
Improving Web Performance by Client Characterization
Driven Server Adaptation

Balachander Krishnamurthy
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ

bala@research.att.com

Craig E. Wills
WPI

100 Institute Road
Worcester, MA

cew@cs.wpi.edu

ABSTRACT
We categorize the set of clients communicating with a server
on the Web based on information that can be determined by
the server. The Web server uses the information to direct
tailored actions. Users with poor connectivity may choose
not to stay at a Web site if it takes a long time to receive a
page, even if the Web server at the site is not the bottleneck.
Retaining such clients may be of interest to a Web site. Bet-
ter connected clients can receive enhanced representations of
Web pages, such as with higher quality images.
We explore a variety of considerations that could be used

by a Web server in characterizing a client. Once a client
is characterized as poor or rich, the server can deliver al-
tered content, alter how content is delivered, alter policy
and caching decisions, or decide when to redirect the client
to a mirror site. We also use network-aware client clustering
techniques to provide a coarser level of client categorization
and use it to categorize subsequent clients from that cluster
for which a client-speci�c categorization is not available.
Our results for client characterization and applicable server

actions are derived from real, recent, and diverse set of Web
server logs. Our experiments demonstrate that a relatively
simple characterization policy can classify poor clients such
that these clients subsequently make the majority of badly
performing requests to a Web server. This policy is also sta-
ble in terms of clients staying in the same class for a large
portion of the analysis period. Client clustering can signif-
icantly help in initially classifying clients for which no pre-
vious information about the client is known. We also show
that di�erent server actions can be applied to a signi�cant
number of request sequences with poor performance.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication Networks|Internet ; H.5.3 [Information
Systems]: Information Interfaces and Presentation|Web-
based interaction

General Terms
Measurement, Performance

Keywords
client connectivity, client characterization, server adaptation

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

1. INTRODUCTION
Web performance has been a key focus of research over the

last few years. User-perceived latency has a strong bearing
on how long users would stay at a Web site and the frequency
with which they return to the site. A Web site that is trying
to retain users thus has a strong incentive to reduce the
\time to glass" (the delay between the browser click and
the delivery and display of the resource on the user's screen).
For Web sites that have a critical need to retain users beyond
the �rst page there is a strong motivation to deliver the
content quickly to the user. Given the vagaries of network
delays, presence of intermediaries, and the user's network
connectivity, the server has a strong incentive to deliver the
most suitable (dynamically generated or statically selected)
content quickly to the user.
Our work focuses on learning about the quality of the

connection between the client and server to aid the server in
making an informed decision on what content to serve. We
seek to obtain the client's connectivity information based on
information already available at the server. An alternative
to this passive approach is to actively gather information
about the more dynamic components of the end-to-end de-
lay, such as the bandwidth of the client or delays in the
network. This would however require considerable amount
of active information gathering in di�erent locales.
A motivation for our work is to concentrate on perfor-

mance issues that are not due to the server itself. Server-
induced delays can be reduced by improved scheduling poli-
cies or simply upgrading the server. We focus on other
reasons behind a client experiencing poor performance such
as low bandwidth, high latency, network congestion, delay
at intermediaries between the client and server, and a slow
client. A server may not be able to isolate the reasons for a
given client experiencing poor performance but it can take
remedial action in selecting a lower quality version of the
resource or by serving the content in a di�erent manner.
A Web site may have multiple variants of the same re-

source. If the Web server on the site knew that the client had
poor (or rich) connectivity, then a more appropriate variant
of the resource could be sent in the response. Alternately,
the server could deliver the same content in a di�erent way.
Such a response might result in the user being more satis�ed
with the delivery speed or the quality of the response and
help retain the client for the Web site.
The Web site does not need to know the precise level of

connectivity of the client|it is enough to be able to classify
the client into one of a few classes such as poor, normal,

and rich. The number of alternate versions of the response
that can be sent back is also not likely to be more than a
few. By mapping the versions of the resource in advance to
the di�erent categories of a clients, the appropriate response
can be sent shortly after client categorization.
For example, the server can choose between sending only

the base document, the base document plus a few embedded
resources, or sending the full container document. Apart
from simply sending a di�erent response, by identifying the
client, the server can use the information to guide a variety
of its policies. For example, the server might decide to keep
a HTTP persistent connection open longer with clients who
have poor connectivity to reduce their need to set up a new
TCP connection. Or, the server can piggyback cache related
information to reduce the need for future validation requests.
In this work we explore the potential applicability of each
of these actions.
Thus the challenge is to be able to classify clients in a sta-

ble manner into a few meaningful categories and enumerate
a set of ways in which the classi�cation can be used for
meaningful improvements. Since a given Web site's content
or access pattern may or may not lend itself to bene�ting
from such a classi�cation, we �rst need to measure the pro-
portion of retrievals that can bene�t. Similarly, the number
of clients who can bene�t is another metric to gather. Once a
client has been characterized, we need to map it to an appro-
priate action for the server to take. Well-connected clients
may require no change in the actions taken by a server. Ad-
ditionally, we can examine grouping clients for classi�cation
and application of server actions. For example, grouping via
network-aware clustering [14] is a technique we explore.
The contributions of this paper are as follows:

1. We propose taking advantage of information already
available to a Web server to classify client connectivity.

2. Based on the stability of the client classi�cation and
the degree to which it can be trusted, we propose a
range of server actions that can be taken.

