
2/7/2012

1

Dragonfly

Goals

• Understand use of Dragonfly from game

programmer’s perspective

–Mostly, Project 1

• Provide overview of Dragonfly architecture

– Class diagrams

• Discuss details needed to fully implement

Dragonfly classes

Outline – Part I

• Saucer Shoot (next)

• Overview

• Managers

• Logfile Management

• Game Management

Saucer Shoot

• What is this code

doing?

• When is this method

called?

• Why do it this way?

In Saucer::move():
…
move_countdown--;
if (move_countdown > 0)

return;
move_countdown = move_slowdown;
…

/__o_\

\
~==-
/

Saucer Shoot

• What is this code

doing?

• Why not do it this way?

• What should be done

instead?

/__o_\

\
~==-
/

void Saucer::move() {
…
x = pos.getX();
y = pos.getY();
Position new_pos;
new_pos.setX(x-1);
new_pos.setY(y);
this -> setPos(new_pos)
…

Saucer Shoot

• What is time_to_live here? What is it set to

initially?

• What is happening when time_to_live is 0?

• Why not just call own destructor? i.e.

this->~Saucer()

/__o_\

\
~==-
/

void Explosion::step() {
time_to_live--;
if (time_to_live <= 0){

WorldManager &world_manager=WorldManager::getInstance();
world_manager.markForDelete(this);

}
}

2/7/2012

2

C++: Do Not Explicitly Call Destructor

void someCode() {
File f;
...code that should execute when f is still open...

← We want the side-effect of f's destructor here!

...code that should execute after f is closed...

}

• Suppose File destructor closes file

• Can you call destructor now?

• If not, how to fix?

C++: Do Not Explicitly Call Destructor

void someCode() {
{

File f;
...code that should execute when f is still open...

} ← f's destructor automatically called here!

...code that should execute after f is closed...

}

• What if cannot wrap in local block?

–make close()?

C++: Do Not Explicitly Call Destructor
class File {
public:
void close();
~File();
...

private:
int fileHandle; // fileHandle >= 0 iff it's open

};

File::~File() {
close();

}

void File::close() {
if (fileHandle >= 0) {
...code that calls the OS to close the file...

fileHandle = -1;
}

}

• User then could call f.close() explicitly

C++: Do Not Explicitly Call Destructor

• What if allocated via new (as in Saucer Shoot)?

• Still, no!

• Remember, delete p does two things

– Calls destructor

– Deallocates memory

Bob *p = new Bob();
p->~Bob(); // should you do this?

Bob *p = new Bob();
…
delete p; // automagically calls p->~Bob()

Summary – Destructors and Dragonfly

• Don’t call destructor explicitly

• For memory allocated by new, use delete
when possible

• For game engine (Dragonfly), want engine to

release memory

– Use WorldManager::markForDelete()

Outline – Part I

• Saucer Shoot (done)

• Overview (next)

• Managers

• Logfile Management

• Game Management

2/7/2012

3

Dragonfly Game Engine

DRAGONFLY

DrawCharacter

InsertObject

LoadSprite

GetKey

MoveObject

SendEvent

GAME CODE
Saucer: move()

Hero: key()

Star: onEvent()

GameOver: step()

COMPUTER PLATFORM
Allocate memory

Clear display

File open/close

Get keystroke

Dragonfly Classes

Clock

Box

Sprite

Position

GameObjectGameObjectList

GameObjectListIterator

Manager

GameManagerResourceManager

LogManager

InputManagerGraphicsManagerWorldManager

Event

EventCollision EventKeyboardEventMouse EventOutEventStep

Managers

Game objects

Support classes

Engine Support Systems - Managers

• Support systems that manage crucial tasks
– Handling input, Rendering graphics, Logging data

– …

• Many interdependent, so startup order matters
– E.g. Log file manager needed first since others log

messages

– E.g. Graphics manager may need memory allocated
for sprites, so need Memory manager first.

• Often, want only 1 instance of each Manger
– E.g. Undefined if two objects managing the graphics

• How to enforce only 1 instance in C++?

Managers in C++: Global Variables?

• Could make Managers global variables (e.g. outside of
main())
– Constructors called before main(), destructors when main()

ends

• Then, declare global variable:
RenderManager render_manager;

• However, order of constructor/destructor unpredictable
– E.g. RenderManager r; GraphicsManager g;
– Could call g::g() before r::r()!

• Plus, explicit globals difficult from library
– Names could be different in user code

• How about static variables inside a function

Managers in C++: Static Variables?

• Remember, static
variables retain value
after method terminates

• Static variables inside
method not created until
method invoked

• Use inside Manager class
method go “create”
manager � the Singleton

void stuff() {
static int x = 0;
cout << x;
x++;

}
main() {
stuff(); // prints 0
stuff(); // prints 1

}

Managers: C++ Singletons

• Compiler won’t allow
MySingleton s;

• Instead:
MySingleton &s=
MySingleton::getInstance();

• Guarantees only 1 copy of

MySingleton will exist

class MySingleton {
private:
// Private constructor

MySingleton();
// Can’t assign or copy

MySingleton(MySingleton const& copy);
MySingleton& operator=(MySingleton const& copy);
public:
// return the 1 and only 1 MySingleton

static MySingleton& getInstance() {
static MySingleton instance;
return instance;

}
};

�Use for Dragonfly Managers
• However, also want to explicitly control when

starts (not at first getInstance()) call)

� Use startUp() and shutDown() for each

2/7/2012

4

The Manager Interface

• All Dragonfly “managers” inherit from this class

Outline – Part I

• Saucer Shoot (done)

• Overview (done)

• Managers (done)

• Logfile Management (next)

• Game Management

Game Engine Messages

• If all goes well, only want game output

• But during development, often not the case
– Even for players, may have troubles running game

• Generally, need help debugging

• Debuggers are useful tools, but some bugs not easy to
find in debugger
– Some bugs timing dependent, only happen at full speed

– Some caused by long sequence of events, hard to trace by
hand

• Most powerful debug tool can still be print messages
(e.g. printf())

• However, standard printing difficult when graphical
display

• One Solution � Print to file

The LogManager - Functionality

• Control output to log file

– Upon startup � open file

– Upon shutdown � close file

• Attributes

– Need file handle

• What else?

– Method for general-purpose messages via writeLog()
• E.g. “Player is moving”

• E.g. “Player is moving to (x,y)” with x and y passed in

– Associate time with each message

• Could be in “game time” (e.g. game loop iterations)

• Could be in “real time” (i.e. wall-clock � we’ll do this)

General Purpose Output

• For writeLog(), using printf() one of the

most versatile

– But takes variable number of arguments

printf(“Bob wrote 123 lines”); // 1 arg

printf(“%s wrote %d lines”, “Bob”, 123); // 3 args

• Solution � allow variable number of arguments

passed into writeLog()

• Specify with “…”:

void writeLog(const char *fmt, …) {
…

}

General Purpose Output

• Need <stdarg.h>

• Create a va_list
– Structure gets initialized

with arguments

• va_start() with
name of last known arg

• Can then do printf(),
but with va_list
� vprintf()

• va_end() when done

#include <stdio.h>

#include <stdarg.h>

void writeLog(const char* fmt, ...) {
fprintf(stderr, “Error: ”);
va_list args;
va_start(args, fmt);
vprintf(stderr, fmt, args);
va_end(args);

}

2/7/2012

5

Nicely Formatted Time String

• Time functions not
immediately easy to read

time() returns seconds
since Jan 1, 1970
time_t time(time_t *t);

localtime() converts
calendar time struct to local
time zone, returning pointer
struct tm *localtime
(time_t *p_time);

• Combine to get user-
friendly time string (e.g.
“07:53:30”)

• Wrap in method,
getTimeString()

// return a nicely-formatted time string: HH:MM:SS

// note: needs error checking!

char *LogManager::getTimeString() {
static char time_str[30];
struct tm *p_time;
time_t time;

time(&time);
p_time = localtime(time);

// 02 gives two digits, %d for integer

sprintf(time_str, "%02d:%02d:%02d",
p_time -> tm_hour,
p_time -> tm_min,
p_time -> tm_sec);

return time_str;
}

Flushing Output

• Data written to file buffered in user space before
going to disk

• If process terminates without file close, data not
written
– fprintf(fp, “Doing stuff”);
– // program crashes (e.g. segfault)

– “Doing stuff” line passed, but won’t appear in file

• Can add option to fflush() after each write
– Data from all user-buffered data goes to OS

– Note, incurs overhead, so perhaps only when
debugging

The LogManager

• Protected attributes:

• Public methods:

Once-only Header Files

• LogManager used by many objects (status and

debugging). So, all #include “LogManager.h”

• During compilation, header file processed

twice

– Likely to cause error, e.g. when compiler sees

class definition twice

– Even if does not, wastes compile time

• Solution? � "wrapper #ifndef"

Once-only Header Files

• Convention:
– User header file, name should not begin with _ (underline)

– System header file, name should begin with __ (double
underline)

– Avoids conflicts with user programs

– For all files, name should contain filename and additional text

// File foo

#ifndef FILE_FOO_SEEN
#define FILE_FOO_SEEN
(the entire file)

#endif // !FILE_FOO_SEEN

• When header included first
time, all is normal
– Defines FILE_FOO_SEEN

• When header included second
time, FILE_FOO_SEEN defined
– Conditional is then false

– So, preprocessor skips entire
contents � compiler will not
see it twice

The

LogManager

– Complete

Header File

2/7/2012

6

Using the LogManager - Example

• Convention: class name, method name

– Ease of finding code when debugging

07:53:30 ***
07:53:30 ** Dragonfly version 1.2 **
07:53:30 Log Manager started
07:53:30 GraphicsManager::startUp(): max X is 80, max Y is 24
07:53:30 ResourceManager::loadSprite(): label: saucer, file:
07:53:30 sprites/saucer-spr.txt

LogManager &log_manager = LogManager::getInstance();
…
log_manager.writeLog(// 3 args
"GraphicsManager::startUp(): max X is %d, max Y is %d",

max_x, max_y);
…
log_manager.writeLog(// 1 arg
“GraphicsManager::startUp(): Current window set”);

Controlling Verbosity Level

• Lots of printfs() all
over to fix and develop,
so would be nice to
leave them there
– Could be needed later!

