Operating System

Introduction
(Ch 1)

Let’s Get Started!
• What are some OSes you know?
 – Guess if you are not sure
• Pick an OS you know:
 – What are some things you like about it?
 – What are some things you don’t like about it?

What is an Operating System?
• An Extended Machine (Top-down)
 – Transforming - new resource
 • ex: Win98 device manager
• A Resource Manager (Bottom-up)
 – Multiplexing - illusion of several resources
 • ex: browse the web AND read email
 – Scheduling - deciding who gets what when
 • ex: compile fast OR edit fast
• Why have an OS?
 – Convenient and Efficient
 • Programming hardware difficult
 • Idle hardware “wasteful”
Where in the Book are we?

- Chapter 1
 - 1.1 overview (done)
 - 1.2 history (next)
 - 1.3 overview (read on your own)
 - 1.4 hardware (review on your own, as needed)
 - 1.5 concepts
 - 1.6 structure

OS History

- Helps understand key requirements
 - Not one brilliant design
 - (despite what Gates or Torvalds might say)
 - Fixed previous problems, added new ones
 - Tradeoffs
- Closely tied to:
 - Hardware history
 - User history

Hardware History

<table>
<thead>
<tr>
<th></th>
<th>1981</th>
<th>1999</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>$/Power</td>
<td>$100K</td>
<td>$45</td>
<td>2200</td>
</tr>
<tr>
<td>Memory</td>
<td>128K</td>
<td>128M</td>
<td>1000</td>
</tr>
<tr>
<td>Disk Capacity</td>
<td>10M</td>
<td>10G</td>
<td>1000</td>
</tr>
<tr>
<td>Net Bandwidth</td>
<td>9600b/s</td>
<td>155Mb/s</td>
<td>15K</td>
</tr>
<tr>
<td>Users / Mach.</td>
<td>10s</td>
<td><=1</td>
<td>10</td>
</tr>
</tbody>
</table>

- Comments? Change!

Hardware Very Expensive
Humans Cheap

- Single program execution (no OS)
- Hardwire “programming”
- Programming slow, not “offline”!
 - Punch cards

Hardware Very Expensive
Humans Cheap

- Punch cards
- Fortran or assembler
- Waste computer time walking!
 - Batch programs on tape
Hardware Very Expensive
Humans Cheap
- Programs read in from tape
- Two applications:
 - Scientific
 - Data processing
- CPU idle during I/O!
 - Multiprogramming with partitions
 - Spooling as jobs finished

Hardware is Cheap
Humans Expensive
- Turn around time 1/2 day
- Programmer time wasted!
 - “Sigh. In the good old days….”
 - Time-sharing
 - Multics (sorta)
 - New problems
 - response time
 - thrashing
 - file-systems

Hardware Very Cheap
Humans Very Expensive
- Personal computers
 - Network operating systems
 - Distributed operating systems
- OSes today
 - small == 1000K
 - large == 10,000K
 - need to evolve quickly
 - hardware upgrades, new user services, bug fixes
 - efficient and/or modular kernels

Windows NT/2000 History
- 1988, v1
 - split from joint work with IBM OS/2
 - Win32 API
- 1990, v3.1
 - Server and Workstation versions
- 1997(?), v4
 - Win95 interface
 - Graphics to kernel
 - More NT licenses sold than all Unix combined

Windows NT/2000 Today
- Microsoft has 80% to 90% of OS market
 - mostly PC’s
- 800 MHz Intel Pentium
- NT aiming at robust, server market
 - network, web and database
- Platforms
 - Intel 386+ only
- NT is 12,000,000 lines of code
- 2000 is 18,000,000 lines of code
Linux History

- Open Source
 - Release Early, Release Often, Delegate
 - “The Cathedral or the Bazaar”
- Bday 1991, Linus Torvalds, 80386 processor
 - v.01, limited devices, no networking,
 - with proper Unix process support!
- 1994, v1.0
 - networking (Internet)
 - enhanced file system (over Minix)
 - many devices, dynamic kernel modules

Linux History

- Development convention
 - Odd numbered minor versions “development”
 - Even numbered minor versions “stable”
- 1995, v1.2
 - more hardware
 - 8086 mode (DOS emulation) included
 - Sparc, Alpha, MIPS support started
- 1996, v2.0
 - multiple architectures, multiple processors
 - threads, memory management

Linux Today

- v2.4
- 3,000,000 lines of code
- 7-10 million users
- Estimated growth 25%/year through 2003
 - all others, 10% combined

Outline

- Operating System Concepts
 - Processes
 - Memory management
 - Input/Output
 - Files
 - System Calls
 - Shells
- Operating System Structure
 - Simple Systems
 - Virtual Machines
 - Micro Kernels

The Process

- Program in execution
- Running -> Suspended -> Running
- Example: the Shell
- Process “Tree”
- Signals
- UID (GID)
- (Two weeks)

Memory Management

- One chunk of physical memory
- Needs to be shared with all processes
 - multiprocessing
- 32 bit architecture, 2^32 bytes 4GB!
 - virtual memory
- (Two weeks)
Input/Output
- OS manage resources, including other devices
- Significant fraction of code
 - Up to 90%
- Want to be simple to use
- (2 days)

Files
- Store data on disk
- Directory “Tree”
- Working directory
- Protection bits
 - 9 in Unix: rwx bits, ex: rwxr-xr--x
- Abstraction of I/O device
 - terminal, printer, network, modem
- Pipe
- (1 day)

System Calls
- Way processes communicate with OS
- example: `write(file, string, size)`
- OS specific!
- POSIX (1980s)
 - Portable Operating System (UNIX-ish)
- (Most of the projects use them)
- (One of the projects will add system calls)

Shells
- User’s interface to OS
- Simple commands
 - “cd”, “cat”, “top”
- Modifiers
 - ‘&’, ‘|’, ‘>’
- (Hey, do some process and shell examples!)

Outline
- Operating System Structure
 - Simple Systems
 - Virtual Machines
 - Micro Kernels
Simple Systems

- Unix (see `/vmunix`)
 - Applications
 - Signals, File Sys, Swapping, Scheduling ...
 - Terminal, Device, Memory

- “The Big Mess”
- Some move towards a more modular kernel

Virtual Machines

- IBM VM/370 → VMWare
 - Complete protection
 - OS development, emulation
 - Performance!
 - (Exokernel says can have subset of kernel, 1.7.4)

Virtual Machines

- Java Virtual Machine
 - Java program
 - Java OS
 - Java VM
 - Operating System
 - Hardware

- Platform independence!

Micro Kernel

- Mach
 - User Process
 - File Server
 - Mem Server
 - Kernel

- Client-Server
- Good performance
- Adaptable to distributed OS
- Robust
- Careful about mechanism!

WinNT/2000 Structure

- User Level Space
 - Netscape
 - Win32 Subsystem
 - File System
- Executive / Privileged Space
 - Security
 - I/O
- Kernel Space
 - Scheduler
 - Memory Manager
 - IPC

“Micro Kernel?”

Linux Structure

- “Simple” system
 - Applications, User Space
 - System Libraries
 - Kernel
 - ppp
 - systemd
 - Terminal, Device, Memory

- Loadable Modules
 - done after “boot”
 - allow 3rd party vendors
 - easier for development