3. We evaluate the feasibility of our proposed client clas-
si�cation policies and server actions by examining a
heterogeneous collection of Web server logs.

The rest of the paper is organized as follows: Section 2
discusses the various ways in which we can categorize clients
and the range of available information on which to base this
decision. Section 3 enumerates the range of server actions
possible for the di�erent categories of clients. Section 4
presents our methodology for categorizing clients and evalu-
ating the potential applicability of the various server actions.
Section 5 presents the results of our experiments carried out
using a heterogeneous collection of large server logs. We
conclude with a discussion of related work, a summary and
plans for future work.

2. CLIENT CHARACTERIZATION
The �rst step in being able to adapt content or its manner

of delivery for a client is to identify the client's characteris-
tics. One approach is for clients to identify their character-
istics themselves. Clients do this to a limited extent already
by specifying the content types they are willing to accept.
In addition, clients could specify their network connectivity
such as dial-up, cable modem, T-1, etc., as they do now when

they begin using a multimedia player. The clients can in-
dicate their connectivity information via the CC/PP (Com-
posite Capabilities/Preferences Pro�les [8]) mechanism. CC/
PP allows user agents and proxies to specify their capa-
bilities and enables HTTP content negotiation (Section 7.9
of [13]) with servers. The problem with these approaches
is that even if available, many clients may not use them
for normal Web browsing. In addition, a client's experience
may vary depending on the time of day or the number of
network hops between the client and the server.
In the absence of explicit classi�cation information from

the client, it is useful for a Web server to be able to char-
acterize a client. There are a number of potential pieces
of information available to a server for such classi�cation.
We consider three types of classi�cation based on network
connectivity, response time and other considerations.

2.1 Network Connectivity
The �rst type of information involves characterizing the

nature of the network connectivity between a client and a
server. Ideally the server would like to know the round-trip
time (RTT), bandwidth, and the amount of congestion in
the path to the client. In practice, the Web server can only
make inferences based on the network traÆc it receives from
the client. For example, the server can estimate the RTT
by measuring the time between accepting a TCP connection
from a client and receiving the �rst byte of the subsequent
HTTP request. This interval requires a single IP packet
round trip. This approach is simple and introduces no ad-
ditional network traÆc, although typical Web servers would
need to be instrumented to measure this value.
While each TCP connection made by a client to the server

can be used to re�ne the RTT estimation for the client by
the server, it is more diÆcult to estimate bandwidth char-
acteristics for the network connection. Tools that estimate
bandwidth between two nodes typically work by sending
packets of di�erent sizes between the nodes and measuring
the respective round trip times. Examples include bing [5],
pathchar [11] and measuring end-to-end bulk transfer capac-
ity [2]. This approach would add overhead for both the Web
server and the client.
Another approach that the Web server can use to estimate

the RTT at the HTTP-level is to initially respond to a client
request with a HTTP redirect response (302 Found), which
would typically cause the client to retrieve the redirected
content. The di�erence between the two request times can
then be used to estimate the RTT between successive HTTP
requests. Unfortunately this approach introduces an addi-
tional HTTP transaction and further lengthens the response
time for the client.
A di�erent approach at the HTTP level uses the fact that

browsers typically automatically request the set of embed-
ded objects for the page after loading the container object
for a Web page. Measuring the time between the retrieval
of the base object and the �rst requested embedded object
can be used to estimate the time between successive HTTP
requests without necessitating additional requests or redi-
rection solely for the purpose of measuring.

2.2 Response Time
Each of the previous measures seeks to characterize the

RTT or bandwidth of the network connection between client
and server. An alternate approach for classifying a client is

to focus on the response time seen by the client and not be
directly concerned with the nature of the network connec-
tion. This outcome-oriented characterization focuses less on
the speci�c causes of poor performance and more on identi-
fying the situations where it occurs.
One approach for estimating response time for a Web page

is to again use the fact that typically browsers automatically
download embedded objects on a page. Using this observa-
tion, the measured time between serving the base object and
the last embedded object on the Web page approximates the
total response time of the page for the client. This measure-
ment can be done without introducing any additional Web
traÆc.
A more accurate estimate of the total delay experienced

by the client (vs. the server) can be obtained by instrument-
ing a page with Javascript, which executes within the client's
browser, to measure the total download time and report it
back to the Web server [22]. Unfortunately this approach
requires explicit instrumentation of pages and introduces ad-
ditional HTTP traÆc combined with the requirement that
browsers accept Javascript. The Web server can also mea-
sure the number of connection aborts and resets from the
client which may suggest the presence of poorly-connected,
impatient clients [7].