– But noisy

• Can control via engine
setting
� verbosity setting

int g_verbosity = 0; // user can chnge
…
void LogManager::writeLog(

int verbosity,
char *fmt, …) {

// Only print when level high enough

if (g_verbosity > verbosity) {
va_list args;
…

}
}

• Verbosity level still has run-time overhead

– Can remove with conditional compilation

Conditional Compilation
• #if, #ifdef, #ifndef,
#else, #elif, #endif

• Often used for platform-
specific code

• Also, control verbosity and
debug messages
(DEBUG1, DEBUG2…)

#ifdef LINUX
Linux specific code here

#elif WIN32
Windows specific code

#endif

#ifdef DEBUG1
LogManager &log_manager = LogManager::getInstance();
log_manager.writeLog(

"WorldManager::markForDelete(): will delete object %d",
p_go -> getId());

#endif

Outline – Part I

• Saucer Shoot (done)

• Overview (done)

• Managers (done)

• Logfile Management (done)

• Game Management (next)

– Clock

– GameManager

Saucer Shoot

• When does the above code get called?

• What is the above code doing?

• We said that game code should use
WorldManager::moveObject(). Should a Star?

• Why or why not?

/__o_\

\
~==-
/

void Star::out() {
WorldManager &world_manager = WorldManager::getInstance();
pos.setX(world_manager.getBoundary().getHorizontal() + random()%20);
pos.setY(random() % world_manager.getBoundary().getVertical());
move_slowdown = random()%10;

}

Saucer Shoot

• A Bullet is a 12, 10

• A Saucer is at 13, 10

• During the next step, is there a collision?

• If no, when will there be a collision?

• If yes, how many collision events does the

Bullet get? How many does the Saucer get?

/__o_\

\
~==-
/

2/7/2012

7

The Game Loop

• How fast will the above loop run?
– Note, early games just moved objects fixed amount each

loop

� On faster computers, objects moved faster!

• How to slow it down?

While (game not over) {
Get input from keyboard/mouse

Update world state

Draw new screen to back buffer

Swap back buffer to current buffer

}

• The Game Manager “runs” the game:

The Game Loop with Timing

• Frame rate is how often images updated to player � Unit is
Hertz (Hz) or frames per second (fps)

• 30 frames/second typically full-motion video

• Time between frames is frame time or delta time

• At 30 fps, frame time is 1/30 or 33.3 milliseconds
– Milliseconds are a common unit for game engines

• Ok, how to measure computer time?

While (1) {
Get input from keyboard/mouse

Update world state

Draw new screen to back buffer

Swap back buffer to current buffer

Measure how long last loop took

Sleep for (TARGET_TIME – elapsed)

}

But what is TARGET_TIME?

Measuring Computer Time

• time() returns seconds since Jan 1, 1970
– Resolution of 1 second. Far too coarse.

• Modern CPUs have high-resolution timer
– Hardware register that counts CPU cycles

– 3 GHz processor, timer goes 3 billion times/sec, so
resolution is 0.333 nanoseconds � Plenty!

– 64-bit architecture � wraps about every 195 years

– 32-bit architecture � every 1.4 seconds

• System calls vary with platform
– Win32 AP � QueryPerformanceCounter() to get value,

and QueryPerformanceFrequency() to get rate

– Xbox 360 and PS3 � mftb (move from time base register)

Measuring Computer Time

• 64-bit high precision, more than needed so 32-bit
could be ok
– However, still want to measure 64-bit if wrapping a

problem

– Typical unit of 1/300th second is sometimes used (can
slow down 30fps animation to 1/10th, for example)

• Beware storing as floating point as distributes bits
between mantissa and exponent so precision
varies over time

• For debugging breakpoints, may want to put in
check to see if “large” gap (then assume
breakpoint) and not necessarily that a lot of game
time should have passed

Game Engine Need

• Use to find elapsed time since last call

• Call once per game frame to know how long it

took

– Can then sleep for the right amount

– Or “catch up” with object updates if it took too

long

• � So, how to measure elapsed time? On

Windows? Linux?

Compute Elapsed Time – Linux (Cygwin)
#include <time.h>

struct timespec curr_ts;
long int curr_microsec, prev_microsec;
long int elapsed_time; // in microseconds

clock_gettime(CLOCK_REALTIME, &prev_ts); // start timer

// do something ...

clock_gettime(CLOCK_REALTIME, &curr_ts); // stop timer

// convert to total microseconds
curr_microsec = curr_ts.tv_sec*1000000 + curr_ts.tv_nsec/1000;
prev_microsec = prev_ts.tv_sec*1000000 + prev_ts.tv_nsec/1000;
elapsed_time = curr_microsec - prev_microsec;

2/7/2012

8

Compute Elapsed Time - Windows
#include <iostream>
#include <windows.h>

LARGE_INTEGER frequency; // ticks per second
LARGE_INTEGER t1, t2; // ticks

double elapsed_time; // microseconds

QueryPerformanceFrequency(&frequency); // determine CPU freq

QueryPerformanceCounter(&t1); // start timer

// do something ...

QueryPerformanceCounter(&t2); // stop timer

// compute elapsed time in microseconds

elapsed_time = (t2.QuadPart-t1.QuadPart) * 1000000.0 /
frequency.QuadPart;

The Clock Class

• Use to find elapsed time since last call
– For Dragonfly, this is sufficient

– More general purpose could provide “game time” and
allow time scaling

• Then, can call once per game frame to know how
long it took
– Can then sleep for the right amount

– Or “catch up” if it took too long

Clock.h Additional Timing Topics (1 of 2)

• At end of game loop, need to sleep for
whatever is remaining

– Roughly milliseconds of granularity

• On Linux/Unix (and Cygwin)

– usleep() � microseconds (need <unistd.h>)

– E.g. usleep (20000) // sleep for 20 millisec

• On Windows

– Sleep() � milliseconds (need <windows.h>)

– E.g. Sleep(20) // sleep for 20 millisec

Additional Timing Topics (2 of 2)

• What happens if game engine cannot keep up (i.e.
elapsed > TARGET_TIME)?
– Generally, frame rate must go down

– But does game play (e.g. saucer speed)?

• Could have GameManager provide a “step” event more
than once, as required
– But note, if the step events are taking the most time, this

could exacerbate the problem.

• Could have elapsed time available to objects so they
could adjust accordingly
move_x = ((int) elapsed / TARGET) + 1
position.setX(old_x + move_x)

� Could be provided by Clock class

GameManager (1 of 2)
• Run game loop

• Startup/Shutdown all the other managers

– As of now, just LogManager

• Other

2/7/2012

9

GameManager (2 of 2)

• Ability for game code to indicate game is over:

• When true, loop should stop and run()
should return

G
a

m
e

M
a

n
a

g
e

r.
h

Outline – Part I

• Saucer Shoot (done)

• Overview (done)

• Managers (done)

• The LogManager (done)

• The GameManager (done)

Outline – Part II

• Game Objects (next)

– Position

– GameObject

• The Game World

• Events

• WorldManager

Game Objects

• Fundamental game programmer abstraction for
items in game

– Opponents (e.g. Saucers)

– Player characters (e.g. Hero)

– Obstacles (e.g. Walls)

– Projectiles (e.g. Bullets)

– Other (e.g. Explosions, Score indicator, …)

• Game engine needs to access (e.g. to get
position) and update (e.g. change position)

� Core attribute is location in world, or position

Position Class

• By having a Position class rather

than (x,y) integers � a game (or

game engine) could inherit to

add z coordinate

2/7/2012

10

Position.h

GameObject
• Ability to set and get position

• Ability to set and get type

– Typically, set in constructor of specific object
• e.g. Saucer::Sacuer()

• Ability to set and get id (globally unique)

– Set in the game WorldManager when object is loaded

• Above are mostly useful for debugging, but may have other uses
from game programmer perspective

• Will have other attributes later

– E.g. altitude, sprite, bounding boxes…

Outline – Part II

• Game Objects (done)

• The Game World (next)

– Lists of Game Objects

– Updating game objects

• Events

• WorldManager

Lists of Game Objects

• Different kinds of lists might want. E.g.

