Operating Systems

Input/Output Devices
(Ch 13, 14.1-14.5)

Introduction

- One OS function is to control devices
 - significant fraction of source code (80-90% of Linux)
- Want all devices to be simple to use
 - convenient
 - ex: stdin/stdout, pipe, re-direct
- Want to optimize access to device
 - efficient
 - devices have very different needs

Outline

- Introduction (done)
- Hardware
- Software
- Specific Devices
 - Hard disk drives
 - Clocks

Hardware

- Device controllers
- Types of I/O devices
- Direct Memory Access (DMA)

Device Controllers

- Mechanical and electronic component

Electronic

- Mechanical
- CPU
- Memory
- Disk Controller
- Printer Controller

OS deals with electronic
 - device controller

I/O Device Types

- block - access is independent
 - ex- disk
- character - access is serial
 - ex- printer, network
- other
 - ex- clocks (just generate interrupts)
Direct Memory Access (DMA)
• Very Old
 – Controller reads from device
 – OS polls controller for data
• Old
 – Controller reads from device
 – Controller interrupts OS
 – OS copies data to memory
• DMA
 – Controller reads from device
 – Controller copies data to memory
 – Controller interrupts OS

Outline
• Introduction (done)
• Hardware (done)
• Software
 ←
• Specific Devices
 – Hard disk drives
 – Clocks

I/O Software Structure
• Layered
 User Level Software
 Device Independent Software
 Device Drivers
 Interrupt Handlers
 Hardware
(Talk from bottom up)

Interrupt Handlers
CPU
1) Device driver initiates I/O
 (CPU executing, checking for interrupts between instructions)
2) I/O complete. Generate interrupt.
3) Receives interrupt, transfer to handler
4) Handler processes (Resume processing)

Interrupt Handler
• Make interrupt handler as small as possible
 – interrupts disabled
 – Split into two pieces
• First part does minimal amount of work
 – defer rest until later in the rest of the device driver
 – Windows: “deferred procedure call” (DPC)
 – Linux: “top-half” handler
• Second part does most of work
• Implementation specific
 – 3rd party vendors

Device Drivers
• Device dependent code
 – includes interrupt handler
• Accept abstract requests
 – ex: “read block n”
• See that they are executed by device hardware
 – registers
 – hardware commands
• After error check
 – pass data to device-independent software
Device-Independent I/O Software
• Much driver code independent of device
• Exact boundary is system-dependent
 – sometimes inside for efficiency
• Perform I/O functions common to all devices
• Examples:
 – naming, protection, block size
 – buffering, storage allocation, error reporting

User-Space I/O Software
• Ex: count = write(fd, buffer, bytes);
 • Put parameters in place for system call
 • Can do more: formatting
 – printf(), gets()
 • Spooling
 – spool directory, daemon
 – ex: printing, USENET

I/O System Summary

Outline
• Introduction (done)
• Hardware (done)
• Software (done)
• Specific Devices ←
 – Hard disk drives
 – Clocks

Hard Disk Drives (HDD)
• Controller often on disk
• Cache to speed access

HDD - Zoom
• Platters
 – 3000-10,000 RPM (floppy 360 RPM)
• Tracks
• Cylinders
• Sectors

Example:
- Conner Peripherals 540MB
 – CFS540A, 516MB w/64kB Cache, CHS=1050/16/63
- 1050 cylinders (tracks), 16 heads (8 platters), 63 sectors per track
• Disk arms all move together
• If multiple drives
 – overlapping seeks but one read/write at a time
Disk Arm Scheduling

• Read time:
 – seek time (arm to cylinder)
 – rotational delay (time for sector under head)
 – transfer time (take bits off disk)
• Seek time dominates
• How does disk arm scheduling affect seek?

First-Come First-Served (FCFS)

• 14+13+2+6+3+12+3 = 53
• Service requests in order that they arrive
• Little can be done to optimize
• What if many requests?

Shortest Seek First (SSF)

• 1+2+6+9+3+2 = 23
• Suppose many requests?
 – Stay in middle
 – Starvation!

Elevator (SCAN)

• 1+2+6+3+2+17 = 31
• Usually, a little worse avg seek time than SSF
 – But avoids more fair, avoids starvation
• C-SCAN has less variance
• Note, seek getting faster, rotational not
 – Someday, change algorithms

Redundant Array of Inexpensive Disks (RAID)

• For speed
 – Pull data in parallel
• For fault-tolerance
 – Example: 38 disks, form 32 bit word, 6 check bits
 – Example: 2 disks, have exact copy on one disk

Error Handling

• Common errors:
 – programming error (non-existent sector)
 – transient checksum error (dust on head)
 – permanent checksum error (bad block)
 – seek error (arm went to wrong cylinder)
 – controller error (controller refuses command)
Clock Hardware

- Time of day to time quantum

 Pulse from 5 to 300 MHz

 - Crystal Oscillator
 - Decrement counter when == 0
 - generate interrupt
 - Holding register to load counter
 - Can control clock ticks

Clock Software Uses

- time of day
 - 64-bit, in seconds, or relative to boot
- interrupt after quantum
- accounting of CPU usage
 - separate timer or pointer to PCB
- alarm() system calls
 - separate clock or linked list of alarms with ticks