2.3 Additional Factors for Characterization
There are several other factors that could be used in classi-

fying a client. Information in the client request header such
as accepted content types, the HTTP protocol version [12],
and the client software itself could all be exploited in clas-
sifying the capabilities of the client. Once a client has been
classi�ed, this classi�cation could be stored in cookies gen-
erated by a server and included by the client in subsequent
requests to that server.
Browser or proxy caching can also a�ect the classi�cation

of a client. For example, if a client requests only a few
of the embedded objects on a Web page that is known to
have tens of embedded objects, a reasonable inference is that
the client or an intervening proxy has many of the objects
cached. Clients with or behind an e�ective cache may be
considered richer if many needed objects are already in the
cache. On the other hand, a proxy in the path may introduce
additional delay for requests from a client to the Web server
and make that client appear poorer.
A �nal consideration is identifying which clients to classify.

The most obvious candidates for classi�cation are those for
whom response time is important|users employing browsers.
In contrast, automated clients such as spiders should be
�ltered out and not be considered for classi�cation. Re-
cent work has examined the detection of spiders at a Web
server [14, 3].

3. POTENTIAL SERVER ACTIONS
There a number of possible actions that a server could

potentially take after characterizing a client. There are two
broad classes of actions: those that alter the content, which
can be applied for either rich or poor clients; and those
that alter how the content is delivered, which are primarily
applicable for poor clients. In deciding which action to take
the server can use characteristics of the client or consider
characteristics of a client group, such as those formed by
network-aware clusters [14].

3.1 Alteration of Content
Given a range of content variants, a server could choose

a larger and potentially enhanced variant to serve to richer
clients and a reduced version for poorer clients. The server
could provide a reduced version by including fewer, if any,
embedded objects or by including \thinner" variants of em-
bedded images.

3.2 Selection of Replica or Mirror
The �rst action a server performs when it receives a re-

quest is to decide if it is going to be handled on the machine
where the request arrived. Often busyWeb sites have a large
collection of machines behind switches or redirectors where
the content may be stored or generated. Popular search
engines and other busy news sites use this approach. The
front end server can use client's connectivity information to
guide selection of the back-end machine if the content stored
or generated in those machines is partitioned on this basis.
After choosing the proper mirror, the manner in which the
Request-URI is mapped to a speci�c resource can be addi-
tionally tailored based on the client's connectivity.
Additionally, sites that use Content Distribution Networks

(CDNs), may have some resources delivered from mirror
sites distributed on the Internet. Often the choice of a
particular mirror site is left to the CDN; however, the ori-
gin server can provide hints about the client's connectivity
which can be used by the CDN in selecting the mirror.

3.3 Alteration of Meta-Information
Well-connected clients and proxies are more likely to pre-

fetch or prevalidate documents to lower user-perceived la-
tency. The heuristic assignment of expiration meta-informa-
tion to resources can be tailored by servers to ensure that
poorly connected clients can avoid needless validation of
less-frequently changing resources. Origin servers could is-
sue hints via headers so that proxies between poorly con-
nected clients and the origin server can increase the freshness
interval for resources. By providing information to caches
along the path, the origin server can help guide caching poli-
cies at the intermediaries.
As discussed in earlier work [15, 16, 10], hints can be

provided by the server about request patterns of resources.
Grouping resources into volumes and tailoring them to suit
the client's interests can e�ectively provide useful informa-
tion. Now, an additional factor can be used by the server
in deciding the set of hints to be delivered to the client. A
richly connected client might receive extended set of hints
while a poorly connected client might receive a more suit-
ably tailored set of hints or no hints at all.

3.4 Altering Manner of Delivery of Content
After a particular resource variant has been selected, the

server can still control the manner in which it is delivered.
The response can be compressed with a suitable compression
algorithm that takes into account the connectivity informa-
tion. Another way to reduce content is to send the di�erence
between versions of resources for delta-enabled clients [20,
18]. Poorly connected clients can bene�t even more from
the delta mechanism since CPU speed and disk costs are
improving faster than network latencies. A �nal alternative
is for the server to bundle the embedded objects into a single
resource, which can be retrieved by clients to avoid multi-
ple rounds of requests to fetch the objects [25]. Yet another

alternative is to combine this technique with compression
to reduce the size of the bundle and use a delta-encoding
mechanism to prevent bundling of objects already present
in the client's cache.

