fundamental:

u adjacent holes combined
u adjacent processes not combined

Compaction
F Shuffle memory contents to place all free

memory together in one large block
F Only if relocation dynamic!
F Same I/O DMA problem

Process 9125k

OS

process 2

process 3

process 8

OS

process 2

process 3

process 8

50k

100k

OS

process 2

process 3

process 8

90k

60k

(a) (b)

Cost of Compaction

process 2

process 3

process 8

50k

100k

90k

60k

process 1 process 1

process 2

process 3

process 8

F 128 MB RAM, 100 nsec/access
è 1.5 seconds to compact!

F Disk much slower!

Solution?

F Want to minimize external fragmentation
– Large Blocks
– But internal fragmentation!

F Tradeoff
– Sacrifice some internal fragmentation for

reduced external fragmentation
– Paging

5

Paging

F Logical address space noncontiguous;
process gets memory wherever available
– Divide physical memory into fixed-size blocks

u size is a power of 2, between 512 and 8192 bytes
u called Frames

– Divide logical memory into bocks of same size
u called Pages

Paging
F Address generated by CPU divided into:

– Page number (p) - index to page table
u page table contains base address of each page in

physical memory (frame)

– Page offset (d) - offset into page/frame

CPU p d

page table

f

f d

physical
memory

Paging Example

Page 0

F Page size 4 bytes
F Memory size 32 bytes (8 pages)

Page 1

Page 2

Page 3

1

4

3

7

0

1

2

3

Page TableLogical
Memory

Page 1

Page 3

Physical
Memory

Page 0

Page 2

0

1

2

3

4

5

6

7

Paging Example
Pa

ge
 0

Pa
ge

 1
Pa

ge
 2

Pa
ge

 3

01

11

00

10

00

01

10

11

Page Table

Logical
Memory

000

001

010

011

100

101

110

111

Physical
Memory

000

001

010

011

100

101

110

111

0 0 1 0 1 1

Page

Offset

Frame

Paging Hardware

page number
p

page offset
d

F address space 2m

F page size 2n

F page offset 2m-n

m-n n

F note: not losing any bytes!

phsical
memory
2m bytes

Paging Example

F Consider:
– Physical memory = 128 bytes
– Physical address space = 8 frames

F How many bits in an address?
F How many bits for page number?
F How many bits for page offset?
F Can a logical address space have only 2

pages? How big would the page table be?

6

Page Table Example

1

4

0

1

Page Table

Page 0

Page 1

Process A

Page 1A

Page 1B

Physical
Memory

Page 0A

Page 0B

0

1

2

3

4

5

6

7

Page 0

Page 1

Process B

3

7

0

1

Page Table

page number
p

page offset
d

m-n=3 n=4

b=7 Paging Tradeoffs
F Advantages

– no external fragmentation (no compaction)
– relocation (now pages, before were processes)

F Disadvantages
– internal fragmentation

u consider: 2048 byte pages, 72,766 byte proc
– 35 pages + 1086 bytes = 962 bytes

u avg: 1/2 page per process

u small pages!

– overhead
u page table / process (context switch + space)

u lookup (especially if page to disk)

Another Paging Example

F Consider:
– 8 bits in an address
– 3 bits for the frame/page number

F How many bytes (words) of physical memory?
F How many frames are there?
F How many bytes is a page?
F How many bits for page offset?
F If a process’ page table is 12 bits, how many

logical pages does it have?

Implementation of Page Table

F Page table kept in registers
F Fast!
F Only good when number of frames is small
F Expensive!

Registers

Memory

Disk

Implementation of Page Table
F Page table kept in main memory
F Page Table Base Register (PTBR)

Page 0

Page 1

1

4

0

1

Page TableLogical
Memory

Page 1

Physical
Memory

Page 0

0

1

2

3

1 4

PTBR

F Page Table Length
F Two memory accesses per data/inst access.

– Solution? Associative Registers

Associative Registers

CPU

p d

page table

f

f d

physical
memory

page
number

frame
number

associative
registers

miss

hit

logical
address

physical
address

10-20% mem time

7

Associative Register Performance
F Hit Ratio - percentage of times that a page

number is found in associative registers
Effective access time =
hit ratio x hit time + miss ratio x miss time
F hit time = reg time + mem time
F miss time = reg time + mem time * 2
F Example:

– 80% hit ratio, reg time = 20 nanosec, memtime
= 100 nanosec

– .80 * 120 + .20 * 220 = 140 nanoseconds

Protection
F Protection bits with each frame
F Store in page table
F Expand to more perms

Page 0

Page 1

Page 2

1

0

3

0

0

1

2

3

Page TableLogical
Memory Physical

Memory

Page 0

Page 2

0

1

2

3

v

v

v

i

Page 1

Protection
Bit

Large Address Spaces

F Typical logical address spaces:
– 4 Gbytes => 232 address bits (4-byte address)

F Typical page size:
– 4 Kbytes = 212 bits

F Page table may have:
– 232 / 212 = 220 = 1million entries

F Each entry 3 bytes => 3MB per process!
F Do not want that all in RAM
F Solution? Page the page table

– Multilevel paging

Multilevel Paging

Page 0

...

