Artificial Intelligence

2/17/2012

Introduction to Artificial Intelligence (Al)

Many applications for Al

— Computer vision, natural language processing, speech
recognition, search ...

But games are some of the more interesting

Opponents that are challenging, or allies that are helpful
— Unit that is credited with acting on own

Human-level intelligence too hard

— But under narrow circumstances can do pretty well (ex: chess
and Deep Blue)

— For many games, often constrained (by game rules)
Artificial Intelligence (around in CS for some time)

Al for CS different than Al for Games

Must be smart, but purposely flawed

— Loose in a fun, challenging way

No unintended weaknesses

— No “golden path” to defeat

— Must not look dumb

Must perform in real time

Often, configurable by designers

— Not hard coded by programmer
“Amount” and type of Al for game can vary

— RTS needs global strategy, FPS needs modeling of individual
units at “footstep” level

— RTS most demanding: 3 full-time Al programmers
— Puzzle, street fighting: 1 part-time Al programmer

Where to Learn Al at WPI?

¢ IMGD 3000
— Introduction to idea
— Whirlwind view of techniques
— Finite State Machines
— Basic Pathfinding (A*)
¢ IMGD 4000
— Details on basic game Al commonly used in almost all games
« Decision trees
* Hierarchical state machines
— Advanced game Al used, but only in more sophisticated games
* Advanced pathfinding
« Behavior trees
* IMGD 4100 in 2014 “Al for Interactive Media and Games”
— Fuzzy logic
— Goal-driven agent behavior
¢ CS 4341 “Artificial Intelligence”
— Machine learning
— Planning

Outline

Introduction (done)
Common Al Techniques (next)
Promising Al Techniques

Pathfinding (A*)

Finite State Machines

Summary

Common Game Al Techniques (1 of 4)

¢ Whirlwind tour of common techniques
— For each, provide idea and example (where appropriate)
¢ Movement
— Flocking
* Move groups of creatures in natural manner
* Each creature follows three simple rules
— Separation — steer to avoid crowding flock mates
— Alignment — steer to average flock heading
— Cohesion — steer to average position

* Example — use for background creatures such as birds or fish.
Modification can use for swarming enemy

— Formations
* Like flocking, but units keep position relative to others
« Example — military formation (archers in the back)




Common Game Al Techniques (2 of 4)

¢ Movement (continued)
— A* pathfinding
Cheapest path through environment
Directed search exploit knowledge about destination to
intelligently guide search
Fastest, widely used
Can provide information (ie- virtual breadcrumbs) so can
follow without recompute
— Obstacle avoidance
* A* good for static terrain, but dynamic such as other players,
choke points, etc.
* Example — same path for 4 units, but can predict collisions so
furthest back slow down, avoid narrow bridge, etc.

2/17/2012

Common Game Al Techniques (3 of 4)

* Behavior organization
— Emergent behavior
* Create simple rules result in complex interactions
* Example: game of life, flocking
— Command hierarchy
Deal with Al decisions at different levels

Modeled after military hierarchy (ie- General does strategy to Foot
Soldier does fighting)
Example: Real-time or turn based strategy games -- overall strategy,
squad tactics, individual fighters
— Manager task assignment

* When individual units act individually, can perform poorly

* Instead, have manager make tasks, prioritize, assign to units

« Example: baseball — 1% priority to field ball, 2" cover first base, 3" to
backup fielder, 4t cover second base. All players try, then disaster.
Manager determines best person for each. If hit towards 1% and 2",
first baseman field ball, pitcher cover first base, second basemen

Common Game Al Techniques (4 of 4)

* Influence map
— 2d representation of power in game
— Break into cells, where units in each cell are summed up
— Units have influence on neighbor cells (typically, decrease with range)
— Insight into location and influence of forces
— Example — can be used to plan attacks to see where enemy is weak or
to fortify defenses. SimCity used to show fire coverage, etc.
* Level of Detail Al
— In graphics, polygonal detail less if object far away
— Same idea in Al — computation less if won’t be seen

— Example — vary update frequency of NPC based on position from
player

cover first
Outline
¢ Introduction (done)
¢ Common Al Techniques (done)
¢ Promising Al Techniques (next)
¢ Pathfinding (A*)
¢ Finite State Machines

Summary

Promising Al Techniques (1 of 3)

* Bayesian network

- robabilistic graphical model with variables and probable
influences

— Example - calculate probability of patient having a specific disease
given symptoms

— Example — Al can infer if player has warplanes, etc. based on what
it sees in production so far

— Can be good to give “human-like” intelligence without cheating or
being too dumb
* Decision tree learning

— Series of inputs (usually game state) mapped to output (usually
thing want to predict)

— Example — health and ammo = predict bot survival
— Modify probabilities based on past behavior

— Example — Black and White could stroke or slap creature.
Creature learned what was good and bad.