3.5 Guiding Policy Decisions at the Server
Once a server has returned a response, its ability to use

connectivity information does not end. In HTTP/1.1, con-
nections between a client and a server can persist beyond a
single request-response exchange. The HTTP protocol does
not o�er any guidelines on deciding when a persistent con-
nection should be closed (see Section 7.5.5 of [13]). A server
can decide when to close a persistent connection based on
a variety of factors such as fairness, potential of future con-
nections from the same client, duration for which connection
was already open, etc. If a server knows that a client has
poor connectivity, it might wish to keep the connection open
longer than usual to ensure that the client does not pay the
overhead of having to tear down and set up a new connec-
tion. A richly connected client could a�ord the overhead of
setting up a new connection. Additionally, the server can
assign a higher priority to poorly connected clients so that
their requests are handled faster to reduce overall latency.

4. METHODOLOGY
Rather than instrument aWeb server to characterize clients

and evaluate the potential of taking di�erent actions, the
initial approach we have taken is to analyze the logs from a
variety of Web server sites. By using logs for the analysis we
can examine a wider variety of sites. We take advantage of
the fact that client browsers are typically con�gured to auto-
matically download embedded objects for a container page.
We can thus use the delays between when the container page
and subsequent embedded objects are served as a measure
of the connectivity between a client and the server.
For our study, we assembled a heterogeneous collection

of recent server logs ranging in duration and number of ac-
cesses. The data included logs from a university department,
a specialized medical site, a large commercial company, a re-
search organization, and a sporting site mirrored in multiple
countries.

4.1 Log Analysis
Not all of the logs we used were in the same format, but

all of the logs contained the following �elds for each logged
request: the requesting client (identi�ed by IP address or
string representation), the Request-URI, the response code,
the date and time when the request was completed, and the
response size. In addition, some of the logs also contained
referrer and user-agent �elds, which specify the URI that re-
ferred the current request and the agent software that made
the request.
The �rst step in our analysis was to use the Request-

URI to identify requests indicating an HTML object or the
output of a server-side script. We marked these requests as
container documents and counted the number of requests
for each of them. We then determined the set of pages that
account for 70% of accesses within the log to constitute the
popular set of pages at that site. We focused further analysis
only on these pages since the bene�ts for our approach are
most likely to be applied to the most popular pages.
After preprocessing the log to identify the popular set of

pages, we focused on using requests with 200 OK or 304 Not

Modified HTTP response codes in the logs to identify se-
quences of requests. We de�ne a sequence as a set of consec-
utive requests for a base object and at least one embedded
object from the same client with the following characteris-
tics:

� The �rst (base) request in the sequence returns HTML
content based on Request-URI indicating an HTML
object or the output of a server-side script.

� Each subsequent request in the sequence indicates the
Request-URI is for an image, style sheet or Javascript
object.

� If the referrer �eld is available in the log then the refer-
rer �eld for the embedded objects must also match the
URI of the base object. This additional check helps to
eliminate a relatively small number of sequences where
the embedded objects did not match with the base ob-
ject.

� Finally, we set an arbitrary maximum threshold of 60
seconds between any object and the time the base ob-
ject is downloaded. Any sequence that spans this du-
ration is already going to be classi�ed as poor and
making the threshold larger increases the possibility of
grouping requests for objects on di�erent pages within
the same sequence.

This analysis is not guaranteed to obtain all sequences of a
base page followed by its set of embedded objects. For exam-
ple, it will not work for pages with embedded HTML frames.
It may also fail when multiple clients behind the same proxy
are making requests at the same time to the server. How-
ever, it is not critical that we identify all sequences, but
merely a suÆcient number to characterize clients. The anal-
ysis produces sequences such as the sample shown in Table 1
where the retrieval of a base object of 12221 bytes is followed
by the retrieval of 10 embedded objects over the course of
28 seconds. Two of the requests resulted in a response code
of 304 Not Modified for which no content bytes were re-
turned. While a �ner granularity than one second would
be preferable, this coarse granularity does provide enough
information to identify the relative duration of a sequence,
which is the focus of our work.