...
...

Outer Page
Table

Logical
Memory

...

...

Page Table

...

page number
p1

page offset
d

10 12

p2

10

Multilevel Paging Translation
page number

p1
page offset

dp2

outer page
table inner page

table

desired
page

d
p2

p1

Inverted Page Table
F Page table maps to physical addresses

CPU pid dp

se
ar

ch

pid p

i

i d

Physical
Memory

F Still need page per process --> backing store
F Memory accesses longer! (search + swap)

8

Memory View
F Paging lost users’ view of memory
F Need “logical” memory units that grow and

contract

subroutine

stack

symbol table

main

• Solution?
• Segmentation!

ex: stack,
shared library

Segmentation
F Logical address: <segment, offset>
F Segment table - maps two-dimensional user

defined address into one-dimensional
physical address
– base - starting physical location
– limit - length of segment

F Hardware support
– Segment Table Base Register
– Segment Table Length Register

Segmentation

CPU

s d
logical
address

limit base

<

error

no

+

yes
physical
address

physical
memory

main

stack
Operating Systems

Software Signals

Software Interrupts
F SendInterrupt(pid, num)

– type num to process pid,
– kill() in Unix

F HandleInterrupt(num, handler)
– type num, use function handler
– signal() in Unix

F Typical handlers:
– ignore
– terminate (maybe w/core dump)
– user-defined
– (Hey, demos!)

Unreliable Signals
F Before POSIX.1 standard:
signal(SIGINT, sig_int);
...
sig_int() {
/* re-establish handler */
signal(SIGINT, sig_int);

}

F Another signal could come before
handler re-established!

9

Memory Management Outline
F Basic 4

– Fixed Partitions 4
– Variable Partitions 4

F Paging 4
– Basic 4
– Enhanced 4

F Specific ←
– WinNT
– Linux

F Virtual Memory

Memory Management in WinNT

F 32 bit addresses (232 = 4 GB address space)
– Upper 2GB shared by all processes (kernel mode)
– Lower 2GB private per process

F Page size is 4 KB (212, so offset is 12 bits)
F Multilevel paging (2 levels)

– 10 bits for outer page table (page directory)
– 10 bits for inner page table
– 12 bits for offset

Memory Management in WinNT

F Each page-table entry has 32 bits
– only 20 needed for address translation
– 12 bits “left -over”

F Characteristics
– Access: read only, read-write
– States: valid, zeroed, free …

F Inverted page table
– points to page table entries
– list of free frames

Memory Management in Linux

F Page size:
– Alpha AXP has 8 Kbytepage
– Intel x86 has 4 Kbytepage

F Multilevel paging (3 levels)
– Makes code more portable
– Even though no hardware support on x86!

u “middle-layer” defined to be 1

Memory Management in Linux

F Buddy-heap
F Buddy-blocks are combined to larger block
F Linked list of free blocks at each size
F If not small enough, broken down

16 KB

8 KB

8 KB

8 KB

4 KB

4 KB

Object Module

F Information required to “load” into memory
F Header Information
F Machine Code
F Initialized Data
F Symbol Table
F Relocation Information
F (see SOS sample)

10

Linking an Object Module

F Combines several object modules into load
module

F Resolve external references
F Relocation - each object module assumes starts

at 0. Must change.
F Linking - modify addresses where one object

refers to another (example - external)

Loading an Object
F Resolve references of object module

Header
Executable

Code

Initialized
Data

Executable
Code

Initialized
Data

Uninitialized
Data

On Disk In Memory

Normal Linking and Loading
Printf.c

Printf.o

Static
Library

gcc

ar

a.out

Linker

Memory

Main.c

gcc

Main.o

Loader

X Window code:
- 500K minimum
- 450K libraries

Load Time Dynamic Linking

Printf.c

Printf.o

Dynamic
Library

gcc

ar

a.out

Linker

Memory

Main.c

gcc

Main.o

Loader

• Save disk space.
• Libraries move?
• Moving code?
• Library versions?
• Load time still
the same.

Run-Time Dynamic Linking
Printf.c

Printf.o

Dynamic
Library

gcc

ar

a.out

Linker

Memory

Main.c

gcc

Main.o

Loader

Save disk space.
Startup fast.
Might not need all.

Run-time
Loader

Memory Linking Performance
Comparisons

Linking
Method

Disk
Space

Load
Time

Run
Time

(4 used)

Run
Time

(2 used)

Run Time
(0 used)

Static 3Mb 3.1s 0 0 0

Load
Time

1Mb 3.1s 0 0 0

Run
Time

1Mb 1.1s 2.4s 1.2s 0