– List of all solid objects

– List of all objects within radius of explosion

– List of all Saucer objects

• WorldManager will store, respond to queries

• Lists should be efficient (e.g. avoid copying
objects)

• Updating objects in lists should update objects
in game world

Object List
• Different choices possible, but suggest array for ease

of implementation
int item[MAX];
int count;

Constructor():
count = 0;
// same for clear()

bool insert(int x) {
// check if room

if (count == MAX)
return false;

item[count] = x;
count++

}

bool remove(int x) {
for (int i=0; i<count; i++) {

if (item[i] == x) {
// found so scoot over

for (int j=i; j<count; j++)
list[j] = list[j+1];

count--;
return true; // found

}
}
return false; // not found

}

GameObjectList

• Will have pointers to GameObjects

2/7/2012

11

G
a

m
e

O
b

je
ct

Li
st

.h

 Iterator

Iterators

• Iterators “know” how to traverse through container class
– Decouples container implementation with traversal

• Can have more than one for a given list, each keeping
position

• Note, adding or deleting to list while iterating may cause
unexpected results
– Should not “crash” but may skip items

• Steps
1. Design an “iterator” class for “container” class

2. Add createIterator() member to container class

3. Clients ask container object to create iterator object

4. Clients use first(), isDone(), next(), and
currentItem() to access

Example: Stack Iterator

class Stack {
int items[10];
int sp;

public: friend class StackIter;
Stack() { sp = - 1; }
void push(int in) { items[++sp] = in; }
int pop() { return items[sp--]; }
bool isEmpty() { return (sp == - 1); }
// Step 2. Add a createIterator() member

StackIter *createIterator()const {

return new StackIter(this);
}

};

// Step 1. Design an "iterator"

class StackIter {
class const Stack *stk;
int index;

public:
StackIter(const Stack *s) { stk = s; }
void first() { index = 0; }
void next() { index++; }
bool isDone() { return index == stk->sp + 1; }
int currentItem() { return stk->items[index]; }

};

Stack s;
// Step 3. Create iterator

StackIter si(&s);

// Step 4. Use

si.first();
while (!si.isDone()) {
int item = si.currentItem();
si.next();

}

GameObjectListIterator

G
a

m
e

O
b

je
ct

Li
st

It
e

ra
to

r.
h Updating the Game World

• Games are … Dynamic, Real-time, Agent-

based Computer Simulation

–Well researched Computer Science topic

• As a developer, you can study wider field

– Agent-based simulations

– Discrete-event simulations

• For now, concentrate on updating game

objects

2/7/2012

12

Updating Game Objects

• Every engine updates game objects – one of its core
functionalities, provides interaction:
– Makes game is dynamic

– Allows game to respond to player

• While representation at a given time is static, better to
think of world as dynamic where game engine samples
– Si(t) denotes state of object i a time t

– This helps conceptually when engine cannot “keep up”

• So, update is determining current state Si(t) given state
at previous time, Si(t - Δt)
– Clock should provide Δt

– (Dragonfly assumes Δt is constant, 33 ms default)

Simple Approach (1 of 3)
• Iterate over game object collection, calling Update()

– Update() declared in base object, declared virtual

• Do this once per game loop (i.e. once per frame)

• Derived game objects (e.g. Saucer) provide custom
implementation of Update() to do what they need

• Pass in Δt so objects know how much time has passed

virtual void Update(int dt)
– (Again, Dragonfly assumes this is constant so not passed)

• Note, Update() could pass to component objects, too

– E.g. Update() to car sends it to riders and mounted gun

Seems ok, right? But the devil is in the details …

Simple Approach (2 of 3)

• Note, game world manager has subsystems
that operate on behalf of objects

– Animate, emit particle effects, play audio,
compute collisions …

• Each has internal state, too, that is updated
over time

– Once or a few times per frame

• Could do these subsystem updates in
Update() for each object

Simple Approach (3 of 3)
Virtual void Tank::Update(int dt) {
// update the state of the tank itself

moveTank(dt);
rotateTurret(dt);
fireCannon(dt);

// update low-level engine subsystems

p_animationSystem -> Update(dt);
p_collisionSystem -> Update(dt);
p_audioSystem -> Update(dt)

}

// game loop

while(1) {
inputManager.getUserInput();
int dt = clock.getDelta();
for each game object // iterator
gameObject.Update(dt);

graphicsManager.swapBuffers();
}

• So, what’s wrong with above?

• Most engine subsystems

operate in batched mode �

consider rendering subsystem

• If do all render operations at

once, can cull occluded objects
• Increase efficiency

• Also, order may matter
• E.g. can’t compute cat skeleton

position until know human

• So, efficiency and functionality

demand alternate solution!

(1)
(2)

Simple Fix for Batch Updates (1 of 2)

• Engine allows all objects

to request rendering

services in Update(),

but rendering itself is

deferred

(next slide)

Virtual void Tank::Update(int dt) {
// update the tank

moveTank(dt);
rotateTurret(dt);
fireCannon(dt);

// control properties, but do

// not update

if (didExplode)
p_animationSystem ->

PlayAnimation(“explosion”);
if (isVisbile) {
p_collisionSystem -> Activate();
p_renderingSystem -> Show()

}
}

Simple Fix for Batch Updates (2 of 2)

• Game loop now updates

subsystems at once

• Benefits

– Better cache coherency

– Minimal duplication of

computations

– Reduced re-allocation of

resources (used by

subsystems when invoked)

– Efficient pipelining

• Most render systems can

pipeline if pipe filled

// game loop

while(1) {
inputManager.getUserInput();
int dt = clock.getDelta();

// objects update themselves

for each game object // iterator
gameObject.Update(dt);

// then update subsystems

p_animationSystem -> Update(dt);
p_collisionSystem -> Update(dt);
p_audioSystem -> Update(dt)

graphicsManager.swapBuffers();
}

2/7/2012

13

Adding Support for Phased Updates (1 of 2)

• Engine systems may have dependencies
– E.g. Physics manager may need to go first before can apply rag-

doll physics animation

• And subsystems may need to run more than once
– E.g. Ragdoll physics before physics simulation and then after

collisions
// game loop

while(1) {
…
// then update subsystems

p_animationSystem -> CalculateIntermediatePoses(dt);
p_ragDollSystem -> ApplySkeletons(dt);
p_physicsEngine -> Simulate(dt);
p_collisionSystem -> DetectResolveCollisions(dt);
p_ragDollSystem -> ApplySkeletons(dt);
…

• Game objects may need to add Update() information

more than once
• E.g. before each Ragdoll computation and after

Adding Support for Phased Updates (2 of 2)

• Provide “hooks” for game objects to have multiple updates

// game loop

while(1) {
…
for each game object
gameObject.PreAnimUpdate(dt);

p_animationSystem -> CalculateIntermediatePoses(dt);

for each game object
gameObject.PostAnimUpdate(dt);

p_ragDollSystem -> ApplySkeletons(dt);
p_physicsEngine -> Simulate(dt);
p_collisionSystem -> DetectResolveCollisions(dt);
p_ragDollSystem -> ApplySkeletons(dt);

for each game object
gameObject.FinalUpdate(dt);
…

(Note: iterating over all objects multiple times can be expensive � we’ll fix later)

Beware “One Frame Off” Bugs

• Abstract idea has all objects simultaneously

updated each step

– In practice, happens serially

• Can cause confusion and source of bugs if

objects query each other

– E.g. B looks at A for own velocity. May depend if A

has been updated or not. May need to specify

when via timestamp

The states of all game objects are consistent before and after

the update loop, but they may be inconsistent during it.

Outline – Part II

• Game Objects (done)

• The Game World (done)

• Events (next)

• WorldManager

Events

• Games are inherently event-driven

• An event is anything that happens that an object
may need to take note of
– E.g explosion, pickup health pack, run into enemy

• Generally, engine must
A) Notify interested objects

B) Arrange for those objects to respond

� Call this event handling

• Different objects respond in different ways (or
not at all)

• So, how to manage event handling?

Simple Approach

• Notify game object that

event occurs by calling

method in each object

• E.g. explosion, send

event to all objects

within radius

– virtual function named

onExplosion()

void Explosion::Update() {

// …

if (explosion_went_off) {

GameObjectList damaged_objects;

g_world.getObjectsInSphere(

damage_radius, damaged_objects);

for (each object in damaged_objects)

object.onExplosion(*this);

}

}

• Statically typed late binding
– “Late binding” since compiler doesn’t know which � only known at

runtime

– “Statically typed” since knows when object known
• E.g. Tank � Tank::onExplosion(), Crate � Crate:onExplosion()

So, what’s the problem?

2/7/2012

14

Statically-Typed is Inflexible
• Base object must declare onExplosion(), even if not all

objects will use
– In fact, in many games, there may be no explosions!

• Worse � base object must declare virtual functions for all
possible events in game!

• Makes difficult to add new events since must be known at
engine compile time
– Can’t make events in game code or even with World editor

• Need dynamically typed late binding
– Some languages support natively (e.g. C# delegates)

– Others (e.g. C++) must implement manually

• How to implement?
� add notion of function call in object and pass object around

– Often called message passing

Encapsulating Event in Object

Components

• Type (e.g. explosion, health
pack, collision …)

• Arguments (e.g. damage,
healing, with what …)

• Could implement args as
linked list

• Args may have various types

Advantages

• Single event handler

– Since type encapsulated, only method
needed is

virtual void onEvent(Event *p_e);

• Persistence

– Event data can be retained say, in
queue, and handled later

• Blind forwarding

– An object can pass along event
without even “knowing” what it does
(the engine does this!)