Table 1: Sample Sequence
Object Response Content Delay (in sec.)
Number Code Size From Base Object

0 200 12221 -
1 200 183 2
2 200 1577 2
3 304 0 3
4 200 3322 4
5 200 2133 4
6 200 898 7
7 200 2803 8
8 304 0 11
9 200 400 11
10 200 2803 28

By focusing on clients who download the embedded ob-
jects on a page, we typically �lter out spiders. However as

an additional check, if the agent �eld is available we remove
all spider requests that we can identify (e.g., Googlebot,
Scooter etc.). However, subsequent analysis shows such �l-
tering has little e�ect on the number of sequences we identify
in a log.
As an additional analysis tool, we also clustered the set of

unique IP addresses in each log using the technique outlined
in [14]. This clustering was carried out by a small C pro-
gram that uses a fast longest pre�x matching library. This
software is capable of clustering millions of IP addresses us-
ing a large collection of BGP pre�xes (over 441K unique
pre�xes) in a few seconds. In cases where the logs recorded
domain names versus IP addresses, we performed a DNS
lookup on each name prior to clustering. In cases where the
DNS lookup failed or the clustering technique was unable
to cluster a client with other clients then that client was
treated as its own cluster for subsequent analysis.

4.2 Client Characterization
Once we identify the set of sequences in a log, we use the

characteristics of the sequences for a client to characterize
that client. We choose three simple categories for charac-
terizing a client: poor, normal and rich. We use the term
\poor" to refer to clients who generally exhibit long delays
between retrieval of the base object and subsequent embed-
ded objects. In contrast, we use the term \rich" to refer
to clients who consistently exhibit little delay between re-
trieval of the base object and subsequent embedded objects.
We use the term \normal" to refer to clients who cannot be
classi�ed as either poor or rich.
We used two metrics in classifying a client: the delay be-

tween the base object and the �rst embedded object and
the delay between the base object and the last embedded
object in a sequence. The �rst metric measures the time
for a client to receive at least part of the base object, parse
it for embedded objects and for the server to receive and
process the request for the �rst subsequent object. The sec-
ond metric corresponds to how long a client must wait for
all of the embedded objects for a page to be downloaded.
While this value will vary according to the size and number
of objects, it is a reasonable measure in identifying the delay
characteristics of clients.
For each of these two metrics, we de�ned cumulative val-

ues Efirst and Elast to represent long-term estimates for
these two metrics for each client. To both minimize the
amount of information stored for each client and to give
greater weight to more recent history, we chose to use a ex-
ponentially weighted mean where the value for Efirst (Elast

is similarly de�ned) is given as:

Efirst = �Efirst + (1� �)Emeasured

where Emeasured is the current measurement for the delay
between the base and �rst embedded object. The value � is
the weighting factor and takes on values between zero and
one. In our study we experiment with three values of �: 0.0,
0.3, and 0.7. Note that in the case where �=0.0 only the
last measurement is used in classifying the client.
Using these de�ned values for Efirst and Elast we de�ne

thresholds for what identi�es a poor and rich client. Build-
ing on work from [17], Nielsen suggests download times of
greater than 10 seconds causes discontinuities for a user [21].
Bickford suggests that users are no longer willing to wait be-
yond 8.5 seconds [6]. Chiu suggests more than 25 seconds is

slow, but bases this threshold on a 56K connection speed [9].
Rather than de�ne such �xed thresholds in our study, we use
results of these studies as guidelines in identifying three sets
of thresholds for the de�nition of a client experiencing poor
performance (all times are in seconds):

1. if Efirst > 3 or Elast > 5

2. if Efirst > 5 or Elast > 8

3. if Efirst > 8 or Elast > 12

We de�ned and explored only one threshold set for what
de�nes a client experiencing good performance and hence
warrants classi�cation as a rich client:

if Efirst <= 1 and Elast <= 2.

We used these thresholds to de�ne whether a client was
poor or rich (or normal if it met neither criteria). We also
explored two levels of con�dence with each policy. The �rst
con�dence level was more aggressive in classifying clients as
rich or poor immediately after the �rst sequence was pro-
cessed for a client. The second con�dence level was more
conservative in keeping the classi�cation of a client as nor-
mal until at least six sequences were processed from a client.
The use of client clustering was also explored in our study

where we use the accesses from all clients within a cluster
to characterize a cluster as poor, rich or normal. When the
initial request sequence is received from a client the default
is to always classify that client as normal. However, in cases
where an initial sequence is requested by a client who is
part of a cluster seen earlier then the current classi�cation
for that cluster is assigned as the initial client classi�cation.
We also recognize that a busy Web server cannot realisti-

cally store state about clients over a long period of time. We
use garbage collection to remove the state and classi�cation
for clients when the last page access is more than one day
old in the logs. We note, however, that it might make sense
to retain information longer on a per-cluster basis.
Four parameters|the weighting factor, the thresholds for

de�ning a poor client, the con�dence level and the use of
client clustering|were studied in this work. Table 2 sum-
marizes the 36 combinations we studied.

