
The Software Engineer
As Artist and Detective

Michael J. Ciaraldi
1999/05/28

What Does a
Software Engineer

Need to Do Her Job?

• Knowledge (factual and procedural)
• Skills

Bloom’s Taxonomy of
Educational Objectives

1) Knowledge
– recall of memorized material.

2) Comprehension
– demonstrate understanding, e.g. restate in

own words.

3) Application
– apply to new situation, e.g. apply algorithm

or formula to new problem of same type.

Bloom’s Taxonomy of
Educational Objectives II

4) Analysis
– break down material or problem into

component parts.

5) Synthesis
– reassemble parts into a new whole, e.g.

design or write a new program.

6) Evaluation
– apply criteria to judge worth for a particular

purpose

Knowledge

• How a computer works
– Hardware/architecture/machine

organization

• How software works
– Compilers
– Operating systems

• Languages
– Different kinds, different tools.

Knowledge II

• Design and analysis techniques
• Well-known algorithms, data structures,

and techniques.
• Theory

– Formal languages, graphs, etc.

Skills

• System analysis
• Programming

– Must be effortless if the technique and goal
are well-understood.

• Documentation and communication
• How to search the literature.

All This Is the Craft
of Computer Science

• Covers first 3 layers
1) Knowledge
2) Comprehension
3) Application

• And part of the rest
4) Analysis
5) Synthesis
6) Evaluation

Additional
Needed Skills

• Problem-solving
– Figuring out what really needs to be

accomplished (from the perspective of the
problem)

– What is needed to accomplish this?

Additional Skills II

• Recognizing patterns, e.g.
– Data abstraction & hiding.
– Network layers.
– Virtual machines.
– Design for reuse.

This Is the Art
of Computer Science.

• Rest of top three
4) Analysis
5) Synthesis
6) Evaluation

• And beyond!

Art and Craft

• An expert house painter has to be able
to put the right colors on the right part of
the house. He is a skilled craftsman
who knows his tools well.

• A portrait painter decides what color to
put where. She is an artist.

Art and Craft II

• An artist has to be a craftsman, but that
is not sufficient. She knows:
– How to draw in the conventional style
– What its limits are
– When to deviate from that.

Example

John Singer Sargent captured people’s
personalities in their portraits. Each
subject looks in a particular direction with
a particular expression. He had to decide
what each person was doing, then figure
out how to convey that in paint.

What Does a
Software Engineer Do?

• Figure out what the problem is.
• Decide how to solve it.
• Then implement the solution.

In general, if we knew how to solve the
problem, we could just buy a program or
library to do it. Software engineers are paid
to solve new problems, or old problems in
better ways.

An Iterative Process
With Feedback.

• Often the problem being solved is not
well-defined or even well-understood.
Only by attempting to solve it do you
gain the insight needed to understand it.

• User feedback--Are you solving the
problem of one client or many potential
customers?

How to Acquire This
Knowledge and Develop

These Skills?
• The craft can only be learned by

practice.
– It can be learned most efficiently if the

practice is well-guided (where the teacher
comes in).

• The art can only be learned/developed
by trying to define & achieve goals.
– a.k.a. problem identification & solving.

A Software Engineer
Is Like a Detective

• Craft
– Disguise
– Chemical analysis
– Fingerprinting

• Art
– Determine what to look for
– Form and test hypotheses

A Software Engineer
Is Like a Detective II

• He must figure out what the problem
really is.
– Many of Sherlock Holmes’ cases did not

turn out to be the crime originally thought,
or even a crime at all.

– How to do this— combine knowledge,
analytical skill, questioning, insight,
experience, and intuition.

A Software Engineer
Is Like a Detective III

• He must figure out what his tools really
do. (Not what the manual says they do).
– Sometimes the manual is misleading or

ambiguous, leaves out important
information, or is just plain wrong.

• Example: putenv() is described & implemented
differently in different versions of Unix.

Linux Putenv()

The putenv() function adds or changes the value
of environment variables. The argument string
is of the form name=value. If name does not
already exist in the environment, then string is
added to the environment. If name does exist,
then the value of name in the environment is
changed to value.

Sunos 4.1 Putenv()
...the string pointed to by string becomes part
of the environment, so altering the string will
change the environment. The space used by
string is no longer used once a new string-
defining name is passed to putenv().

WARNING: A potential error is to call putenv()
with an automatic variable as the argument,
then exit the calling function while string is still
part of the environment.

SunOs (Solaris) 5.6
Putenv()

...string should not be an automatic variable.

string should be declared static if it is declared
within function because it cannot be
automatically declared.

A potential error is to call the function putenv()
with a pointer to an automatic variable as the
argument and to then exit the calling function
while string is still part of the environment.