– E.g. “dismount” event can be passed
by vehicle to all occupants

struct Event {
EventType type;
int num_args;
EventArg args[MAX];

}

Note, this is also called the Command pattern

Event Types (1 of 2)

• One approach is to match each

type to integer

– Simple and efficient (integers are

fast)

• Problem

– Events are hard-coded, meaning adding new events hard

– Enumerators are indices so order dependent

• If someone adds one in the middle data stored in files gets
messed up

• This works usually for small demos but doesn’t scale
well

enum EventType {
LEVEL_STARTED;
PLAYER_SPAWNED;
ENEMY_SPOTTED;
EXPLOSION;
BULLET_HIT:
…

}

Event Types (2 of 2)

• Encode via strings (e.g. string event_type)

• Good:
– Totally free form (e.g. “explosion” or “collision” or “boss

ate my lunch”) so easy to add

– Dynamic – can be parsed at run-time, nothing pre-bound

• Bad:
– Potential name conflicts (e.g. game code inadvertently

uses same name as engine code)

– Events would fail if simple typo (compiler could not catch)

– Strings “expensive” compared to integers

• Overall, extreme flexibility makes worth risk by many
engines

Event Types as Strings

• To help avoid problems, can build tools

– Central dbase of all event types � GUI used to

add new types

– Conflicts automatically detected

–When adding event, could “paste” in

automatically, to avoid human typing errors

• While setting up such tools good, significant

development “cost” should be considered

Event Arguments

• Easiest is have new type of event class for

each unique event

• Objects get parent Event, but can check type

to see if this is, say, an ExplosionEvent.

class ExplosionEvent : public Event {
float damage;
point center;
float radius;

}

2/7/2012

15

Chain of Responsibility (1 of 2)

• Game objects often dependent upon each other

– E.g. “dismount” event passed to cavalry needs to go to
rider only

– E.g. “heal” event given to soldier does not need to go
to backpack

• Can draw graph of relationship

– E.g. Vehicle  Soldier  Backpack  Pistol

• May want to pass events along from one in chain
to another

– Passing stops at end of chain

– Passing stops if event is “consumed”

Chain of Responsibility (2 of 2)
virtual bool SomeObject ::onEvent(Event *p_event) {

// call base class’ handler first

if (BaseClass:onEvent(p_event)) {
return true; // if base consumed, we are done

}

// Now try to handle the event myself

if (p_event -> getType() == EVENT_ATTACK) {
respondToAttack(p_event -> getAttackInfo());
return false; // ok to forward to others

} else if (p_event -> getType() == EVENT_HEALTH_PACK) {
addHealth(p_event -> getHealthPack().getHealth());
return true; // I consumed event, so don’t forward

} … else {
return false; // I didn’t recognize this event

}
}

(Almost right � actually, need to upcast the event call – see later slides)

Events in Dragonfly
• Engine has base class

• Type is a string

– Flexible for game

programmer to define

however meaningful

• E.g. NUKE_EVENT == “nuke”

Event.h

Events in Dragonfly

• Specific events inherit from it

• Engine defines a few used by most games

• Will define most as needed, but do EventStep

now

Step Event

• Generated by

GameManager every

game loop

– Send to all (interested)

GameObjects

• Constructor just sets

type to STEP_EVENT

EventStep.h

Runtime Type Casting

• Want to convert Event to
EventStep
– If Event handler in game code

(e.g. Saucer.cpp)

• C++ strongly typed �
conversion to another type
needs to be made explicit

• Note, can lead to run-time
errors that are syntactically
correct
– Objects not compatible, so padd-

>result() run-time error

• Different modifiers to casting
can help prevent errors

short
a=2000;
int b;
b = (int) a;

dynamic_cast <new_type> (expression)
static_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)

Usage: (new_type) expression

2/7/2012

16

Dynamic Cast

• Ensures that pointer cast is valid

• Only for derived to base

• Requires RTTI to keep track of dynamic types

– Sometimes off by default in compiler

Static Cast

• Conversions

between related

classes

– derived to base

– base to derived

• In Dragonfly �

Game code event

handler to cast to

right event object

once know type

int Bullet::eventHandler(Event *e) {
…
if (e->getType() == COLLISION_EVENT) {
EventCollision *p_collision_event =

static_cast <EventCollision *> (e);
hit(p_collision_event);
return 1;

}
…

}

Bullet.cpp

Re-Interpret Cast

• Converts any pointer to any other type, even if

unrelated

• Works, but doesn’t really make sense since

can’t safely dereference b

• Mostly used for non-C++ code (e.g. memory

copying)

Ok, What Do We Have?

• Game objects

• Lists of game objects

• Iterators for game objects

• Events

• Means of passing them to game objects

� Ready for World Manager!

Outline – Part II

• Game Objects (done)

• The Game World (done)

• Events (done)

• WorldManager (next)

WorldManager (1 of 2)

Dragonfly Egg

• Manages game objects

– Insert, Remove, Move…

• Provides “step” events to

objects

Later

• Also manages world

attributes (size, view, etc.)

• Organizes drawing of

objects

• Provides “collision” and

“outofbounds” events

2/7/2012

17

WorldManager (2 of 2) Modifications to Game Object

• Needs eventHandler �

– Virtual so derived classes can redefine

– Return 0 if ignored, else return 1

– Default is to ignore everything

• Need to modify constructor
WorldManager &game_world = WorldManager::getInstance();

game_world.insertObj(this);

• Need to modify destructor
WorldManager &game_world = WorldManager::getInstance();

game_world.removeObj(this);

• Remember in Saucer Shoot?
new Saucer; // without grabbing return value

• Now you know how

WorldManager::update() Pseudo code

Create EventStep

Create GameObjectListIterator

Set iterator to first GameObject from obj

While not done

Get current GameObject

Call evenHandler for GameObject with EventStep

Set iterator to next GameObject from obj

End of while

Ready for Dragonfly Egg!

• Start GameManager
– Starts LogManager

– Starts WorldManager

• Populate world
– Create some game objects (derive

from base class)
• Will add themselves to WorldManager

in constructor

– Can set object positions

• Run GameManager
– Will run game loop with controlled

timing

– Each iteration, call WorldManager to
update

• WorldManager update will iterate
through objects
– Send step event to each

• Objects should handle step event
– Perhaps change position

• Should be able to shutdown
– GameManager.setGameOver()

• Gracefully shutdown Managers

• All of this “observable” from log
file (“Dragonfly.log”)

• Construct game code that shows
all this working
– Include as part of your project

• Make sure you test thoroughly!
– Foundational code for rest of

engine

• Complete by Friday
– Additional features coming

Outline – Part III

• Filtering Events (next)

• Managing Graphics

• Managing Input

• Moving Objects

• Misc

Only Getting Some Events

• Currently, all game objects get step event,

whether want it or not

– Some objects may not need updating each step

(e.g. early Hero from SaucerShoot didn’t fire)

• Generally, not all objects want all events

• Unwanted events can be ignored, but

inefficient

• How to fix?

2/7/2012

18

Indicating Interest in Events

• Game objects can indicate interest in specific event
type
– E.g. want “step” events or “keyboard” events

– Even user-defined events, e.g. “nuke” events

• Game objects register with Manager that handles that
event
– E.g. InputManager for keyboard, WorldManager for step

– Manager keeps list of such objects (GameObjectList)

• When event occurs, Manager calls eventHandler()
on only those objects that are interested

• When object no longer interested, unregister interest
– Important! Otherwise, will “get” event, even if deleted

• Remember, GameObjectLists have pointers to objects!

Interest Management in Manager

• Register to add, unregister to remove

• Need to store event

– string, since that is event type

• Can be more than one event

(users could define many)

– Need a list of events

– Not needed by game code so simple array

• Modify constructor to initialize

Manager::registerInterest � Pseudo code

// Check if previously added

for i = 0 to event_list_count

if event[i] == event_name

Insert object into list

// Otherwise, this is a new event

Make sure not full (event_list_count < MAX)

event[i] = event_name

Insert object into list

Increment event_list_count

int Manager::registerInterest(GameObject *p_go, string event_name);

Other Manager Functions

Manager::unregister() interest similar
Manager::onEvent()

– Move code from update loop in WorldManager to
Manager::onEvent()

– WorldManager.update() would then call onEvent(), passing it a
pointer to a “step” event

virtual bool Manager::isValid(string event_name)

– Manager should check isValid() in registerInterest() before
adding

– Checks if event is allowed by the manager (base class always
“true”)

– Virtual, so can be overwritten by child classes

• All Manager inherit this interface, so can use for other
Managers
– E.g. will use for “keyboard” (InputManager)

Outline – Part III

• Filtering Events (done)

• Managing Graphics (next)

– Curses

– GraphicsManager

• Managing Input

• Moving Objects

• Misc

Curses History
• Originally, BSD release, then AT&T System V, done 1990’s

• Ncurses - freeware clone of curses, still maintained

• Pdcurses - public domain for Windows, still maintained

• Rogue a popular curses game
– Favorite on college computer systems, in 1980’s

– Spawned “dungeon crawler” trope, influenced games such
as Diablo

2/7/2012

19

Text-based Graphics with Curses

• Cursor control involves raw terminal codes to
draw/display characters anywhere on visible display
– Can become complicated, quickly

• Curses is a library of wrappers for these codes
– (Curses – a pun on “cursor control”)

• Functionality
– Move cursor

– Create windows

– Produce colors

– …

• More than needed for Dragonfly � We’ll learn just
what is needed for a game engine

Enabling Curses

• Header:
#include <curses.h>

(or <ncurses/curses.h> in Cygwin)

• Linker:
-lncurses

• WINDOW is a structure defined for image
routines
– Functions pass pointers to such structures

• Can draw on it, but not “real” window
– To make display relevant, use: wrefresh()

Defined in Curses

• int LINES – number of lines in terminal

• int COLS – number of columns in terminal

• ERR – returned by most routines on error (-1)

• OK – value returned by most routines on
success

• Colors: COLOR_BLACK, COLOR_RED,
COLOR_GREEN, COLOR_YELLOW,
COLOR_BLUE, COLOR_MAGENTA,
COLOR_CYAN, COLOR_WHITE

Starting Up

• Setup curses
– Allocate space for curses data structures

– Determine terminal characteristics

initscr();
– Clear screen

– Returns pointer to the default window

• Typically, very first curses instruction

• Note, for shut down (restore terminal to default)
endwin();

• Create a full-sized window
WINDOW *win = newwin(0,0,0,0);

• Leave cursor where it ends

leaveok(window, TRUE);

Using Curses

• Get terminal size
getmaxyx(stdscr, max_y, max_x);

– (Note! a macro, so don’t need &max_y, &max_x)

• Make characters bold

wattron(win, A_BOLD);

• Note, could set window foreground and
background colors with

assume_default_colors(fg, bg)

– Default for color terminal is white on black

Life is Better with Color

• Check for color
if (has_colors() == TRUE)

• Then enable color
start_color();

• Set pairs via: init_pair(num, fg, bg)
– Num is 1+

• E.g.
init_pair(COLOR_RED, COLOR_RED,

COLOR_BLACK);
init_pair(COLOR_GREEN,COLOR_GREEN,

COLOR_BLACK);
…

2/7/2012

20

Drawing with Curses

• Draw single character
mvwaddch(window, y, x, char)

• Draw string
mvwaddstr(window, y, x, char *)

• If color, turn on color pair:
wattron(window, COLOR_PAIR(num))

• Then, turn off
wattroff(window, COLOR_PAIR(num))

• Clearing the screen

werase(window)

Note! All curses functions use

(y, x) as coordinates

Managing Graphics

• Ok, have enough curses for a game engine

– Time for the GraphicsManager!