Table 2: Summary of Policy Parameters
Parameter Range of Values
Weighting factor � 0.0, 0.3, 0.7
Poor threshold (Efirst,Elast) (3,5), (5,8), (8,12)
Con�dence level for client accesses 1, 6
Use of client clustering no, yes

4.3 Evaluation of Characterization Policies
We used two approaches for evaluating the success of

client characterization policies for classifying clients. First
we examine the nature of sequences requested by poor and
rich clients. In an ideal world, a server would like to know
when the performance of serving a sequence is going to be
bad and take mitigating action to improve the performance.
A server would also like to know if the performance of serv-
ing a sequence is going to be good, which would potentially
allow it to enhance the content it might serve to the client.
Using these ideals, we de�ne a client classi�cation policy

as successful if a high percentage of bad accesses in a log
are done by clients classi�ed as poor and a high percent-
age of good accesses in a log are done by clients classi�ed as
rich. The higher these percentages, the more possibilities for
the server to take action, although the aggressiveness of the
classi�cation must also be tempered by potential negative
e�ects of incorrect classi�cation. For example, serving en-
hanced content to a client classi�ed as rich, who is actually
not rich may lead to negative consequences. In analyzing
various classi�cation policies, we will examine the tradeo�s
between more and less aggressive classi�cation policies.
Second, we keep track of the identity of clients who can

bene�t from our analysis. We estimate the percentage of
clients who are stable; i.e., ones that either never or rarely
move between the categories. The more stable the classi�-
cation for a client, the more likely is it that a server can take
tailored action. Clients with unstable classi�cations are not
good candidates for server actions.

4.4 Applicability of Potential Server Actions
In Section 3 we identi�ed a number of potential actions

that a Web server could apply if it has characterized a client
as poor or rich. In addition to using the Web server logs
to classify clients, we also identi�ed poorly performing se-
quences and determined which of these actions could be ap-
plied to these sequences.
A variety of considerations should be taken into account

by a server before deciding on the applicability of a partic-
ular action to a sequence. Among the considerations are
the length of the sequence (some sequences may have to be
long before they are considered useful enough to trigger a
particular server action), the size of the full container doc-
ument, or the size of the base page. In Table 3, we list a
series of possible server actions and the sequence criteria to
be examined for each action.
The �rst action of reducing the amount of content can be

applied to any page, but is most likely to improve perfor-
mance for pages containing many images or bytes. However,
this action may not be satisfactory because it changes the
content of the page. Redirecting the client to a mirror via
HTTP or DNS redirection can also be applied to any page,
but it is most e�ective relative to other server actions when
the bad performing sequence is due to a long RTT between
client and server. We thus
ag all sequences with a large
delay for the �rst object.
Altering the meta-information can be used to extend the

freshness interval or piggyback validations [15] to reduce the
number of unnecessary 304 Not Modified responses. We
measure the potential applicability of this action by deter-
mining the number of bad performing sequences that contain
any 304 Not Modified response.
The last two server actions examine changing the way in

which the content is delivered. The �rst approach is to re-
duce the amount of content by compressing it. We measure
its applicability by determining the number of bad perform-
ing sequences with a large number of bytes. Secondly, we can
alter content delivery by improving the server performance
of handling many requests from a client through actions such
as longer persistent connections or increased scheduling pri-
ority for this client at the server. Other techniques such as
the bundling of content can also be used.

5. RESULTS
To study the client characterization policies and applica-

bility of server actions, we collected a heterogeneous set of
recent server logs from eight di�erent Web server sites for
the study. Descriptions for these Web sites are as follows:

� largesite.com|a large commercial site,

� research.com|a commercial research organization site,

� wpi.edu|an educational site for the WPI campus,

� cs.wpi.edu|a site for the WPI Computer Science De-
partment,

� bonetumor.org|a medical site devoted to bone tu-
mors, and

� cricinfo.org|a sports site devoted to cricket with logs
from three mirror sites in Australia, U.K., and the
U.S.A.

All logs are from the April{October, 2001 time frame ex-
cept for the cricinfo.org logs, which are from June 2000. The
duration, number of unique clients and number of requests
for each log are shown in Table 4 along with the number of
sequences we were able to identify using the methodology
described in Section 4. The last column in the table indi-
cates whether both the Referer and User-Agent �elds were
available for each log entry. We should note that we had
additional sets of logs for these sites for similar durations.
Although we show results for only one set, we did analyze
the other sets and the results were similar to those reported
here.

5.1 Client Characterization
Using these logs, we �rst studied the client characteriza-

tion policies described in Section 4.2. While we studied all
policy parameters described in this section for each of the
logs shown in Table 4, we focus our discussion of results
to particular policy parameters and logs for clarity. For
example, all results shown use (5,8) i.e., the thresholds of
Efirst > 5 seconds or Elast > 8 seconds as de�nitions for
identifying clients with poor performance. Using thresholds
of (3,5) and (8,12) changes the number of poor performing
clients identi�ed in each log, but does not change the rela-
tive performance of the policies. Variations between other
parameters and logs will be noted as appropriate.

