
1

Operating Systems

File Systems
(Select parts of Ch 6)

Outline

• Files ←←
• Directories
• Partitions

File Systems

• Abstraction to disk (convenience)
– “The only thing friendly about a disk is that it

has persistent storage.”
– Devices may be different: tape, IDE/SCSI, NFS

• Users
– don’t care about detail
– care about interface (won’t cover, assumed

knowledge)
• OS

– cares about implementation (efficiency)

File System Structures

• Files - store the data
• Directories - organize files
• Partitions - separate collections of

directories (also called “volumes”)
– all directory information kept in partition
– mount file system to access

Example: Unix open()

int open(char *path, int flags [, int mode])

•path is name of file
•flags is bitmap to set switch

– O_RDONLY, O_WRONLY…
– O_CREATE then use mode for perms

• success, returns index

Unix open() - Under the Hood

int fid = open(“blah”, flags);

read(fid, …);
User Space

System Space

stdin
stdout

stderr

...

0
1
2
3

File Structure

...

...

File
Descriptor

(where
blocks are)(attributes)(index)

(Per process) (Per device)

2

File System Implementation
Process

Control Block

Open
File

Pointer
Array

Open File
Table

File Descriptor
Table

(in memory
copy,

one per
device)

(Device Info)

Disk

File sys info

File
descriptors

Copy fd
to mem

Directories

Data

Next up: file descriptors!

File System Implementation

• Which blocks with which file?
• File descriptor implementations:

– Contiguous
– Linked List
– Linked List with Index
– I-nodes

File
Descriptor

I-nodes

• Fast for small
files

• Can hold big files
• Size?

– 4 kbyte block

D
is

k
bl

oc
ks

i-node

attributes

single
indirect block

double indirect
block

triple indirect
block

Outline

• Files (done)

• Directories ←←
• Partitions

Directories

• Before reading file, must be opened
• Directory entry provides information to get

blocks
– disk location (block, address)
– i-node number

• Map ascii name to the file descriptor

Hierarchical Directory (Unix)

• Tree
• Entry:

– name
– inode number (try “ls –I” or “ls –iad .”)

• example:
60 /usr/bob/mbox

inode name

3

Unix Directory Example

1 .
1 ..
4 bin
7 dev
14 lib
9 etc
6 usr
8 tmp

132

Root Directory

Looking up
usr gives
I-node 6

6 .
1 ..
26 bob
17 jeff
14 sue
51 sam
29 mark

Block 132

Looking up
bob gives
I-node 26

26 .
6 ..
12 grants
81 books
60 mbox
17 Linux

Aha!
I-node 60

has contents
of mbox

I-node 6

406

I-node 26

Relevant
data (bob)

is in
block 132

Block 406

Data for
/usr/bob is

in block 406

Outline

• Files (done)

• Directories (done)
• Partitions ←←

Outline

• Files (done)

• Directories (done)
• Disk space management ←←
• Misc

Partitions
•mount, unmount

– load “super-block” from disk
– pick “access point” in file-system

• Super-block
– file system type
– block size
– free blocks
– free I-nodes

/ (root)

usr
home tmp

Partitions: fdisk

• Partition is large group of sectors allocated for a
specific purpose
– IDE disks limited to 4 physical partitions
– logical (extended) partition inside physical partition

• Specify number of cylinders to use
• Specify type

– magic number recognized by OS

(Hey, show example)

File System Maintenance
• Format:

– create file system structure: super block, I-nodes
– format (Win), mke2fs (Linux)

• “Bad blocks”
– most disks have some
– scandisk (Win) or badblocks (Linux)

– add to “bad-blocks” list (file system can ignore)

• Defragment
– arrange blocks efficiently

• Scanning (when system crashes)
– lost+found, correcting file descriptors...

