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Operating Systems I

Virtual Memory

Swap out

OS

P1

P2

Backing Store
(Swap Space)

Main Memory

Address Binding
can be fixed
or relocatable
at runtime

Swapping

F Active processes use more physical memory
than system has

Swapping
F Consider 100K proc, 1MB/s disk, 8ms seek

– 108 ms  * 2 = 216 ms

– If used for context switch, want large quantum!

F Small processes faster

F Pending I/O (DMA)
– don’t swap

– DMA to OS buffers

F Unix uses swapping variant
– Each process has “too large” address space

– Demand Paging

Motivation

F Logical address space larger than physical
memory
– “Virtual Memory”

– on special disk

F Abstraction for programmer

F Performance ok?
– Error handling not used

– Maximum arrays

Demand Paging

F Less I/O needed

F Less memory needed

F Faster response

F More users

F No pages in memory
initially

– Pure demand
paging
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Page Fault

F Page not in memory
– interrupt OS => page fault

F OS looks in table:
– invalid reference? => abort

– not in memory? => bring it in

F Get empty frame (from list)

F Swap page into frame

F Reset tables (valid bit = 1)

F Restart instruction

Performance of Demand Paging

Page Fault Rate

0 < p < 1.0   (no page faults to every is fault)

Effective Access Time
= (1-p) (memory access) + p (page fault overhead)

Page Fault Overhead

= swap page out + swap page in + restart

Performance Example
F memory access time = 100 nanoseconds

F swap fault overhead = 25 msec

F page fault rate = 1/1000

F EAT = (1-p) x 100 + p x (25 msec)
= (1-p) x 100 + p x 25,000,000

= 100 + 24,999,900 x p

= 100 + 24,999,900 x 1/1000 = 25 microseconds!

F Want less than 10% degradation
110 > 100 + 24,999,900 x p

10 > 24,999,9000 x p

p < .0000004 or  1 fault in 2,500,000 accesses!

Page Replacement

F Page fault => What if no free frames?
– terminate user process (ugh!)

– swap out process (reduces degree of multiprog)

– replace other page with needed page

F Page replacement:
– if free frame, use it

– use algorithm to select victim frame

– write page to disk, changing tables

– read in new page

– restart process

Page Replacement
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“Dirty” Bit - avoid page out

2(0)

Page Replacement Algorithms

F Every system has its own

F Want lowest page fault rate

F Evaluate by running it on a particular string
of memory references (reference string) and
computing number of page faults

F Example: 1,2,3,4,1,2,5,1,2,3,4,5
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First-In-First-Out (FIFO)
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Belady’s Anomaly

Optimal

F Replace the page that will not be used for
the longest period of time

vs.
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How do we know this?
Use as benchmark

Least Recently Used
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1,2,3,4,1,2,5,1,2,3,4,5

F Replace the page that has not been used for
the longest period of time
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8 Page Faults

No Belady’s Anomoly
- “Stack” Algorithm
- N frames subset of N+1

LRU Implementation

F Counter implementation
– every page has a counter; every time page is

referenced, copy clock to counter

– when a page needs to be changed, compare the
counters to determine which to change

F Stack implementation
– keep a stack of page numbers

– page referenced: move to top

– no search needed for replacement

LRU Approximations

F LRU good, but hardware support expensive

F Some hardware support by reference bit
– with each page, initially = 0

– when page is referenced, set = 1

– replace the one which is 0 (no order)

– enhance by having 8 bits and shifting

– approximate LRU

Second-Chance

F FIFO replacement, but …
– Get first in FIFO

– Look at reference bit
u bit == 0 then replace

u bit == 1 then set bit = 0, get next in FIFO

F If page referenced enough, never replaced

F Implement with circular queue
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Second-Chance
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If all 1, degenerates to FIFO

Enhanced Second-Chance

F 2-bits, reference bit and modify bit

F (0,0) neither recently used nor modified
– best page to replace

F (0,1) not recently used but modified
– needs write-out

F (1,0) recently used but clean
– probably used again soon

F (1,1) recently used and modified
– used soon, needs write-out

F Circular queue in each class -- (Macintosh)

Counting Algorithms

F Keep a counter of number of references
– LFU - replace page with smallest count

u if does all in beginning, won’t be replaced

u decay values by shift

– MFU - smallest count just brought in and will
probably be used

F Not too common (expensive) and not too
good

Page Buffering

F Pool of frames
– start new process immediately, before writing old

u write out when system idle

– list of modified pages
u write out when system idle

– pool of free frames, remember content
u page fault => check pool

Allocation of Frames

F How many fixed frames per process?

