
2/14/2012

1

Iterative Development

Motivation

• Last thing you want to do is write critical code
near end of a project

– Induces huge stress on team

– Introduces all kinds of “interesting” bugs that
break working code

• Testing always gets cut in crunch

– Makes problem even worse!

• Planning can help avoid writing critical code in
alpha or beta phases

Wishes versus Reality

• Most games you make are smaller/less than

you originally envisioned

– Design was bigger than implementation

– Or, tested/working implementation bigger than

what made it into game

• That’s ok � expect it

• So, how do we know when a game is “done”?

How Do We Estimate Progress?

Example:
• Jo is a programmer

• She estimates it will take 10 days to implement Smart Trap

• She is 4 days into implementation

• Is Smart Trap 40% complete? … maybe
– We may not see it "snap shut" until day 9

• She’s good, � finishes in 8 days total
– Yay, we are ahead!

• Later, decide to add functionality to Smart Trap (e.g., trap
large bad guys, too)
– Takes 4 days

• Boo, now we’re behind!

What’s the Point?

• Most things get revisited multiple times during
development

– Fix bugs, modify functionality, etc.

– “Refactoring” your code

• Note, refactoring easier with clear, easy-to-understand code!

– Expect this! Despite your careful planning …

• So, the "40% done" estimate looks pretty
sketchy…

• Need way to account for time without driving
project into trouble (and into panic)

Incremental Delivery

• Milestones are good things!
– They let us get things “done”

• Milestones can have downside
– If you miss one, people notice, action taken

– Especially management people

• Developer’s view
– Milestones (or plans, in general) are just best guesses for

how implementation will evolve

• Management’s view
– Schedules are contracts with developers

– Promising certain things at certain times

• Different views cause problems
– Developers: panic, pressure, long hours

– Managers: justification for financial pressure

2/14/2012

2

Milestones (1 of 2)

• Despite problems, necessary
– Without milestones, unlikely to get done

• Unrealistic milestones mean work not done on
time, no matter financial importance
– Remember, are best guesses

• Managers need to know estimates of developers
and key makers along the way
– Plan financial/time links accordingly

• External milestones coarser
– Tie to publishers, marketers, etc.

• Internal milestones have finer granularity
– Used by team members

Milestones (2 of 2)

• Think of development plan as black box

– Managers have specific “interface” to box

• “Give me the latest build”

• “Give me the latest (high-level) schedule”

• Clearly, this is too simplistic/wishful thinking

– Managers just want to know more (and need to,
to do their jobs better)

• But view as development plan as “black box”
helps separate job roles better

There is More than Meets the Eye

• For many, “if I can’t see it, it is not important”
– AI takes time to build (and you don’t see it)

– Network code to balance players is an optimization
(and you don’t see it)

• Developers receive less “credit” for unseen code
than for things that can be seen

• Good managers will probe deeper to see what is
really going on
– Requires technical ability (knowledge)

– This is one reason Game Designer needs technical
knowledge!

Iteration

• Make frequent working builds

– “We don’t go home Friday until a working build
checked in.”

– Frequency (daily or weekly) depends upon project

• If management asks for latest build, give one
from last week

– Resist desire to show latest-and-greatest

• Won’t always be bug free, ready to show

– People will always expect it and leads to unrealistic
expectations

Internal Scheduling

• Give detailed design document

– Make list of all objects (e.g. players, items, NPCs…) that
need to be built

– Mark each as one of:

• Core – base, fundamental functionality

• Required – needed for working, playable game

• Desired – icing on the cake, make game special but not
required

• End result:

– List of features sorted by importance

• Note, doing this planning gets easier the more you do!

Internal Scheduling Structure

• Could start from top of milestone list � Work

down and when time runs out, then done

– Produces whole lot of “complete” pieces, but no

whole that works together

– Makes management (and others) nervous since

cannot see it “coming together”

• Better way � since list made in Object-

Oriented (OO) fashion, start building objects!

2/14/2012

3

OO Iterative Development –

Object Versions (1 of 2)
• Create a Stub version of each object

– Complete, but empty

– Perhaps just print out message

• Basic version
– Placeholder with some properties present

– Set attributes, minimal functionality

• Nominal version
– Commercial viable implementation

– Most functionality in place

– Tested

• Optimal version
– State of the art

– All polish present

– Thoroughly tested

// Player.h

class Player {

public:

Player();

~Player();

};

// Player.cpp

#include "Player.h"

Player::Player(){ }

Player::~Player(){ }

Stub

Nice feature about above development

plan? Game will “build” even after

Basic version!

OO Iterative Development –

Object Versions (2 of 2)

• Some objects (classes) will be simpler

– Fewer iterations (e.g. Position class)

• Some will be more complex

– More iterations (e.g. WorldManager class)

• Can say have shippable game when every
object at least in Nominal version

– Working definition of “Good Enough”

• A complete game is one where all objects are
at Optimal level

OO Iterative Development – Overall

• But, seems like need to write 3 versions of every object!
– Yes, but would probably do that anyway with revisions

• Approach
– Starting with core, then required, then desired, implement Stub

versions of all objects

– Starting with core, then required, implement Nominal versions

– Code is now releasable

• Only now start to work on desired

• This is breadth-first approach
– Better than "let's do the cool bits first!"

– Always have build-able game

– Near-continuous growth

– Can easily show refinement

– Throughout, better handle on how "complete" game is

Scheduling - Naive

Scheduling – Better (single programmer)

• Note! This is just one example � Alternate could be to finish Core Nominal

before Base Required

• Point is to “zig-zag” to bottom corner, with optimal last

Scheduling – Better (multiple programmers)

2/14/2012

4

Team Work

• Make sure to use skills of each team member well

• Keep everyone busy
– No waiting, if possible

• Communication vital!
– Every programmer should be aware of what others

are doing

– Code reviews (for sharing implementation details as
much as writing solid code)

– Joint status meetings (Daily! Even if brief)

– Documentation (documented code, documented
milestones and status, documented bug list)

Scheduling with Iteration

• Shift:

– FROM: When will it be finished?

– TO: When will it be good enough?

• "Finished" is meaningless, anyway

• Have definition of “good enough" now!

• Bad estimation often comes from top-down dissection

– No accounting for learning curve, code revision, or
integration

• Iterative development

– Total time equals sum of the Stub, Base, Nominal, and
Optimal levels

Consider Saucer Shoot

• Core
– Ability for player to move ship, fire bullets

– Saucers move

• Required
– Bullets destroy saucers

– Saucers respawn

– Explosions

– Animated Sprites

– Game difficulty progresses and game ends

• Desired
– Stars

– Game start screen, game end screen

– Score

/__o_\

\
~==-
/ Consider Dragonfly

• (Note, your development did separate 2a, 2b, 2c “mini-projects”)

• Core
– Log file management

– Game loop with timing

– Game objects with updates

• Required
– User-input

– User-defined events

– Graphics support

– Collisions

• Desired
– Animated Sprites

– Efficient scene management (e.g. for collision detection)

– Multi-colored Sprites

– Camera control

Is “optimal” done for any classes?

Probably not – would need all Desired done first!

But have Nominal version of classes for all

Group Exercise

• Split into Project 3 Teams

• Make list for your game, with one feature in

each list

– Core

– Required

– Desired

• Provide high-level class name(s) associated

with each

