Experiments in Computer Science

"The fundamental principle of science, the definition almost, is this: the sole test of the validity of any idea is experiment"
— Richard P. Feynman

• Tried and true experimental scientific methodology from Physics, Biology, Chemistry ...
 • Often not followed in Computer Science
 • Let's be better Computer Scientists!

Scientific Methodology
• Observe
 – (Devise solution)
• Hypothesize
• Design
• Experiment
• Analyze
• Report

Methodology: Observe and Understand
• Find Problem
 – Test: make of Linux kernel
 – Build: memory intensive programs
 – Read: Linux Hacker’s guide says …
• Understand Relationships
 – Hard page faults are expensive
 – Logical memory larger than physical

Methodology: Devise and Hypothesize
• Devise Solution (unless empirical)
 – Claypool Reliable Audio Protocol (CRAP)
 – Claypool buffering algorithm
• Make Hypothesis
 – Generalization about relationships
 – Soft page faults are common
 – Malloc does not cause page fault
 – Needs to be tested (not proven)

Methodology: Experiment
• Design Experiment
 – Variable: variable workload
 – Control: baseline workload
• Run Experiment
 “Whoa! That’s not what I expected!”
 – Bug in code
 + Back to “Run”
 – Uncontrolled event (system backup)
 + Back to “Design”
 – Insufficient understanding (Unix scheduling)
 + Back to “Understanding”
Methodology: Analyze

- Interpretation and Evaluation
 - Statistical significance
 + mean, confidence intervals, correlation, goodness of fit
 - Does data support or reject hypothesis?
 - Explanation of other phenomena
 + Better code reduces page faults, improves performance

Dirty Little Secrets

- Mini-experiments (no, “Pilot Tests”)
- Hypotheses after the fact
 - Running yields understanding
- Results here mean results there
- Controlled system still says meaningful things about the real world
- Observing a system will not change it

Graph: A Data Analysis Tool

- A picture is worth a thousand words
- Title, label axes (units!), legend