Operating System |

Process Scheduling

Schedulers

+ Short-Term
— “Which process gets the CPU?’
— Fast, since once per 100 ms
+ Long-Term (batch)
—“Which process gets the Ready Queue?’
+ Medium-Term (Unix)
—“ Which Ready Queue processto me
— Swapping

CPU-10 Burst Cycle

add

read

(1/0 Wait)
store

i ncrement
wite
(1/0 Wait)

Frequency

T\
Burst Duration *afﬁ y

Preemptive Scheduling

+ Four times to re-schedule
1 Running to Waiting (1/0O wait)
2 Running to Ready (time slice)
3 Waiting to Ready (1/0 completion)
4 Termination
+ #2 and #3 optiona ==> “Preemptive’
+ Timing may cause unexpected resul ¢
— updating shared variable ’
— kernel saving state

Question

+ What Performance Criteria Should the
Scheduler Seek to Optimize?
— Ex: CPU minimize time spent in queue
— Others?

Scheduling Criteria

1 CPU utilization (40 to 90)

2 Throughput (processes/ hour)

3 Turn-around time

4 Waiting time (in queue)

+ Maximize#1, #2 Minimize #3, #4

+ Response time
— Self-regulated by users (go home)
— Bounded ==> Variance!

First-Come, First-Served

Process Burst Time
A 8
B 1
C 1
Gantt
o [ATE]E

Shortest Job First

Process Burst Time
A 8
B 1
C 1
01 2 10

+AvgWait Time (0+1+2)/3=

+ Optimal Avg Wait ‘

+ Predictiontough ... Ideas? T

Priority Scheduling

+ Special case of SIF

Process Burst Time Priority
A 8 2
B 1 1
C 1 3

Priority Scheduling Criteria?

+ Internal
— open files
— memory reguirements
— CPU time used - time dice expired (RR)
— process age - 1/O wait completed

+ External
-$
— department sponsoring work
— process importance
— super-user (root) - nice

Round Robin
+ Fixed time-dlice and Preemption
Process Burst Time
A 5
B 3
C 3

+Avg=(8+9+11)/3=93
+ FCFS? SJF?

SOS: Dispatcher

+ How isthe next process chosen?

+ Line 79 has an infinite loop. Why?

+ Thereisno return fromthe Di spat cher ()
function call. Why not?

+ See“ TimerInterruptHandler()”

+ Linux:
—Jusr/src/linux/kernel/ sched.c
—Jusr/src/linux/include/linux/s
—linux-pcb. h

u.' ‘

Round Robin Fun

Process Burst Time
A 10
B 10
C 10

+ Turn-around time?
-g=10
— q =1
-q--> 0

More Round Robin Fun

Process Burst Time

A

B
C
D

~N R W o

Rule:
80% within
one quantum

12 3 45 6 7
Time Quantum

Avg. Turn-around Time

Fun with Scheduling

Process Burst Time Priority
A 10 2
B 1 1
C 2 3

+ Gantt Charts:
—FCFS
-SF
— Priority
-RR(g=1)

+ Performance:

More Fun with Scheduling

Process Arrival Time Burst Time
A 0.0 8
B 0.4 4
C 1.0 1

+ Turn around time:
- FCFS
- SIF
—-g=1CPU idle
—qg=0.5CPU idle

Multi-Level Queues
+ Categories of processes

Bioid < sysem
oy« imeractive
o8 < pacn

+ Runallinlfirst, then?2 ...
+ Starvation!
+ Divide between queues: 70% 1, 15% 2

Multi-Level Feedback Queues

+ Time dlice expensive but want interactive
[< Quewe |
[Pioity2 < | Queve |
N - O o

+ Consider process needing 100 quanta /%2

-1,4,8,16, 32,64 =7 swaps!
+ Favor interactive users

1 Quantum

2 Quanta

Windows NT Scheduling

+ Basic scheduling unit is athread

+ Priority based scheduling per thread
+ Preemptive operating system

+ No shortest job first, no quotas

Priority Assignment
+ NT kernel uses 31 priority levels
— 3listhe highest; 0 is system idle thread
— Realtime priorities: 16 - 31
— Dynamic priorities: 1 - 15
+ Users specify a priority class:
« realtime (24) , high (13), normal (8) and idle (4)
—and arelative priority:

normal (-1), and lowest (-2)
— to establish the Starting priority
+ Threads also have a current priority

Quantum

+ Determines how long a Thread runs once
selected
+ Varies based on:
— NT Workstation or NT Server
— Intel or Alphahardware

Outline

+ Processes v

—-PCB v

— Interrupt Handlers v
+ Scheduling

— Algorithms v

—WIinNT -

— Linux

Questions

+ Trueor False:
— FCFSisoptimal in terms of avg waiting time
— Most processes are CPU bound
— The shorter the time quantum, the better

+ What istheidlethread? Where did we see
it?

Dispatcher Ready List

Ready Threads

11 + Keepstrack of all
M o to-
Dispatcher Ready-to-execute

Ready List ° threads
8 + Queue of threads

7 _’. assigned to ea) le

FindReadyThread

+ Locates the highest priority thread that is
ready to execute

+ Scans dispatcher ready list

+ Picks front thread in highest priority
nonempty queue

+ When isthislike round robin?

Boosting and Decay

+ Boogt priority
— Event that “ wakes’ blocked thread
— Boosts never exceed priority 15 for dynamic
— Realtime priorities are not boosted
+ Decay priority
— by one for each quantum
— decays only to starting priority (no lowg

Starvation Prevention

+ Low priority threads may never execute
+ “Anti-CPU starvation policy”
— thread that has not executed for 3 seconds
— boost priority to 15
— double quantum
+ Decay is swift not gradual after this

Linux Process Scheduling

+ Two classes of processes:
— Real-Time
— Normal
+ Real-Time:
— Always run Real-Time above Normal
— Round-Robin or FIFO
—“Soft” not “ Hard”

Linux Process Scheduling

+ Normal: Credit-Based
— process with most creditsis selected
— time-slice then lose a credit (0, then suspend)
— no runnable process (all suspended), add to

every process:
&),

credits = credits/2 + priority

+ Automatically favors I/0O bound pro

