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Operating Systems

File Systems
(Select parts of Ch 6)

Outline

• Files ←←
• Directories
• Partitions

File Systems

• Abstraction to disk (convenience)
– “The only thing friendly about a disk is that it 

has persistent storage.”
– Devices may be different: tape, IDE/SCSI, NFS

• Users
– don’t care about detail
– care about interface (won’t cover, assumed 

knowledge)
• OS

– cares about implementation (efficiency)

File System Structures

• Files - store the data
• Directories - organize files
• Partitions - separate collections of 

directories (also called “volumes”)
– all directory information kept in partition
– mount file system to access

Example: Unix open()

int open(char *path, int flags [, int mode])

•path is name of file
•flags is bitmap to set switch

– O_RDONLY, O_WRONLY…
– O_CREATE then use mode for perms

• success, returns index

Unix open() - Under the Hood

int fid = open(“blah”, flags);

read(fid, …);
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File System Implementation
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Next up: file descriptors!

File System Implementation

• Which blocks with which file?
• File descriptor implementations:

– Contiguous
– Linked List
– Linked List with Index
– I-nodes

File 
Descriptor

I-nodes

• Fast for small 
files

• Can hold big files
• Size?

– 4 kbyte block
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Outline

• Files (done)

• Directories ←←
• Partitions

Directories

• Before reading file, must be opened
• Directory entry provides information to get 

blocks
– disk location (block, address)
– i-node number

• Map ascii name to the file descriptor

Hierarchical Directory (Unix)

• Tree
• Entry:

– name
– inode number (try “ls –I” or “ls –iad .”)

• example:
60  /usr/bob/mbox

inode name
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Unix Directory Example

1 .
1 ..
4 bin
7 dev
14 lib
9 etc
6 usr
8 tmp

132

Root Directory

Looking up
usr gives
I-node 6

6 .
1 ..
26 bob
17 jeff
14 sue
51 sam
29 mark

Block 132

Looking up
bob gives
I-node 26

26 .
6 ..
12 grants
81 books
60 mbox
17 Linux

Aha! 
I-node 60

has contents
of mbox

I-node 6

406

I-node 26

Relevant
data (bob)

is in 
block 132

Block 406

Data for
/usr/bob is

in block 406

Outline

• Files (done)

• Directories (done)
• Partitions ←←

Outline

• Files (done)

• Directories (done)
• Disk space management ←←
• Misc

Partitions
•mount, unmount

– load “super-block” from disk
– pick “access point” in file-system

• Super-block
– file system type
– block size
– free blocks
– free I-nodes

/ (root)

usr
home tmp

Partitions: fdisk

• Partition is large group of sectors allocated for a 
specific purpose
– IDE disks limited to 4 physical partitions
– logical (extended) partition inside physical partition

• Specify number of cylinders to use
• Specify type

– magic number recognized by OS

(Hey, show example)

File System Maintenance
• Format:

– create file system structure: super block, I-nodes
– format (Win), mke2fs (Linux)

• “Bad blocks”
– most disks have some
– scandisk (Win) or badblocks (Linux)

– add to “bad-blocks” list (file system can ignore)

• Defragment
– arrange blocks efficiently

• Scanning (when system crashes)
– lost+found, correcting file descriptors...