A Software Engineer
Is Like a Detective IV

• He must figure out what his tools really
do II.
– Sometimes the tools are buggy

• Debugging your own code or someone
else’s is a form of detective work.

How to Teach
Debugging

• Give the students examples and how
you tracked down the problem.
– Process of elimination
– Exactly when it happens (corner cases)
– Instrumented code (poor man’s assertions)

• Give them programs with bugs— like the
black box in electronics lab.

Basic Principles or
Language-of-the-month?

• A big topic on the SIGCSE mailing list
last month.

• This is a false dichotomy— you need
both!

Why Do You Need
the Language?

• You need a way to express and
implement the problem and solution.

• You need to implement, to understand
principles & techniques.

• Knowing multiple languages helps you
understand different paradigms.

Why Do You Need
the Language? II

• Knowing multiple languages helps you
pick the most appropriate one.
– “If the only tool you have is a hammer,

everything looks like a nail.”
– In other words: The tool affects how we

perceive the problem.

Why Do You Need
the Language? III

• Knowing multiple languages helps you
learn and/or create new languages.
– Galileo: if I see farther than others, it is

because I stand on the shoulders of giants.
– Knuth: In computer science we are

standing on each other’s toes.

Why Do You Need
the Language? IV

• The sad fact is that you often cannot
pick your tools.
– Compilers not available.
– Libraries/system calls not available.

Conclusion

• Just Scheme, just Java, just C++, just
Pascal, just Ada doesn’t do it.
Sometimes a problem will call for
Snobol, Perl, HTML, assembler, RPG,
COBOL, Fortran, Prolog, or SQL.

Why Do You Need
the Principles?

• To know when to apply solutions that
have already been worked out. This
includes knowing what their limits are.

• To adapt as needed.
• To know what has to be original.
• To get a head start on whatever is

original.

Example:

• How to design a protocol which
– Is robust when requirements change
– Will be upward- and backward-compatible?

• Experience has shown several
approaches:
– Type-length-value (e.G. Ipv6 options)
– Paired tags (e.G. HTML).

• And the reasons why this is desirable
(maintain interoperability).

Example, cont.

Teaching Is
Problem-solving

• . What’s the best way to
– Impart information
– Find information
– Recognize patterns
– Figure out connections
– Correct misconceptions

Teaching Is
Problem-solving II

• How do you adapt your style to help
your students succeed?
– Are you top-down or bottom-up?
– Are you like a textbook or the web?

• The forward reference problem is not
just in compilers!

• Explain why (e.g. no GOTOs).

The Final Ingredient--
Enthusiasm!

• Jerry Feldman: “You have to love this
stuff.”

• You felt it as students and feel it now.
• How do you inspire it in your students?

Miscellany

Outcomes
Assessment

• Called for in new ABET criteria.
• CSAB is merging with ABET.
• What potential employers and/or

graduate schools would like to see.

Internal
Documentation

• The bane of any software engineer’s
existence is poorly-documented code.

• If you don’t know what a program
module is supposed to do,
– How do you know if it’s right?
– How could you even write it?

Internal
Documentation II

• Internal documentation is as important
as external documentation. Sometimes
it is more so, because the external
documentation lags changes in the
code!

Formalisms

• Formalisms are useful, but not
sufficient.
– Structured analysis
– Use cases
– Patterns
– “Process”

Formalisms--Yes

• A formalism helps you
– Move quickly over the well-understood

parts
– Get into the interesting parts of the project
– Focus your efforts
– Avoid missing things.

Formalisms--No

• What’s wrong with being too formal?
– Real world problems don’t fit the

formalisms.
– A software system is more than its user

interface or its algorithm— it is a series of
interacting modules.

– High cost of tools inhibits both teaching
and use.

Is Computer Science
Science?

• Yes— for several reasons!
– Discover, develop, and understand laws

• Mathematics
• Complexity
• Psychology

– You can do experiments on code.
• And if you have the source you can tell if you

were right!

How is a Software Engineer
Different From a Computer

Science Researcher?

• More emphasis on immediate
applicability.

• Less need to be totally original.
• More constraints on resources

– time, memory, cost.

How is a Software Engineer
Different From a Computer

Science Researcher? II
• Less chance to publish

– proprietary information
– priorities.

• Less chance for professional
development.

• More goodies from vendors!

Things I Want to Fit
in Somewhere

• Active/collaborative learning
• Relation to other disciplines/courses.
• Box packing
• Leap year story

Things I Want to Fit
in Somewhere II

• Adding semaphore to 7th edition Unix.
Now have Linux.

• Division of labor— varies between
companies.

• Project topics.

