Operating Systems |

Virtual Memory

Swapping

+ Active processes use more physical memory
than system has

Address Binding
can be fixed

or relocatable

at runtime

Main Memory

Swapping

+ Consider 100K proc, IMB/s disk, 8ms seek

—108 ms * 2=216 ms

— If used for context switch, want large quantum!
+ Small processes faster
+ Pending 1/0 (DMA)

—don't swap

— DMA to OS buffers
+ Unix uses swapping variant

— Each process has “too large” address

— Demand Paging

Motivation

+ Logical address space larger than physical
memory
—“Virtual Memory”
— on special disk
+ Abstraction for programmer
+ Performance ok?
— Error handling not used
— Maximum arrays

Demand Paging

+ Less1/O needed Pegeout
+ Less memory needed

+ Faster response

+ More users

+ No pages in memory
initially
— Pure demand
paging

Main Memory

Paging Implementation

Validation
Bit

w Nk O

Logical
Memory

Page Fault

+ Page not in memory
— interrupt OS => page fault
+ OSlooksin table:
— invalid reference? => abort
—not in memory? => bringitin
+ Get empty frame (from list)
+ Swap pageinto frame
+ Reset tables (valid bit = 1)
+ Restart instruction

Performance of Demand Paging

Page Fault Rate
0<p<10 (nopagefaultsto every isfault)
Effective Access Time
= (1-p) (memory access) + p (page fault overhead)

Page Fault Overhead ,

= Swap page out + swap pagein+r 25

€S

Performance Example

+ memory access time = 100 nanoseconds
+ swap fault overhead = 25 msec
+ page fault rate = 1/2000
+ EAT = (1-p) x 100 + p x (25 msec)

= (1-p) x 100 + p x 25,000,000

=100 + 24,999,900 x p

=100 + 24,999,900 x 1/1000 = 25 microsecondsia
+ Want less than 10% degradation

110 > 100 + 24,999,900 x p

10 > 24,999,9000 x p

p < .0000004 or 1 fault in 2,500,000 accesses

Page Replacement

+ Page fault => What if no free frames?
— terminate user process (ugh!)
— swap out process (reduces degree of multiprog)
— replace other page with needed page
+ Page replacement:
—if freeframe, use it
— use algorithm to select victim frame
— write page to disk, changing tables
—read in new page
— restart process

Page Replacement

“Dirty” Bit - avoid page out

Page Table

0 @
Logical
Memory 1

Page Table

w Nk O

Page Replacement Algorithms

+ Every system hasits own
+ Want lowest page fault rate

+ Evaluate by running it on a particular string
of memory references (reference string) and
computing number of page faults

+ Example: 1,2,34,1,2,5,1,2,3,45

First-In-First-Out (FIFO)
1,2,34,1,251234,5

[x] -

3 Frames/ Process
I 13 9 Page Faults

al

2 4
5 4
4 Frames/ Process 15 10 Page
A ¥
2 Belady's @ by
i
3

Optimal

NN

+ Replace the page that will not be used for
the longest period of time

123412512345

4 Frames / Process

L east Recently Used

+ Replace the page that has not been used for
the longest period of time

123412512345

LRU Implementation

+ Counter implementation

— every page has a counter; every time pageis
referenced, copy clock to counter

— when a page needs to be changed, compare the
counters to determine which to change

+ Stack implementation
— keep a stack of page numbers
— page referenced: move to top
— no search needed for replacement

LRU Approximations

+ LRU good, but hardware support expensive
+ Some hardware support by reference bit
— with each page, initially =0
—when pageisreferenced, set = 1
— replace the one which is 0 (no order)
— enhance by having 8 bits and shifting
— approximate LRU

Second-Chance

+ FIFO replacement, but ...
— Get first in FIFO
— Look at reference bit
« bit == 0 then replace
« bit == 1 then set bit = 0, get next in FIFO
+ If page referenced enough, never replaced

+ Implement with circular queue

Second-Chance

@ (b)

Next
Vicitm

B Rk O Rk
o o o o

If all 1, degeneratesto FIFO

Enhanced Second-Chance

+ 2-bits, reference bit and modify bit

+ (0,0) neither recently used nor modified
— best page to replace

4+ (0,1) not recently used but modified
— needs write-out

4+ (1,0) recently used but clean
— probably used again soon

4+ (1,1) recently used and modified

Tl
— used soon, needs write-out &

+ Circular queue in each class -- (Macint

Counting Algorithms

+ Keep a counter of number of references
— LFU - replace page with smallest count
« if doesall in beginning, won't be replaced
« decay values by shift
— MFU - smallest count just brought in and will
probably be used
+ Not too common (expensive) and no F‘f‘.
good , s
C

Page Buffering

+ Pool of frames
— start new process immediately, before writing old
« write out when system idle
— list of modified pages
« write out when system idle
— pool of free frames, remember content
« page fault => check pool

Allocation of Frames

+ How many fixed frames per process?
+ Two alocation schemes:

— fixed alocation

— priority alocation

Fixed Allocation

+ Equal allocation
— ex: 93 frames, 5 procs = 18 per proc (3 in pool)
+ Proportional Allocation
— number of frames proportional to size
—ex: 64 frames, s1 = 10, s2 = 127
«f1=10/137x64=5
«f2=127/137x 64=59

