Operating Systems

Memory Management
(Chapter 8: 8.1-8.6)

Overview

* Provide Services
— processes
—files

* Manage Devices
— processor
— memory
—disk

(done)
(done)
(after memory management)

(done)
(next!)
(done after files)

AN

Simple Memory Management

* One processin memory, using it all
— each program needs I/O drivers
— until 1960

1/O drivers

Simple Memory Management

e Small, protected OS, drivers
—DOS

ROM
RAM I RAM RAM

Multiprocessing w/Fixed Partitions

900k

500k

300k
200k

(@

» Unequal queues

Simple!

» Waste largep
« Skip small jab

Hey, processes can be in different memory |locations!

Address Binding

Compile Time

— maybe absolute binding (. com)

Link Time

— dynamic or static libraries

Load Time
— relocatable code

Run Time

— relocatable memory segments

— overlays
— paging

Compile

Normal Linking and Loading
Printf.c

gce gce

A4

Linker <«

X Window code:
- 500K minimum
- 450K libranies

gce gce

- * Save disk space.

* Libraries move?
* Moving code?
o Library versig

Run-Time Dynamic Linking

gcc gce

Save disk space.
Startup fast.

Memory Linking Performance

Comparisons
Linking Disk Load Run Run RunTime
Method Space Time Time Time (O used)
(4used) (2 used)
Stetic |I3Mb|(3.1s |0 0 0
Load 11Mb|3.1s |0 0 0
Time

Run 1IMb|1.1s |2.4s 1.2s 0

Time

Design Technique: Static vs. Dynamic

* Static solutions
— compute ahead of time
— for predictable situations
* Dynamic solutions
— compute when needed
— for unpredictable situations

® Some situations use dynamic because stati
too restrictive (malloc) '

* ex: memory allocation, type checkin

Logical vs. Physical Addresses

® Compile-Time + Load Time addresses same
* Run time addresses different

Logical Relocation
Address | Register

* 7
MMU

® User goes from 0 to max
® Physical goes from R+0 to R+max

Relocatable Code Basics

* Allow logical addresses
* Protect other processes

E— =@
no

error

® Addresses must be contiguous!

Variable-Sized Partitions

* |dea: want to remove “wasted” memory that
IS not needed in each partition

* Definition:
— Hole - ablock of available memory
— scattered throughout physical memory

* New process allocated memory fro
large enough to fit it

Variable-Sized Partitions

* OS keepstrack of:
— alocated partitions
— free partitions (holes)

— queues! S

Memory Request?

* What if arequest for additional memory?

Internal Fragmentation

* Have some “empty” space for each
processes

Allocated to A Room for growth

="

,'w

> 4\
¥ o
()

® Internal Fragmentation - allocated
may be dlightly larger than request
memory and not being used.

External Fragmentation

* External Fragmentation - total memory
Space exists to satisfy request but it is not
contiguous

50k

“But, how much does this matter?”

Analysis of External Fragmentation

* Assume:
— system at equilibrium
— processin middle
—if N processes, 1/2 time process, 1/2 hole
+==>1/2 N holes!
— Fifty-percent rule
— Fundamental:
+ adjacent holes combined
+ adjacent processes not combined

Compaction

e Shuffle memory contentsto place al free
memory together in one large block

* Only if relocation dynamic!
* Same |/O DMA problem

100k

10

Cost of Compaction

50k
90k

60k
100k

® 2 GB RAM, 10 nsec/access (cycleti
=>» 5 seconds to compact!
® Disk much slower!

Solution?

* Want to minimize external fragmentation
— Large Blocks
— But internal fragmentation!

* Tradeoff

— Sacrifice some internal fragmentation for
reduced external fragmentation

— Paging

11

Where Are We?

* Memory Management

— fixed partitions (done)
— linking and loading (done)
— variable partitions (done)
* Paging «—
* Misc

Paging

* | ogical address space nhoncontiguous,
process gets memory wherever available
— Divide physical memory into fixed-size blocks
+ Sizeisapower of 2, between 512 and 8192 bytes
+ called Frames

— Divide logica memory into bocks of same size
+ caled Pages

12

Paging
* Address generated by CPU divided into:

— Page number (p) - index to page table

+ page table contains base address of each pagein
physical memory (frame)

— Page offset (d) - offset into page/frame

Paging Example
* Page size 4 bytes 0
e Memory size 32 bytes (8 pages) 1
2
3
0
1 4
5 5
3 6
Logical Page Table 7|
Memory

13

Paging Example

Offset

000

Ll

001
010
011
100
101
110

111
Page Table

Physical
Memory

Paging Hardware

* address space 2™
* page offset 2"
* page number 2m"

iﬁe number iﬁe offset

mn n

® note: not losing any bytes!