• Inherit from Manager

• Singleton

GraphicsManager GraphicsManager.h

GraphicsManager.h GraphicsManager::startUp
• Initialize curses

• Get maximum terminal window size

• Create two windows:
– One for the current buffer being displayed

– The other for the next buffer being drawn

• Create a third, a pointer that switched between the two,
representing the current window

• Let cursor remain where it is (cursor not really used for
most games)

• If the terminal supports color
– Enable colors

– Setup color pairs

• Make all characters bold

• shutDown() � Just needs to clean up curses

2/7/2012

21

GraphicsManager:drawCh

• Enable color using wattron()

– Note, may want to #define COLOR_DEFAULT

• Draw character, using mvwaddch()

• Turn off color using wattroff()

• Note, later will make drawFrame() for Sprite

frame, but that will still call drawCh()

• Could make drawStr() and drawNum()

functions, if needed

GraphicsManager::swapBuffers

• Want to render current buffer, clear previous

buffer to prepare for drawing

• wrefresh() for current window

• Clear other window

• Set current window to other window

• (Note, for this and other functions, should

error check and log appropriately!)

Using the GraphicsManager (1 of 2)
• Add draw method to GameObject

virtual void draw()

– Does nothing in base class, but game code can override

• Add draw method to WorldManager
get iterator for list of game objects

while (not done iterating)

get current game object

current game object � draw()

increment iterator

void Star::draw() {

GraphicsManager &graph_mgr = GraphicsManager::getInstance();

graph_mgr.drawCh(pos, STAR_CHAR);

}

Example

Using the GraphicsManager (2 of 2)

• Modify GameManager, game loop

– Call WorldManager.draw()

– Call to GraphicsManager.swapBuffers() at end of

game loop

• Later, will add support for Sprites

Outline – Part III

• Filtering Events (done)

• Managing Graphics (done)

• Managing Input (next)

– Overview

– Curses for Input

– InputManager

– Input Events

• Moving Objects

• Misc

The Need to Manage Input

• Game could poll device directly. E.g. see if press “space”
then perform “jump”

• Positives
– Simple (I’ve done this myself for many games)

• Drawbacks
– Device dependent. If device swapped (e.g. for joystick), game

won’t work.

– If mapping changes (e.g. “space” becomes “fire”), game must be
recompiled

– If duplicate mapping (e.g. “left-mouse” also “jump”), must
duplicate code

• Role of Game Engine is to avoid such drawbacks,
specifically in the InputManager

2/7/2012

22

Input Workflow

1. User provides input via device (e.g. button
press)

2. Engine detects input has occurred

– Determines whether to process at all (e.g. perhaps
not during a cut-scene)

3. If input is to be processed, decode data from
device

4. Encode into abstract, device-independent
form suitable for game

Input Map

• Game engine exposes all forms of input

• Game code maps input to specific game action

• When game code gets specific input, looks in
input map for action it corresponds to

– If none, ignore

– If action, invoke particular action

• User can redefine controls on-the-fly

Walk forward Keypress W, Keypress UP, Mouse wheel up

Walk backward Keypress S, Keypress DN, Mouse wheel down

Turn left Keypress A, Keypress LF, or Mouse scroll left

Turn right Keypress D, Keypress RT, or Mouse scroll right

Fire weapon Keypress SPACE, Mouse left-click

Managing the Input

• Must receive from device (see Workflow
above)

• Must notify objects (provide action)

• Manager must “understand” low level details
of device to produce meaningful Event

• Event must include enough details specific for
device

– E.g. keyboard needs key value pressed

– E.g. mouse needs location, button action

Checking startUp Status

• Note, curses needs to be initialized before InputManager
can start

� New startup dependency order for Dragonfly

1. LogManager

2. GraphicsManager

3. InputManager

• Build means of checking start up status in Manager

• Protected Attribute

- bool is_started (set to false in constructor)

• Once startUp() sucessfully called, set to true

• Method to query

- bool isStarted()

Curses for Game-Type Input (1 of 2)
• Curses needs to be initialized

• Note: Use stdscr for window to get default window, affects all

• Normal terminal input buffers until \n or \r, so disable.

cbreak();
nodelay(window, TRUE);

• Disable newline so can detect “enter” key

nonl();

• Turn off the cursor

curs_set(0);
• Enable mouse events

mmask_t_ mask = BUTTON1_CLICKED | BUTTON2_CLICKED |
BUTTON1_DOUBLE_CLICKED | BUTTON2_DOUBLE_CLICKED;
mousemask(mask, NULL)

• Enable keypad

keypad(window, TRUE);

Curses for Game-Type Input (2 of 2)

• To get character (non-blocking)
int c = getch()

• If not ERR, then a valid char

• Check if mouse
MEVENT m_event;

if (c==KEY_MOUSE) and (getmouse(&m_event) == OK) {
if (m_event.bstate & BUTTON1_CLICKED) {

x = m_event.x
y = m_event.y
…

– Note! Mouse must have click, too, to get (does not return
for mouse movement)

• Else keyboard (c has value)

2/7/2012

23

InputManager InputManager::startUp

• Check that GraphicsManager is started
– If not, exit

• Enable keypad

• Disable line buffering

• Turn off newline on output

• Disable character echo

• Turn off cursor

• Set nodelay

• Enable mouse events

• Set is_started

InputManager:ShutDown

• Turn on the cursor

• Note: assume shut’s down before

GraphicsManager so won’t endwin()

• Set is_started to false

InputManager::getInput

• Get character (note, not continuous mouse input)

• Check if mouse

– If so, check if valid mouse action

• If so, then create EventMouse (x, y and action)

• Send EventMouse to interested objs (onEvent())

– Else ignore

• Else

– Create EventKeyboard (character)

– Send EventKeyboard to interested objs (onEvent())

InputManager::isValid

• InputManager only handles some events

– GameObject can’t register for, say, user-defined
events

– Some InputManagers may not handle mouse events

• For return of isValid(string event_name)

Check if event_name is known (KEYBOARD_EVENT or
MOUSE_EVENT)

� Return true

Else

� Return false

Using the InputManager

• Modify game loop in GameManger to get input

• GameObjects will need to register for interest

– Example:

• Need to create Events that can be passed to

interested GameObjects

– EventKeyboard

– EventMouse

// Get input

InputManager &input_manager = InputManager::getInstance();
input_manager.getInput();

InputManager &im = InputManager::getInstance();
im.registerInterest(this, KEYBOARD_EVENT);

2/7/2012

24

EventKeyboard

• Inherited from base Event

EventKeyboard.h

EventMouse

• Inherited from base Event

• Define mouse actions

enum MouseActionList {
LEFT_BUTTON_CLICK,
LEFT_BUTTON_DOUBLECLICK,
RIGHT_BUTTON_CLICK,
RIGHT_BUTTON_DOUBLECLICK,
UNDEFINED};

}

E
ve

n
tM

o
u

se
.h

Outline – Part III

• Filtering Events (done)

• Managing Graphics (done)

• Managing Input (done)

• Moving Objects (next)

– Collisions

–World boundaries

• Misc

Collision Detection

• Determining objects collide not as easy as it seems
– Geometry can be complex (beyond spheres)

– Objects can move fast

– Can be many objects (say, n)

• Naïve solution O(n2) time complexity � every object
potentially collide with every other

• Two basic techniques
– Overlap testing

• Detects whether a collision has already occurred

– Intersection testing

• Predicts whether a collision will occur in the future

2/7/2012

25

Overlap Testing

• Most common technique used in games

– Relatively easy

– But may exhibit more error than intersection testing

• Concept

– Every step, test every pair of objects to see if overlap

– Easy for simple volumes like spheres, harder for
polygonal models

• Useful results of detected collision

– Time collision took place

– Collision normal vector (needed for physics actions)

Overlap Testing: Collision Time

• Collision time calculated by moving object back in time
until right before collision
– Move forward or backward ½ step, called bisection

B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5

t0.4375
t0.40625

BB B

A

A

A

A
A A

• Get within a delta (close enough)

� With distance moved in first step, can know “how close”

• In practice, usually 5 iterations is pretty close

Overlap Testing: Limitations

• Fails with objects that move too fast

t0t-1 t1 t2

bullet

window

• Possible solutions
– Design constraint on speed of objects (e.g. fastest object moves

smaller distance than thinnest object)

• May not be practical for all games

– Reduce game loop step size

• Adds overhead since more computation

• But could have different step size for different objects

Intersection Testing
• Predict collisions

• Extrude geometry in direction of movement
– E.g. swept sphere turns into a “capsule” shape