Promising Al Techniques (2 of 3)

e Filtered randomness
— Want randomness to provide unpredictability to Al

— But even random can look odd (e.g.- if 4 heads in a row,
player think something wrong. And, if flip coin 100 times,
will be streak of 8)

* E.g.—spawn at same point 5 times in a row, then bad
— Compare random result to past history and avoid
e Fuzzy logic
— Traditional set, object belongs or not.

— In fuzzy, can have relative membership (e.g.- hungry, not
hungry. Or “in-kitchen” or “in-hall” but what if on edge?)

— Cannot be resolved by coin-flip
— Can be used in games — e.g.- assess relative threat




Promising Al Techniques (3 of 3)

e Genetic algorithms
— Search and optimize based on evolutionary principles
— Good when “right” answer not well-understood
— E.g.—may not know best combination of Al settings. Use GA to
try out
— Often expensive, so do offline
* N-Gram statistical prediction
— Predict next value in sequence (e.g.- 1818180181 ... next will
probably be 8)
— Search backward n values (usually 2 or 3)
— Example
Street fighting (punch, kick, low punch...)
Player does low kick and then low punch. What is next?

Uppercut 10 times (50%), low punch (7 times, 35%), sideswipe (3
times, 15%)

Can predict uppercut or, proportionally pick next (e.g.- roll dice)

2/17/2012

Outline

¢ Introduction done)

e Common Al Techniques done)
¢ Promising Al Techniques
¢ Pathfinding (A*)

¢ Finite State Machines

done)

P

next)

e Summary

¢ Often seems obvious and
natural in real life
— E.g. Get from point Ato B
-> go around lake
¢ For a computer controlled
player, may be difficult
— E.g. Going from A to B go
through enemy base
¢ Want to pick “best” path
* Needto doitin real-time
¢ Why can’t we just figure it
out ahead of time (i.e.
before the game starts)?

Representing the Space
m _.HL] 1]

¢ System needs to understand
the level
— But not full information, only
relevant information (e.g. is it
passable, not water vs. lava vs.
tar...)
* Common representations
— 2d Grid
 Each cell passable or impassible
« Neighbors automatic via indices
(8)

|
|

— Waypoint graph
Connect passable points

Neighbors flexible (but needs to
be stored)

Good for arbitrary terrain (e.g.
3d)

Finding a Path

Path — a list of cells, points
or nodes that agent must
traverse to get to from start
to goal
— Some are better than others
-> measure of quality
Algorithms that guarantee
path called complete
Some algorithms guarantee
optimal path
Others find no path (under
some situations)

Random Trace (Simple Algorithm)

¢ Agent moves towards goal
¢ If goal reached, then done
* If obstacle

— Trace around obstacle clockwise or
counterclockwise (pick randomly) until free path
towards goal

* Repeat procedure until goal reached
¢ (Humans often do this in mazes)




Random Trace (continued)

How will Random Trace do on the following

Not a complete algorithm
Found paths are unlikely to be optimal
Consumes very little memory

2/17/2012

Understanding A*

To understand A*

— Combines breadth-first,
best-first, and Dijkstra
These algorithms use
nodes to represent
candidate paths

m_pParent used to chain iy
nodes sequentially

together to represent

path

— List of absolute

coordinates, instead of
relative directions

class PlannerNode {
public:

PlannerNode *m_pParent;
int m_cellX, m_cellY;

Overview

Breadth-First (1 of 2)

Overall Structure

Use two lists: open and closed o« (Create start point node — push
Open list keeps track of onto open list

promising nodes ) o
Closed list keeps nodes that * While open list is not empty
are visited, but don’t A. Pop node from open list (call it

correspond to goal

! currentNode)
When .node examined from B. If currentNode corresponds to
open list Id
— Take off goalcone

C. Create new nodes (successors
nodes) for cells around currentNode
and push them onto open list

— Check to see if reached goal
If not reach goal
— Create additional nodes

— Place on closed list D. Put currentNode onto closed list

Breadth-First (2 of 2)

Search from center

Goal was X’

Open list = light grey

— Have not been processed

Closed list = dark grey

— Not goal and have been 7 e P
processed

Arrows represent parent
pointers

Path appears in bold

Breadth-First in Action

Breadth-First Characteristics

Exhaustive search

— Systematic, but not clever

Consumes substantial amount of CPU and
memory

Guarantees to find paths that have fewest
number of nodes in them

— Complete algorithm

— But not necessarily shortest distance!




Best-First (1 of 2)

¢ Uses problem specific

2/17/2012

knowledge to speed up
search process

— Not an exhaustive search, but

a heuristic search —
¢ Head straight for goal B B
¢ Computes distance of every i 1

node to goal

¢ Algorithm same as breadth
first

— But use distance as priority
value

— Use distance to pick next
node from open list

Best-First in Action
- SIS

I

|
[
T

Looks pretty good! But perfect?