5.1.1 Identifying Sequence Performance
Before studying the characterization of clients, we need

to de�ne a metric to measure the success of a classi�ca-
tion policy. One such metric is to focus on the sequence
accesses with \bad" and \good" performance. Consistent
with our de�nition of Elast, we assume that a bad perform-
ing sequence is one where the delay for the last embedded
object is greater than 8 seconds. Ideally all accesses with
bad performance should come from a client who has been
characterized as poor. In these cases the server could take
a mitigating action to improve the performance in serving
the given sequence of objects or altering the content served.
Similarly, an access with good performance from a client
characterized as poor could mean the server has taken some
action, such as altering the page content, when in fact poor
performance did not result. We assume an access with good

Table 3: Applicability of Server Actions to Sequences with Bad Performance
Server action Nature of sequences to which to apply
Reduce the number of objects or bytes Long sequence or large number total bytes
Redirect to replica or mirror High �rst object delay
Alter meta-information Presence of unnecessary 304 responses
Alter content delivery via compression Large number total bytes
Alter content delivery by Long sequence
keeping sessions open longer

Table 4: Statistics About the Web Site Logs Used in the Study
of Unique # of Requests # of Page Referer & User-Agent

Log Duration Clients (Millions) Sequences Fields Available?
largesite.com 1 wk 3385079 48.4 1210966 yes
research.com 1 mo 384679 5.2 250548 yes
wpi.edu 1 wk 59844 6.0 270749 no
cs.wpi.edu 1 mo 37433 1.0 63007 yes
bonetumor.org 7 mo 65397 1.7 143867 yes
aus.cricinfo.org 1 wk 25937 3.3 175496 no
uk.cricinfo.org 1 wk 76335 6.7 262254 no
usa.cricinfo.org 1 wk 38533 2.2 98908 no

performance shows a last embedded object delay of no more
than 2 seconds.
As a baseline for measuring the success of classi�cation,

we �rst examine the percentage of bad performing sequences
in each log. The second column in Table 5 shows the per-
centage of bad performing sequences where the delay for
downloading the last embedded object is greater than 8 sec-
onds. This value ranges from 9.2% in the cs.wpi.edu log to
38.5% in the USA cricinfo.org logs. Because it is diÆcult to
classify clients until at least one sequence has been accessed
by a client, the third column in Table 5 shows the percent-
age of bad performing sequences from a known client who
has made at least one previous request. The �nal column in
Table 5 shows the percentage of bad performing sequences
from a client who has previously requested at least one se-
quence or is in a cluster for which another client in the clus-
ter has previously requested a sequence. In cases such as
largesite.com, the di�erence between the latter two columns
indicates that client clustering can have a signi�cant e�ect
on the raising the potential ability to characterize clients.

Table 5: Pct. of Accesses with Bad Performance
All From Known From Known

Log Bad Clients Clusters
largesite.com 30.5 13.6 26.5
research.com 10.2 4.8 9.0
wpi.edu 14.7 10.9 13.4
cs.wpi.edu 9.2 3.8 4.4
bonetumor.org 29.3 16.9 25.4
aus.cricinfo.org 37.3 29.7 35.4
uk.cricinfo.org 35.2 26.5 33.8
usa.cricinfo.org 38.5 25.1 34.9

As a similar baseline, Table 6 shows the percentage of
good performing sequences in each log. The second column
in Table 6 shows the percentage of all good performing se-

quences where the delay for downloading the last embedded
object is no more than 2 seconds. The respective columns
are similarly de�ned as those in Table 5 and show that be-
tween 28.8% and 78.8% of all accesses show good perfor-
mance. Clustering raises the percentage of good performing
accesses coming from client clusters with repeat accesses.

Table 6: Pct. of Accesses with Good Performance
All From Known From Known

Log Good Clients Clusters
largesite.com 38.3 24.3 33.0
research.com 72.7 39.3 64.9
wpi.edu 67.5 62.2 65.5
cs.wpi.edu 78.8 53.8 60.9
bonetumor.org 47.9 27.1 41.1
aus.cricinfo.org 28.8 27.3 28.3
uk.cricinfo.org 34.3 27.6 32.4
usa.cricinfo.org 34.5 28.7 32.0

5.1.2 Poor Client Characterization Policies
Given the percentage of bad and good accesses in each log,

the best policy for characterizing poor clients maximizes the
number of bad accesses associated with poor clients while
minimizing the number of good accesses by these clients.
We looked at the range of policies summarized by the pa-
rameters in Table 2. For the initial discussion of our results
we use the largesite.com logs.
The policy results are shown as labeled interior points in

Figure 1. The \Best" point on the y-axis is taken from the
second column of Table 5. For a policy seeking to associate
bad performing sequences with clients classi�ed as poor, this
point represents the best a policy to classify poor clients
could do. The \Worst" point on the x-axis is taken from
the second column of Table 6. This point represents the
worst a policy classifying poor clients could do.

