
2/14/2012

1

Scene Management

Introduction

• Graphics cards can render a lot, and fast

– But never as much or as fast as we’d like!

• Intelligent scene management squeezes more

graphics performance out of limited resources

– Scene graphs

– Scene partitioning

– Visibility calculations

– Level of detail control

Outline

• Scene Graphs

Motivation for Scene Graphs

• Consider game with people, in a car, on a road

• People move around the car, don’t affect the position
of car

• But car moving affects position of people

• If massive hand picks up road � affects location of car
and people!

• Exists beyond positions, too

– Consider animations or textures tied to skeletons

• To make movement/drawing more efficient, structure
that supports such relationships � Scene graphs

Scene Graphs
• Specification of object and attribute relationships
– Spatial

– Hierarchical

– Material properties

• Easy to “attach” objects together
– E.g. Riding in a vehicle

• Implementation does not need to be objects in tree
– Can use pointers (e.g. to textures, sprites) instead

• Logical and possibly spatial relationships
– Often goal is to make it easy to discard large swaths so do

not need to render

� Spatial data structures (next)

Spatial Data Structures

• Spatial data structures store data indexed by location
– E.g. Store according to Position …

– Without graphics, used for queries like “Where is the nearest
hotel?” or “Which stars are near enough to influence the sun?”

• Multitude of uses in computer games
– Visibility - What can player see?

– Collision detection - Did bullet just hit wall?

– Proximity queries - Where is nearest health-pack?

• Can reduce “cost” with fast, approximate queries that
eliminate most irrelevant objects quickly
– Trees with containment property enable this
– Cell of parent completely contains all cells of children
– If query fails for cell, it will fail for all children
– If query succeeds, try it for children
– Cost? � Depends on object distribution, but roughly O(log n)

2/14/2012

2

Spatial Data Structures

• For games, focus on spatial data structures that partition
space into regions, or cells, of some type
– Generally, cut up space with planes that separate regions

• Uniform Grids
– Split space up into equal sized / number of cells

• Quad (or Oct) Trees
– Recursively split space into 4 (or 8) equal-sized regions

– Can do with a sphere, too

• Binary-Space Partitioning (BSP) trees
– Recursively divide space along a single, arbitrary plane

• k-dimensional trees (k-d trees)
– Recursively partition in k dimensions until termination condition

(e.g. 1 object per cell)

(Example of each next)

Uniform Grid

• Cells can be approximately size of view distance

• Only need consider objects in cell and neighbor

• Pro: Easy to find, compute

• Con: Not effective if many objects in one cell

Quad Tree

• Each node has

exactly 4 children

• For 2-d space,

subdivide into 4

regions

• Split until (max-1)

objects in each cell

– E.g. 1 object in

each

Binary Space Partitioning (BSP) Tree
• Recursively sub-divide space into convex sets

• For 3-d polygon scenes, can apply painter’s algorithm

– Draw leaves of tree up (back polygons written first)

– (Originally used in Doom before zbuffer to get fast
rendering)

K-D tree

• Instead of 2

dimensions

(binary) can use k-

dimensions

3-dimensional k-d tree. First split (red)

cuts root cell (white) into two subcells,

each of which is split (green) into two

subcells. Finally, each is split (blue)

into two sub-cells. Final eight called

leaf cells.

Cell-Portal Structures

• Cell-Portal data structures dispense with
hierarchy � just store neighbor information
– Makes them graphs, not trees

• Cells described by bounding polygons
• Portals polygonal openings between cells
• Good for visibility culling algorithms, OK for

collision detection and ray-casting
• Several ways to construct
– By hand, as part of authoring process
– Automatically, starting with BSP or k-d tree and

extracting cells and portals
– Explicitly, as part of automated modeling process

2/14/2012

3

Cell-Portal Visibility

• Keep track of which cell

viewer is in

• Enumerate all visible

regions

• Preprocess to identify

potentially visible set

(PVS) for each cell

A B

C D

E F

Potentially Visible Set (PVS)

• PVS: Set of cells/regions/objects/polygons that man be
seen from particular cell
– Want to identify objects that can be seen

– Trade-off is memory consumption vs. accurate visibility

• Computed as pre-process
– Easy for static objects (e.g. cells)

– Need strategy to manage dynamic objects

• Used in various ways:
– As only visibility computation - render everything in PVS

for viewer’s current cell

– As first step - identify regions of interest, then apply more
accurate run-time algorithms

Cell-to-Cell PVS

• Cell A in cell B's PVS if stabbing line from

portal of B to portal of A

– Stabbing line � line segment intersecting only

portals

– Neighbor cells are trivially in PVS

Putting it All Together

• The "best" solution will be a combination

– Static things

• E.g. quad-tree for terrain

• E.g. cells and portals for interior structures

– Dynamic things

• E.g. quick reject using bounding spheres

• Balance between pre-computation and run-

time computation

Group Exercise (1)

• Assume you want to SceneManager for
Dragonfly

• Support: Altitude

– Keep current levels, but have more efficient data
structure

• Design SceneManager

– Attributes (data structures)?

– Methods?

• What existing code need refactoring?

for alt = -MAX_ALTITUDE to MAX_ALTITUDE

// iterate through all objects

if (p_temp_go -> getAltitude() == alt)

// draw

Group Exercise (2)

• Consider additional Scene Management

functionality

– More efficient collision detection

• Consider simple first (list), then advanced (grid)

• To support, what is needed …

– Attributes (data structures)?

– Methods?

• What existing code need refactoring?

2/14/2012

4

Group Exercise (3)

• Consider views with SceneManager grid

– How can they be used for more efficient drawing

with views?

• Sketch out algorithm