Best-First (2 of 2)

(Sub-optimal paths)

Best-First Characteristics

Heuristic search
Uses fewer resources than breadth-first

On average, much faster than breadth-first
search

Tends to find good paths
— No guarantee to find most optimal path
Complete algorithm

Dijkstra’s Algorithm

¢ Disregards distance to goal
— Keeps track of cost of every path
— Unlike best-first, no heuristic guessing

¢ Computes accumulated cost paid to reach a
node from start

— Uses cost (called “given cost”) as priority value to
determine next node in open list

¢ Use of cost allows it to handle other terrain
— E.g. mud that “slows” or “downbhill”

Dijkstra Characteristics

Exhaustive search
At least as resource intensive as Breadth-First

Always finds the optimal path
— No algorithm can do better
Complete algorithm




2/17/2012

A*
¢ Use best of Djikstra and Best-First
¢ Both heuristic cost (estimate) and given cost

(actual) to pick next node from open list
Final Cost = Given Cost + (Heuristic Cost * Heuristic Weight)
I az

W

(Avoids Best-First trap!)

A* Internals (1 of 3)

* Green: start * G: 10 for ver/horiz, 14
¢ Red: goal for diagonal
* Blue: barrier * H:distance * 10

A* Internals (2 of 3)

¢ Now check for the low F value in OPEN
— In this case NE = SE = 54, so choose SE

* Going directly to SE is cheaper than E->SE
— Leave start as the parent of SE, and iterate

A* Internals (3 of 3)

* Keep iterating until reach goal and OPEN is empty
¢ Follow parent links to get short path

[see ] ;
[[Reset ] e O

http://www.antimodal.com/astar,

A* Characterisitics

* Heuristic search

— Weight can control 0 then like Dijkstra, large then like
best-first

¢ On average, uses fewer resources than Dijkstra
and Breadth-First

e “Good” heuristic guarantees it will find the most
optimal path
— “Good” as long as doesn’t overestimate actual cost
— For maps, good is “as a bird flies” distance (best-case)

* Complete algorithm




Outline
Introduction (done)
Common Al Techniques (done)
Promising Al Techniques (done)
Pathfinding (A*) (done)
Finite State Machines (next)
Summary

2/17/2012

Finite State Machines

Often Al as agents: sense, think, then act
But many different rules for agents
— Ex: sensing, thinking and acting when fighting, running, exploring...
— Can be difficult to keep rules consistent!
Try Finite State Machine
— Probably most common game Al software pattern
— Natural correspondence between states and behaviors
— Easy: to diagram, program, debug
— General to any problem
— See Al Depot - FSM
¢ For each situation, choose appropriate state
— Number of rules for each state is small

Finite State Machines

See Enemy

(Detailed
example next
slide)

¢ Abstract model of computation
e Formally:

— Set of states

— A starting state

— An input vocabulary

— A transition function that maps inputs and current state to
next state

Finite State Machines — Example (2 of 2)

Can be extended easily
Ex: Add magical scarab (amulet)

When player gets scarab,
Mummy is afraid. Runs.

Behavior
— Move away from player fast
Transition
— When player gets scarab
— When timer expires
Can have sub-states
- Same transitions, but different
actions
« ie- range attack versus melee
attack

Wandering

Finite State Machines — Example (1 of 2)

¢ Game where raid Egyptian Tomb
*  Mummies! Behavior

— Spend all of eternity wandering in
tomb

— When player is close, search
— When see player, chase

* Make separate states
— Define behavior in each state
* Wander — move slowly, randomly
* Search — move faster, in lines
* Chasing — direct to player
* Define transitions
— Close is 100 meters (smell/sense)
— Visible is line of sight

Finite State Machines Summary

Pros Cons

Simplicity > low entry level Predictability = can make for

«  Predictability > allows for easy testing

*  Simplicity = quick to design,
implement and execute

*  Well-proven technique with lots of
examples

*  Flexible > many ways to implement

* Easy to transfer from abstract
representation to coded
implementation

*  Low processor overhead = only the
code for the current state needs to run,
well suited to games

* Easy to tell reachability of state

easy-to-exploit opponent
Large FSMs difficult to manage
and maintain
("spaghettifactor”)

All states, transitions and
conditions need to be known
up front and be well defined
Inflexible > conditions for
transitions are ridged




Summary

Al for games different than other fields

— Intelligent opponents, allies and neutral’s but fun

(lose in challenging way)

— Still, can draw upon broader Al techniques
Finite State Machines flexible, popular

— But don’t scale to complicated Al

Dozens of techniques to choose from, with
promising techniques on the horizon

— Al is the next great “frontier” in games

Two key aspects of pathfinding:

— Representing the search space

— Searching for a path

2/17/2012