F Two allocation schemes:
– fixed allocation

– priority allocation

Fixed Allocation

F Equal allocation
– ex: 93 frames, 5 procs = 18 per proc (3 in pool)

F Proportional Allocation
– number of frames proportional to size

– ex: 64 frames, s1 = 10, s2 = 127
u f1 = 10 / 137 x 64 = 5

u f2 = 127 / 137 x 64 = 59

F Treat processes equal
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Priority Allocation

F Use a proportional scheme based on priority

F If process generates a page fault
– select replacement a process with lower

priority

F “Global” versus “Local” replacement
– local consistent (not influenced by others)

– global more efficient (used more often)

Thrashing

F If a process does not have “enough” pages,
the page-fault rate is very high
– low CPU utilization

– OS thinks it needs increased multiprogramming

– adds another procces to system

F Thrashing is when a process is busy
swapping pages in and out

Thrashing
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Cause of Thrashing

F Why does paging work?
– Locality  model

u process migrates from one locality to another

u localities may overlap

F Why does thrashing occur?
– sum of localities > total memory size

F How do we fix thrashing?
– Working Set Model

– Page Fault Frequency

Working-Set Model

F Working set window W = a fixed number of
page references
– total number of pages references in time T

F D = sum of size of W’s

Working Set Example

F T = 5

F 1 2 3 2 3 1 2 4 3 4 7 4 3 3 4 1 1 2 2 2 1

W={1,2,3}       W={3,4,7}   W={1,2}
– if T too small, will not encompass locality

– if T too large, will encompass several localities

– if T => infinity, will encompass entire program

F if D > m => thrashing, so suspend a process

F Modify LRU appx to include Working Set
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Page Fault Frequency

F Establish “acceptable” page-fault rate
– If rate too low, process loses frame

– If rate too high, process gains frame

increase
number of

frames

decrease
number of

frames

upper bound

lower bound

Pa
ge

 F
au

lt 
R

at
e

Number of Frames

Prepaging

F Pure demand paging has many page faults
initially
– use working set

– does cost of prepaging unused frames outweigh
cost of page-faulting?

Page Size
F Old - Page size fixed, New -choose page size

F How do we pick the right page size?  Tradeoffs:
– Fragmentation

– Table size

– Minimize I/O
u transfer small (.1ms), latency + seek time large (10ms)

– Locality
u small finer resolution, but more faults

– ex: 200K process (1/2 used), 1 fault / 200k, 100K faults/1 byte

F Historical trend towards larger page sizes
– CPU, mem faster proportionally than disks

Program Structure
F consider:

int A[1024][1024];

for (j=0; j<1024; j++)

for (i=0; i<1024; i++)

A[i][j] = 0;

F suppose:
– process has 1 frame

– 1 row per page

– => 1024x1024 page faults!

Program Structure
int A[1024][1024];

for (i=0; i<1024; i++)

for (j=0; j<1024; j++)

A[i][j] = 0;

F 1024 page faults

F stack vs. hash table

F Compiler
– separate code from data

– keep routines that call each other together

F LISP (pointers) vs. Pascal (no-pointers)

Priority Processes

F Consider
– low priority process faults,

u bring page in

– low priority process in ready queue for awhile,
waiting while high priority process runs

– high priority process faults
u low priority page clean, not used in a while

    => perfect!

F Lock-bit (like for I/O) until used once
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Real-Time Processes

F Real-time
– bounds on delay

– hard-real time: systems crash, lives lost
u air-traffic control, factor automation

– soft-real time: application sucks
u audio, video

F Paging adds unexpected delays
– don’t do it

– lock bits for real-time processes

Virtual Memory and WinNT

F Page Replacement Algorithm
– FIFO

– Missing page, plus adjacent pages

F Working set
– default is 30

– take victim frame periodically

– if no fault, reduce set size by 1

F Reserve pool
– hard page faults

– soft page faults

Virtual Memory and WinNT

F Shared pages
– level of indirection for easier updates

– same virtual entry

F Page File
– stores only modified logical pages

– code and memory mapped files on disk already

Virtual Memory and Linux

F Regions of virtual memory
– paging disk (normal)

– file (text segment, memory mapped file)

F New Virtual Memory
– exec() creates new page table

– fork() copies page table
u reference to common pages

u if written, then copied

F Page Replacement Algorithm
– second chance (with more bits)
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Capacity Planning Then and Now

F Capacity Planning in the good old days
– used to be just mainframes

– simple CPU-load based queuing theory

– Unix

F Capacity Planning today
– distributed systems

– networks of workstations

– Windows NT

– MS Exchange, Lotus Notes
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Experiment Design

F System
– Pentium 133 MHz

– NT Server 4.0

– 64 MB RAM

– IDE NTFS

F clearmem

F Experiments
– Page Faults

– Caching

F Analysis
– perfmon

Page Fault Method

F “Work hard”

F Run lots of applications, open and close

F All local access, not over network

Soft or Hard Page Faults? Caching and Prefetching

F Start process
– wait for “Enter”

F Start perfmon

F Hit “Enter”

F Read 1 4-K page

F Exit

F Repeat

Page Metrics with Caching On
Hit Return
button

Read
4 KB

Exit

Start
Hit Return
button

Exit

Read
4 KB