14

Paging Example

Consider:

— Physical memory = 128 bytes

— Physical address space = 8 frames

How many bits in an address?

How many bits for page number?
How many bits for page offset?

Cana Ioglcal address space have onl /,g_

Another Paging Example

Consider:
— 8 bitsin an address
— 3 bitsfor the frame/page number

How many bytes (words) of physical memory?
How many frames are there?
How many bytesis a page?
How many bits for page offset?

If aprocess pagetableis 12 bits, how m
logical pages doesit have?

: ;,“

15

Page Table Example ©-7

0
1

Page Table

iie number iie offset

mn=3 n=4
0

Process B

1
Process A Page Table

Paging Tradeoffs

* Advantages
— no external fragmentation (no compaction)
— relocation (now pages, before were processes)
* Disadvantages
— internal fragmentation
+ consider: 2048 byte pages, 72,766 byte proc
— 35 pages + 1086 bytes = 962 bytes
+ avg: 1/2 page per process
+ small pages!
— overhead
+ page table / process (context switch + space)
+ lookup (especialy if page to disk)

16

|mplementation of Page Table

* Page table kept in registers

* Fast!

* Only good when number of framesis small
* Expensivel

|mplementation of Page Table

* Page table kept in main memory
* Page Table Base Register (PTBR)

0
1

Logical
Tabl
Memory Page ©

* Page Table Length

* Two memory accesses per data/inst &
— Solution? Associative Registers N

17

Associative Registers

logical

10-20% mem time

page frame
number number hit

associative
registers

miss

.............................

(Intel P3 has 32 entries)

(et P e 126 s LookeiceullenrL)

Associative Register Performance

* Hit Ratio - percentage of times that a page
number isfound in associative registers
Effective accesstime =
hit ratio x hit time + missratio x misstime
* hit time = reg time + mem time
®* misstime=regtime+ memtime* 2
* Example:
— 80% hit ratio, reg time = 20 nanosec,
= 100 nanosec
—.80* 120 + .20 * 220 = 140 nanoseconds

18

Protection

* Protection bits with each frame
* Storein pagetable

* Expand to more perms

Protection
Bit

0
0
1
1
2
2
3
. 3|
Logical Page Table
Memory
Large Address Spaces

Typical logical address spaces.
— 4 Gbytes=> 232 address bits (4-byte address)
Typical page size:

— 4 Kbytes = 212 hits

Page table may have:

— 282/ 212 =220 = 1million entries

Each entry 3 bytes => 3MB per process!
Do not want that all in RAM

Solution? Page the page table
— Multilevel paging

19

Multilevel Paging

iﬁe number iie offset

10 10 12

Logical
Memory

Outer Page
Table

Multilevel Paging Trandlation

e number e offset

outer page
table inner page
table

20

Inverted Page Table
* Page table maps to physical addresses

Memory View

® Paging lost users view of memory

* Need “logical” memory units that grow and
contract

ex: stack,
shared library

* Solution?
» Segmentation!

Segmentation

* | ogical address: <segment, offset>
* Segment table - maps two-dimensional user
defined address into one-dimensional
physical address
— base - starting physical location
— limit - length of segment
® Hardware support
— Segment Table Base Register
— Segment Table Length Register

Segmentation

(“Er, what have we gained?’)
- Paged segments!

22

Memory Management Outline

* Basic (done)
— Fixed Partitions (done)
— Variable Partitions (done)

* Paging (done)
— Basic (done)
— Enhanced (done)

* Specific —
— Windows
— Linux

Memory Management in
Windows

* 32 hit addresses (2%? = 4 GB address space)
— Upper 2GB shared by all processes (kernel mode)
— Lower 2GB private per process

* Pagesizeis4 KB (2%, so offset is 12 hits)

* Multilevel paging (2 levels)
— 10 bits for outer page table (page dlrectory)
— 10 bitsfor inner page table ,
— 12 bitsfor offset

23

Memory Management in

Windows

® Each page-table entry has 32 bits
— only 20 needed for address tranglation
— 12 bits “left-over”
® Characteristics
— Access: read only, read-write
— States: valid, zeroed, free ...
* Inverted page table
— points to page table entries
— list of free frames

Memory Management in Linux

* Pagesize:
— Alpha AXP has 8 Kbyte page
— Intel x86 has 4 Kbyte page
® Segments
— Kernel code, kernel data, user code, user data ...
* Multilevel paging (3 levels)
— Makes code more portable

— Even though no hardware support on x86!
+ “middle-layer” defined to be 0

24