+ Treat processes equal

Priority Allocation

+ Use aproportional scheme based on priority

+ If process generates a page fault
— select replacement a process with lower
priority
+ “Global” versus“Local” replacement
— local consistent (not influenced by others)

— global more efficient (used more often)ﬁ¢
N
] % ,

Thrashing

+ If aprocess does not have “enough” pages,
the page-fault rate is very high
—low CPU utilization
— OS thinks it needs increased multiprogramming
— adds another procces to system
+ Thrashing iswhen aprocessis busy
Sswapping pages in and out »

Thrashing

CPU
utilization

degree of muliprogramming

Cause of Thrashing

+ Why does paging work?
— Locality model
« process migrates from one locality to another
« localities may overlap
+ Why does thrashing occur?
—sum of localities > total memory size
+ How do we fix thrashing?
— Working Set Model
— Page Fault Frequency

Working-Set Model

+ Working set window W = afixed number of
page references
— total number of pagesreferencesintime T

+D=sumof sizeof Ws

Working Set Example

+T=5
+123231243474334112221

\

wW={1,2,3} W={34,7 W={1,2}
—if T too small, will not encompass locality
—if T too large, will encompass severa I i
—if T=>infinity, will encompass entire ,*.f, am?
+if D > m=> thrashing, sosuspenda s
+ Modify LRU appx to include Working

Page Fault Frequency

increase
number of
frames

upper bound

lower bound

Page Fault Rate

decrease
number of
fran

Number of Frames P
+ Establish “acceptable” page-fault rat ﬁ
— If rate too low, process loses frame V /
— If rate too high, process gains frame p——4

Prepaging

+ Pure demand paging has many page faults
initially
— use working set

— does cost of prepaging unused frames outweigh
cost of page-faulting?

Page Size
+ Old - Page size fixed, New -choose page size
+ How do we pick the right page size? Tradeoffs:

— Fragmentation
—Tablesize
—Minimizel/O
« transfer small (.1ms), latency + seek time large (10ms)
— Locality
«+ small finer resolution, but more faults ﬂ N\
— ex: 200K process (1/2 used), 1 fault / 200k, 200K ,
+ Historical trend towards larger page si % B,

— CPU, mem faster proportionally than disks

Program Structure

+ consider:
int A[1024][1024];
for (j=0; j<1024; j++)
for (i=0; i<1024; i++)

Alilli1 = 0;
+ SUPpPOSE:
— process has 1 frame
— 1 row per page

— => 1024x1024 page faults!

Program Structure

int A[1024][1024];
for (i=0; i<1024; i++)
for (j=0; j<1024; j++)
Alilli1 = 0;
+ 1024 page faults
+ stack vs. hash table
+ Compiler
— separate code from data

+ LISP (pointers) vs. Pascal (no-pointer

Priority Processes

+ Consider
— low priority process faullts,
« bring pagein
— low priority processin ready queue for awhile,
waiting while high priority process runs
— high priority process faults
« low priority page clean, not used in awhile

=> perfect! W
IQ ny
h ‘

+ Lock-bit (like for 1/0) until used on

Real-Time Processes

+ Real-time
— bounds on delay

— hard-real time: systems crash, lives lost
« air-traffic control, factor automation

— soft-real time: application sucks
« audio, video
+ Paging adds unexpected delays
—don'tdoit
— lock bits for real-time processes

Virtual Memory and WinNT

+ Page Replacement Algorithm
—FIFO
— Missing page, plus adjacent pages
+ Working set
— default is 30
— take victimframe periodically
—if no fault, reduce set sizeby 1
+ Reserve pool
— hard page faults
— soft page faults

Virtual Memory and WinNT

+ Shared pages
— level of indirection for easier updates
— same virtua entry

+ PageFile
— stores only modified logical pages
— code and memory mapped files on di

Virtual Memory and Linux

+ Regions of virtual memory

— paging disk (normal)

— file (text segment, memory mapped file)
+ New Virtua Memory

— exec() creates new page table

— fork() copies page table

« reference to common pages
« if written, then copied

+ Page Replacement Algorithm
— second chance (with more hits)

Mikhail Mikhailov

Ganga Kannan _Saq'b Syed
Mark Claypool Dlv.y.a Prakash
David Finkel Sujit Kumar
WPI BMC Software, Inc.

Capacity Planning Then and Now

+ Capacity Planning in the good old days
— used to be just mainframes
— simple CPU-load based queuing theory
— Unix
+ Capacity Planning today
— distributed systems
— networks of workstations
— Windows NT
— MS Exchange, Lotus Notes

Experiment Design

+ System + Experiments
— Pentium 133 MHz — Page Faults
— NT Server 4.0 — Caching
— 64 MB RAM
— IDENTFS + Analysis
— perfnon

+ cl earmem

Page Fault Method

+ “Work hard”
+ Run lots of applications, open and close
+ All local access, not over network

Soft or Hard Page Faults?
m_ﬁﬂ

PR L/

&

il

MMM m e s

Caching and Prefetching

+ Start process
—wait for “Enter”

+ Start perfmon

+ Hit “Enter”

+ Read 1 4-K page
+ Exit

+ Repeat

Page Metrics with Caching On

Hit Return Read Exit
button [axB

o

i
L0
b}
i

a
k]
E

1 PN P) P
nn Lo PP by e b P =