• Then, see if overlap

• When predicted:
– Move simulation to time of collision

– Resolve collision

– Simulate remaining time step

t0

t1

Dealing with Complexity

• Complex geometry must be simplified

– Complex 3D object can have 100’s or 1000’s of

polygons

– Testing intersection of each costly

• Reduce number of object pair tests

– There can be 100’s or 1000’s of objects

– Remember, if test all, O(n2) time complexity

Complex Geometry: Bounding Volume

(1 of 3)

• Bounding volume is simple geometric shape that
approximates object
– E.g. approximate spikey object with ellipsoid

• Note, does not need to encompass, but might
mean some contact not detected
– May be ok for some games

2/7/2012

26

Complex Geometry: Bounding Volume

(2 of 3)

• Testing cheaper
– If no collision with bounding volume, no more testing required

– If is collision, then could be collision � more refined testing
next

• Commonly used bounding volumes
– Sphere – if distance between centers less than sum of Radii then

no collision

– Box – axis-aligned (lose fit) or oriented (tighter fit)

Axis-Aligned Bounding Box Oriented Bounding Box

Complex Geometry: Bounding Volume

(3 of 3)

• For complex object, can fit several bounding

volumes around unique parts

– E.g. For avatar, boxes around torso and limbs,

sphere around head

• Can use hierarchical bounding volume

– E.g. large sphere around whole avatar

• If collide, refine with more refined bounding boxes

Complex Geometry: Minkowski Sum

(1 of 2)
• Take sum of two convex volumes to create new volume
– Sweep origin (center) of X all over Y

Y}B and :{ ∈∈+=⊕ XABAYX

X ⊕ Y⊕ =YX X ⊕ Y =

+ =

Complex Geometry: Minkowski Sum

(2 of 2)

• Test if single point in X in new volume, then
collide

– Take center of sphere at t0 to center at t1

– If line intersects new volume, then collision

t0

t1

t0

t1

Reduced Collision Tests: Partitioning

• Partition space so only test objects in same cell

– If N objects, then sqrt(N) x sqrt(N) cells to get linear
complexity

• But what if objects don’t align nicely?

– What if all objects in same cell? (same as no cells)

Reduced Collision Tests: Plane Sweep
• Objects tend to stay in same place

– So, don’t need to test all pairs

• Record bounds of objects along axes

• Any objects with overlap on all axes should be tested further

• Time consuming part is sorting bounds

– Quicksort O(nlog(n))

– But, since objects don’t move, can do better if use Bubblesort to repair
– nearly O(n)

C

B

R

A

x

y

A0 A1 R0 B0 R1C0 C1B1

B0

B1
A1

A0

R1

R0

C1

C0

2/7/2012

27

Collision Resolution (1 of 2)
• Once detected, must take action to resolve
– But effects on trajectories and objects can differ

• E.g. Two billiard balls collide
– Calculate ball positions at time of impact

– Impart new velocities on balls

– Play “clinking” sound effect

• E.g. Rocket slams into wall
– Rocket disappears

– Explosion spawned and explosion sound effect

– Wall charred and area damage inflicted on nearby
characters

• E.g. Character walks through invisible wall
– Magical sound effect triggered

– No trajectories or velocities affected

Collision Resolution (2 of 2)

• Prologue

– Collision known to have occurred

– Check if collision should be ignored

– Other events might be triggered
• Send collision notification messages

• Collision

– Place objects at point of impact

– Assign new velocities
• Using physics or some other decision logic

• Epilog
– Propagate post-collision effects

– Possible effects
• Destroy one or both objects

• Play sound effect

• Inflict damage

• Many effects (e.g. sound) can be either in prologue or epilogue

Collision Detection Summary

• Test via overlap or intersection (prediction)

• Control complexity

– Shape with bounding volume

– Number with cells or sweeping

• When collision: prolog, collision, epilog

Collisions in Dragonfly

Detection

• Overlap testing

• Dragonfly Naiad has single “point”
objects
– Collision between objects means

they occupy the same space

• Dragonfly simplifies geometry
with bounding box
– Collision means boxes overlap, no

refinement

• Detection only when moving
object
– Note: alternative could have

objects move themselves, then
would test all objects

Resolution

• Disallow move

– Object stays in original location

Extend WorldManager

- isCollision() method

- moveObj() method

Extend GameObjects
- is_solid attribute

Create EventCollision

Collidable Entities

• Not all objects are collidable entities

– E.g. User menus, scores

– E.g. Stars, in Project 1

• Add notion of “solidness”

– Collisions only occur between solid objects

• An object that is solid automatically is
“interested” in collisions

– Alternative design would have objects register for
interest in collisions

• Extend GameObject to support solidness

Extend GameObject

• Set to true in constructor (default)

Next, create a collision event � EventCollision

2/7/2012

28

EventCollision

C
o

ll
is

io
n

.h
Extend WorldManager

• New Methods

• positionIntersect – see if two positions

intersect

– Can replace with boxesIntersect later

• isCollision – detect collision at a position

• moveObj – if no collision, move an object

WorldManager::positionIntersect

bool positionIntersec(
Position p1,
Position p2)

if p1.getX() == p2.getX() and
p1.getY() == p2.getY() then

return true
else

return false
end if

WorldManager::isCollision

GameObjectListIterator i over all GameObjects
while not i.done()
GameObject *p_temp_go = i.currentObj()
if (p_temp_go != p_go) then // not self
if (positionIntersect(

p_temp_go -> getPos() and where) then
if (p_temp_go -> isSolid())
return temp_go

end if
end if

end if
i.next()

end while
return NULL // if here, no collision

WorldManager::moveObj

Psuedo-code

if p_go->isSolid() then // need to be solid for collisions

GameObject *p_temp_go;

p_temp_go = isCollision(p_go, where) // collide? Null if not

if p_temp_go then

EventCollision c (p_go, p_temp_go, where) // create event

p_go -> eventHandler(&c) // send to obj

p_temp_go -> eventHanlder (&c) // send to other

return -1

end if

end if // isSolid()

p_go -> setPos(where) // if here, no collision so allow move

return 0

2/7/2012

29

Outline – Part III

• Filtering Events (done)

• Managing Graphics (done)

• Managing Input (done)

• Moving Objects (next)

– Collisions

–World boundaries

• Misc

World Boundaries

• Generally, game objects expected to stay

within world

–May be “off screen” but still within game world

• Object that was inside game world boundary

that moves out receives “outofbounds” event

–Move still allowed

– Objects can ignore event

• Create “out of bounds” event � EventOut

EventOut

• Inherit from base Event class

Generating “Out of Bounds” Events

• Get boundary of screen with queries
– Note: in Part 3, will have View and Boundary in

WorldManager. For Part 2, use GraphicsManager:
GraphicsManager::getHorizontal()
GraphicsManager::getVertical()

• Modify WorldManager::moveObj
– Put after move is allowed

– If object inside boundary then moves outside � send “out
of bounds” event

EventOut ov;
p_go -> eventHanlder(&ov);

• Note, only want to send once!
– If stays outside and moves, no additional events

Outline – Part III

• Filtering Events (done)

• Managing Graphics (done)

• Managing Input (done)

• Moving Objects (done)

• Misc (next)

– Layers

– Deferred deletion

Drawing in Layers

• Up to now, no easy way to make sure one object
drawn before another
– e.g. If did Project 1, Star may be on top of Hero

• Provide means to control levels of objects display
order � Altitude

• Draw “low altitude” objects before higher
altitude objects
– Higher altitude objects in same location will overwrite

lower ones before screen refresh

• Note, not really a third dimension since all in
same plane for collisions

2/7/2012

30

Implementing Altitude

• Provide “altitude” attribute for GameObject

– Default to 0

• Provide MAX_ALITITUDE 2 in WorldManager.h

• In WorldManager::draw, add outer loop around
drawing all objects
for alt = -MAX_ALTITUDE to MAX_ALTITUDE

// normal iteration through all objects

if (p_temp_go -> getAltitude() == alt)

// draw

(What is the “cost” of doing altitude?)

Outline – Part III

• Filtering Events (done)

• Managing Graphics (done)

• Managing Input (done)

• Moving Objects (done)

• Misc (next)

– Layers

– Deferred deletion

Need for Deferred Deletion

• Each step of game loop, iterate over all objects �
send “step” event

• An object may be tempted to delete itself or
another

– E.g. during a collision

– E.g. after a fixed amount of time

• But may be in the middle of iteration! Other
object may act.

– E.g. eventHandler() for both objects called, even if
one “deletes” another

Implement deferred deletion � WorldManager::markForDelete

WorldManager::markForDelete

// object might already have been marked, so only add once

create GameObjectListIterator i(&del)

i.first()

while not i.isDone()

if i.currentObj() == p_go // object already in list

return 0

i.next()

end while

del.insert(p_go)

And modify WorldManager::update()

WorldManager::update()
// Send “step” event

create EventStep s
onEvent (&s)

// Delete all marked objects

create GameObjectListIterator i(&del)
while not i.isDone()

delete i.currentObj()
i.next()

end while
del.clear() // clear list for next step

Ready for Dragonfly Naiad!

• Objects register for
interest in events (e.g.
“step”)

• Objects can draw
themselves

– 2D graphics in color

• Interested objects can get
input from keyboard,
mouse

• Objects that move out of
bounds get event

• Objects that collide get
collision event

– Can react accordingly

– Non-solid objects don’t get

• Safe removal of objects at
end of world update

• Objects can appear
higher/lower than others

– 5 layers

Can be used to make a game!

E.g. Consider Saucer Shoot without sprites

2/7/2012

31

Mid-Term Exam Topic List

• Overview of Game Engine
– Purpose

– Typical components

– Structures

• Managers
– Concept

– Features/methods

• Logfile Management
– Features/methods

• Game Management
– Game loop

• Game World
– Game objects

– Storing and updating

• Events
– Notifying objects

– User-defined

– Game object interest

• Graphics Management
– Concept

– Features/methods

• Input Management
– Concept

– Features/methods

• Collisions
– Detection

– Resolution

• Resource Management
– Concept

– Features/methods

Outline – Part IV

• Resource Management (next)

– Offline (tool chain)

– Online (runtime)

– ResourceManager

• Using Sprites

• Bounding Boxes

• Camera Control

• Misc

Managing Resources
• Games have a wide variety of resources
– Often called assets or media

– E.g. meshes, textures, shader programs, animations, audio
clips, level layouts …

• Offline – tools to create, store and archive during game
creation

• Online – loading, unloading, manipulation when game
is running

� Resource Manager

• Sometimes, single subsystem that handles all formats

• Other times, disparate collection of subsystems
– Different authors, time periods

– Different developers, functionality

Off-line Resource Management

• Revision control for assets
– Small project � simple files stored and shared

– But larger, 3D project needs structure

• Tools help control � Resource Database (e.g.
Perforce)
– May have customized wrappers/plugins to remove

burden from artists

Resource Database

• Need: create, delete and inspect resources

• Move from one location to another (e.g. to

different artists/developers as needed)

• Cross-reference other resource (e.g.

mesh/animations used by a level)

• Retain integrity (add/delete) and revisions

(who made change, why)

• Searching and querying

Dealing with Data Size

• C++ code small, relative
to impact size

• Art assets can large

– Copies to/from server can
be expensive (delay)

• Deal with it (inefficient),
or only have access to
assets of need (limited
vision)

• Art-specific tools (e.g.
Alienbrain)

2/7/2012

32

Asset Conditioning (Tool Chain)

• Most assets need to be modified/conditioned to get into
game engine

• Means to do that varies across game dev projects
– E.g. could embed format conversion notes in header files, versus

stand-alone script for each file

• Exporters – take out of native format (e.g. Maya) via plugin
(often custom)

• Resource compilers – re-arrange format (e.g. “massage”
mesh triangles into strips, or compress bitmap)

• Resource linkers – compile into single, large source (e.g.
mesh files with skeleton and animations)

• Dependencies may matter (e.g. build skeleton before
process animation) , so tool needs to support

Runtime Resource Management

• One copy of each resource in memory
– Manage memory resources

• Manage lifetime (remove if not needed)

• Handle composite resources
– E.g. 3d model with mesh, skeleton, animations…

• Custom processing after loading (if needed)

• Provide aingle, unified interface which other
engine aspects can access

• Handles streaming (asynchronous loading) if
engine supports

Runtime Resource Management

• “Understands” format of data
– E.g. PNG or Text-sprite file

• Globally-unique identifier
– So assets can be accessed by objects

• Usually load when needed (but sometimes in
advance)

• Removing hard (when done?) E.g. some models
used in multiple levels � Can use reference
count
– E.g. load level and all models with count for each. As

level exits, decrease reference count. When 0, remove

Resource Management in Dragonfly

• Only assets are sprites

– Text-based files

• No offline management tools

– Such a tool could help build, then save in right format

• Runtime, must understand format and load

• Need data structures (classes) for

– Frames (dimensions and data)

– Sprites (identifiers and frames)

• Then, ResourceManager

Frames

• Text

• Variable sizes

– Rectangular

• Note, in Dragonfly, frames don’t have color

(nor do individual characters)

– But could be extended to support

/__o_\

.**

.

.

_____ _____ __ __

/ ___/____ ___ __________ _____ / ___// /_ ____ ____ / /_

__ \/ __ `/ / / / ___/ _ \/ ___/ __ \/ __ \/ __ \/ __ \/ __/

___/ / /_/ / /_/ / /__/ __/ / ___/ / / / / /_/ / /_/ / /_

/____/__,_/__,_/___/___/_/ /____/_/ /_/____/____/__/

Arrow keys to move, Spacebar to fire, Enter for one nuke

\

~==-

/

Frame

2/7/2012

33

Frame.h Sprite

• Sequence of Frames

• In Dragonfly, Sprites have color

• Note, Sprites are just repository for
data

– Don’t know how to “draw” themselves

– Nor even what the display rate is

– (That functionality with GameObjects)

• Need dimensions, number of frames,
and ability to add/retrieve frames

/____\

/___o\

/__o_\

/_o__\

/o___\

\

~==-

/

\

==-

/

Sprite Class
Sprite.h

Need to understand Frames

Sprite: Constructor

Sprite::Sprite(int max_frames)

• (No default constructor)

• Initialize

– frame_count, width, height all 0

• Create (using new) array of max_frames

– Make sure to delete in destructor

• Set max_frame_count to be max_frames

• Set color to be COLOR_DEFAULT (defined in
GraphicsManager)

• Want to define sprite delimiters in header file

Sprite::addFrame

(Frame new_frame) as parameter

• Check if full (frame_count = max_frame_count)

– If so, return error

• frame[frame_count] = new_frame

• Increment frame_count

(Note, frames are numbered from 0)

2/7/2012

34

Sprite:getFrame

(int frame_number) as parameter

• Make sure frame_number in bounds (not

negative, not equal to frame count)

– If so, return “empty” Frame

• Return frame[frame_number]

ResourceManager

• Inherit from Manager

– startUp, shutDown

• Singleton

Reading Sprite from File

frames 5
width 6
height 2
color green

/____\
end

/___o\
end

/__o_\
end

/_o__\
end

/o___\
end
eof

• Typical that image file
has specific format

–Header

–Body

–Closing

• Parse in pieces

ResourceManager::loadSprite

Open file

Read header

Make new Sprite (since know frame count)

Read frames, 1 by 1
Add to Sprite

Close file

Add label

• Note, error check throughout (file format, length of line,
frame count
– Report line number error in log

– Clean up resources (delete Sprite, close file) as appropriate

Write “helper

functions”

Basic File Reading in C++

• ifstream

• getline() to

read line at a time

– Removes ‘\n’

delimiter

• good() if still

data

ResourceManager::loadSprite –

Helper Function

// Read a single line, expect “tag num” � return num
int readLineInt(ifstream *p_file,

int *p_line_number, const char *tag)

string line

getline() into line // error check: p_file->good()

if not line.compare(line, tag) // right tag?

return error

atoi() on line.substr() to get number

return number

(Can also make readLineStr for color)

2/7/2012

35

// Read frame (up until “end”) � return frame
Frame readFrame(ifstream *p_file,

int *p_line_number, int width, int height)
string line, frame_str

For j from 1 to height

getline() into line // error check

If line width > width, return error (empty frame)

frame_str += line

End for

getline() into line, check if “end” else return error

Create Frame (width, height, frame_str)

Return frame

ResourceManager::loadSprite –

Helper Function

ResourceManager::loadSprite –

Helper Function

• getline() removes newline delimiter (‘\n’)

• Text file on Windows will still have carriage
return (‘\r’)

–Will always be at the end

void discardCR(string &str)

If str[str.size() – 1] is ‘\r’

str.erase(str.size() - 1)

• Call this with every line since will ignore if not
there

ResourceManager::getSprite

for i from 0 to sprite_count

if label == sprite[i] -> getLabel() // pointers

return sprite[i]

end if

end for

return NULL

ResourceManager &resource_manager = ResourceManager::getInstance();
resource_manager.loadSprite("sprites/saucer-spr.txt", "saucer");

Example game code:

Outline – Part IV

• Resource Management (done)

• Using Sprites (next)

• Bounding Boxes

• Camera Control

• Misc

Extend GameObject with Sprites

• Add pointer to Sprite object, get() and set()

• Typically center sprite at object (x,y)

GameObject: Drawing Sprites (1 of 4)

• Base class assumes Sprite for each object

– Extend draw() to draw frame, advance to next

• Note, derived class can still define

–Make draw() virtual

– Can call parent draw() explicitly

(GameObject::draw())

• Since draw only 1 frame, keep track of latest

2/7/2012

36

Extend GraphicsManager

If frame is empty � return

If centered, y_offset = frame.getHeight / 2 // else 0

x_offset = frame.getWidth / 2 // else 0

string str = frame.getString // get frame data

For y = 1 to frame.getHeight // draw character by character

For x = 1 to frame.getWidth

Position temp_pos(world_pos.getX – x_offset + x,

world_pos.getY – y_offset + y)

drawCh(temp_pos, str[y * frame.getWidth + x], color)

End for x

End for y

GameObject: Drawing Sprites (2 of 4)

If !p_sprite then do nothing // sprite not defined

graphics_manager.drawFrame(

pos,

p_sprite->getframe(getSpriteIndex(),

p_sprite->getColor())

int next = p_sprite -> getSpriteIndex() + 1

if next == p_sprite -> getFrameCount() � next = 0

setSpriteIndex(next)

GameObject: Drawing Sprites (3 of 4)

• Convenient for game to slow down animation

– Alternative is to make a lot of “still” frames

– Still would be called to draw(), so expensive

• Since draw() is called every game game loop

(step), make slowdown in units of frame time

GameObject: Drawing Sprites (4 of 4)

• Add to draw()

// advance sprite index, if appropriate

if getSpriteSlowdown() is 0 // 0 means no animtn

� return

int count = getSpriteSlowdownCount()+1

if count == getSpriteSlowdown()

setSpriteSlowdownCount(0)

else

setSpriteSlowdownCount(count)

Outline – Part IV

• Resource Management (done)

• Using Sprites (done)

• Bounding Boxes (next)

• Camera Control

• Misc

Boxes

• Can use boxes for several features

– Determine bounds of game object for collisions

–World boundaries

– Screen boundaries (for camera control)

• Create 2d box class

2/7/2012

37

Box Box.h

Uses position

Extend GameObject “Size” to Box

Protected Attribute

Box box

• Default to Sprite size

• (Centered)

Boxes for Collisions

• In WorldManager,

replace positionIntersect

• x-overlap

– Left of A in B? � Bx1 <= Ax1 <= Bx2

– Left of B in A? � Ax1 <= Bx1 <= Ax2

• y-overlap

– Left of A in B? � By1 <= Ay1 <= By2

– Left of B in A? � Ay1 <= By1 <= Ay2

• If (x-overlap) && (y-overlap) --> return true

• Otherwise, return false

Remember! In curses, we

have "cells" on screen, so

“width 1” would look like 2

here. So subtract 1 from

horizontal and vertical

Outline – Part IV

• Resource Management (done)

• Using Sprites (done)

• Bounding Boxes (done)

• Camera Control (next)

• Misc

Boxes for Boundaries

• World Boundary

• View Boundary

• Translating world coordinates to view

coordinates

2/7/2012

38

Extend/Modify WorldManager

• Add world boundary limits with Box

– Used to only get screen size from GraphicsManager

• Add additional Box for camera view

Attributes
Methods

Modify GameManager::startUp

• Default world as large as window, player has a

view of whole world

Position world_corner(0,0)

Box boundary(world_corner,

graphics_manager.getHorizontal()-1,

graphics_manager.getVertical()-1)

world_manager.setBoundary(boundary)

world_manager.setView(boundary)

Views

• GameObjects have world (x,y) � need to

translate to view/screen (x,y)

– In GraphicsManager before drawing on screen

A(15,10)

World boundary

View boundary

B(8,5)

C(25,2)

(10,3) To get screen (x,y) � compute

distance from origin

A � (5,7) and draw

B � (-2, 2) don’t draw

(x value too small)

C � (25, 2) don’t draw

(x value too large,

y value too large)

(0,0)

GraphicsManager::worldToScreen

• Input � Position world_pos

int view_x =

game_world.getView().getCorner().getX()

int view_y =

game_world.getView().getCorner().getY()

Position screen_pos(

world_pos.getX() - view_x,
world_pos.getY() - view_y);

return screen_pos;

Modify GraphicsManager::drawCh

• Get screen position from world position

Position screen_pos = worldToScreen(world_pos)

• Then, mvwaddch() normally but with screen_pos
instead of world_pos

• Next � add condition in WorldManager to call
draw() only when bounding box of object
intersects view (next slide)

Modify WorldManager::draw

• Inside “altitude” loop

// bounding box is relative to obj, so convert to world

Box box = p_temp_go->getBox();

Position corner = box.getCorner();

corner.setX(corner.getX() + p_temp_go->getPosition().getX())

corner.setY(corner.getY() + p_temp_go->getPosition().getY())

box.setCorner(corner)

// only draw if the object would be visible

if (boxesIntersect(box, view)

p_temp_go -> draw()

2/7/2012

39

Extend WorldManager

• Allow game code to center view at specific

point

• Indicate object to follow (centered)

WorldManager::setViewPosition

// make sure horizontal not out of world boundaries

int x = view_pos.getX() – view.getHorizontal()/2;
if (x + view.getHorizontal() > boundary.Horizontal())
x = boundary.getHorizontal()–view.getHorizontal();

if (x < 0) // limit range to stay within world boundary
x = 0;

// make sure vertical not out of world boundaries

…

// set view

Position new_corner(x, y);
view.setCorner(new_corner);

WorldManager::setViewFollowing

if p_new_view_following == NULL then

p_view_following = NULL

return 0

end if

// Iterate over all objects, make sure new one legitimate

if not found, return -1

setViewPosition(p_view_following -> getPosition())

return 0

Modify WorldManager::moveObject

• If successfully move (no collision) …

// if view is following this object,

// adjust view

if (p_view_following == p_go)

setViewPosition(p_go->getPosition())

Using Views –

An Example of Game-Code control

// Always keep the Hero centered in screen

void Hero::move(int dy) {
// move hero

Position new_pos(pos.getX(), pos.getY() + dy);
world_manager.moveObj(this, new_pos);

// adjust view

Box new_view = world_manager.getView();
Position corner = new_view.getCorner();
corner.setY(corner.getY() + dy);
new_view.setCorner(corner);
world_manager.setView(new_view);

}

Using Views –

An Example of Engine Control

• In game.cpp, make world larger

// set world boundaries

Position corner(0,0);

Box boundary(corner, 80, 50);

world_manager.setBoundary(boundary);

• In Hero.cpp constructor, set to follow Hero

world_manager.setViewFollowing(this);

2/7/2012

40

Outline – Part IV

• Resource Management (done)

• Using Sprites (done)

• Bounding Boxes (done)

• Camera Control (done)

• Misc (next)

– Velocity

– Catching ctrl-C

– Random numbers

Velocity

• Remember this?

� Needed to do

game code every

step

• Instead, have Engine do the work �
Automatically update object positions based on
direction and speed

In Saucer::move():
…
move_countdown--;
if (move_countdown > 0)

return;
move_countdown = move_slowdown;
…

Extend GameObject
Protected Attributes

Methods

GameObject::getXVelocityStep

// see if there is an x-velocity

if (!x_velocity)
return 0

// see if time to move

x_velocity_countdown--
if (x_velocity_countdown > 0)

return 0
// ok, time to move, so figure out how far

int step = 0
do {

x_velocity_countdown += fabs(1/x_velocity)
(x_velocity < 0) ? step-- : step++

} while (x_velocity_countdown <= 0)

return step (And do same for y-velocity)

Update WorldManager::update

• After onEvent(“step”)

// Update object positions based on their velocities

GameObjectListIterator vi
vi.first()
while not vi.isDone()

GameObject *p_go = vi.currentObj()
x = p_go->getXVelocityStep() // see how far moved x
y = p_go->getYVelocityStep() // see how far moved y

if did move � Position new_pos(
p_go->getPosition().getX() + x,
p_go->getPosition().getY() + y)

moveObj() to new_pos
vi.next()

Using Velocity - Example

• In Saucer.cpp:

// set speed in vertical direction

x_velocity = -0.25; // 1 space left every 4 frames

• No need to handle “step” event

• No need for move_slowdown, move_countdown

• (Can modify Bullet and Stars, too)

• (Future work could extend to acceleration)

2/7/2012

41

Outline – Part IV

• Resource Management (done)

• Using Sprites (done)

• Bounding Boxes (done)

• Camera Control (done)

• Misc (next)

– Velocity

– Catching ctrl-C

– Random numbers

The Need for Signal Handling

• Control-C causes termination without notice
– Logfiles open (data not flushed), windows in uncertain

state (e.g. cursor off)

• Control-C � Gracefully shutdown
– Shutdown curses

– Close logfile

• Linux/Unix (Cygwin) use sigaction()

• Windows use SetConsoleCtrlHandler()

• Semantics: interrupt current execution and go to
function
– When function done, return (but can exit())

Modify GameManager::startUp – Unix

(Cygwin, too)
#include <signal.h>

// Catch ctrl-C (SIGINT) and shutdown

struct sigaction action;

action.sa_handler = (void(*)(int)) doShutDown;

sigemptyset (&action.sa_mask);

action.sa_flags = 0; // SA_RESTART

sigaction (SIGINT, &action, NULL)

void doShutDown(void) � GameManager.shutdown()

Modify GameManager::startUp - Windows

#include <windows.h>
// Catch ctrl-C (SIGINT) and shutdown

SetConsoleCtrlHandler(doShutDown, TRUE);

BOOL WINAPI doShutDown(DWORD ctrl_type) {
if (ctrl_type == CTRL_C_EVENT) {
game_manager.shutDown();
return TRUE;

}
}

• Also: CTRL_CLOSE_EVENT (program being closed),
CTRL_LOGOFF_EVENT (user is logging off),
CTRL_SHUTDOWN_EVENT (system shutdown)

Outline – Part IV

• Resource Management (done)

• Using Sprites (done)

• Bounding Boxes (done)

• Camera Control (done)

• Misc (next)

– Velocity

– Catching ctrl-C

– Random numbers

Random Numbers and Games

• Many games make heavy use of random numbers
– Adds non-determinism to opponent choices, starting

locations, etc.

• True randomness difficult for computers (can’t “roll
dice”)
– Instead, psuedo-random – deterministic but “looks”

random to external tests

• Want function that produces psuedo-random sequence

• E.g. xn = 5xn-1 + 1 mod 16

• Say, x0 = 5 � x1 = 5(5) + 1 mod 16 = 26 mod 16 = 10

• Sequence: 10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14 …

• Hard to figure out what is next � Looks pretty
random!
– And could start with different x0 (or “seed”)

2/7/2012

42

(Old) Random Number Functions
static unsigned long next = 1; // state

// Generate “random” number
int myrand(void) {

next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);

}

// Seed to get different starting point
void mysrand(unsigned seed) {

next = seed;
}

Note: with same seed will get same sequence! Useful for reproducing

Note: New are random() and srandom()

(Use mod/% to size)

Modify GameManager::startUp

• Game code uses random()

• Dragonfly only need to seed srandom()

– Provide option for game-code seed

• Seed with system time (seconds since 1970)

srandom(time(NULL))

• Includes needed: <time.h>, <stdlib.h>

Ready for Dragonfly!

• Game objects have

Sprites

– Animation

• Game objects have

bounding boxes

– Sprite sized

• Collisions for boxes

• Have camera control for

world

– Subset of world

– Move camera, display

objects relative to world

• Game objects have

velocity

– Automatic updating