0

10

20

30

0 10 20 30 40 50

P
ct

. o
f A

ll
A

cc
es

se
s

w
ith

 B
ad

 P
er

fo
rm

an
ce

Pct. of All Accesses with Good Performance

α=0.7,cf=1

α=0.7,cf=6

α=0.0,cf=1+clusters
α=0.3,cf=1+clusters
α=0.7,cf=1+clusters

Best

Worst

Figure 1: Accesses from Clients Classi�ed as Poor
for Selected Policies (largesite.com)

The interior points in Figure 1 represent results for par-
ticular policy parameters. The \�=0.7, cf=6" point in the
lower left corner is a relatively conservative classi�cation
policy because it requires a con�dence (cf) of at least 6 se-
quence accesses from a client before it is willing to classify
the client as either poor or rich. Using this policy only 3.4%
of all accesses are bad and come from a client classi�ed as
poor while 2.1% of all accesses are good and come from such
clients. The \�=0.7, cf=1" policy classi�es a client as soon
as one sequence access from the client has been made. Us-
ing this policy only 9.3% of all accesses are bad and come
from a client classi�ed as poor while 5.7% of all accesses are
good and come from such clients. Other � values for these
con�dence levels show similar results and are omitted from
the graph for clarity.
The remaining three points on the graph show results

where the characterization for all clients within a cluster
is used to initialize the classi�cation for any previously un-
seen client within a cluster. Results for all values of � with
a con�dence level of one access needed for classi�cation are
shown. These results show a much higher level of accesses
that are bad and made by clients classi�ed as poor, but also
an increase in the number of accesses that are good by this
set of clients. Using �=0.7, 19.1% of all accesses have a
delay for the last embedded object greater than 8 seconds
with these accesses done by a client characterized as poor.
In these cases the server could potentially take an action,
such as lowering the number of embedded objects, to reduce
this time. On the other hand, using this same � value, 8.3%
of all accesses have a delay of less than two seconds for the
last embedded object and were made by a client classi�ed
as poor.
The intention of showing these di�erent policy parame-

ters is not to show which is best, but to show the range of
tradeo�s that exist. The correct tradeo� depends on what is
important to the site and what are the negative implications
of an incorrect classi�cation. If a site would like to retain
clients who have poor connectivity to the server then the
site might be more aggressive in classifying clients, partic-
ularly if the actions taken do not have an overtly negative
e�ect on a client who might be misclassi�ed. Otherwise, a
more conservative policy should be considered. However, if

the policy is so conservative that it classi�es relatively few
clients then the idea of client classi�cation may not be useful
at all for the site.
The results shown in Figure 1 do indicate that basing ini-

tial classi�cation decisions on accesses from across a cluster
of clients is worthwhile. More accesses with bad performance
are associated with clients classi�ed as poor while the ratio
of bad to good performing sequences is about the same, or
a bit better, than when clustering is not used.

5.1.3 Poor Client Characterization
Figure 1 shows results for di�erent policy parameters for

a single log. Table 7 shows results for all logs with for the
policy parameter combination of �=0.7 and a needed con�-
dence level of one access with clustering.
The second column is the percentage of accesses with bad

performance from clients classi�ed as poor with the relative
percentage of all accesses with bad performance in parenthe-
ses. The results for the largesite.com and cricinfo.org sites
show the best performance with more than 60% of all bad
performing accesses from clients classi�ed as poor. These
are opportunities for the server to take mitigating action.
The research.com, wpi.edu and cs.wpi.edu sites generally
have better connected clients (many on-site users for the
wpi logs) so classi�cation of poor clients is expected to be
less successful.
The last column in Table 7 re
ects the potential nega-

tive e�ect of making an incorrect client classi�cation. This
column shows the percentage of accesses with good perfor-
mance made by a client classi�ed as poor. The relative per-
centage of these accesses compared to all good performing
accesses (second column in Table 6) is given in parenthe-
ses. The results show 2.4{10.6% of all accesses fall in this
category for with relative percentages from 3.0{36.1%.

Table 7: Accesses by Client Classi�ed as Poor
(�=0.7, cf=1 with clustering)

Bad Good
Performing Performing
Accesses Accesses

Log (% All Bad) (% All Good)
largesite.com 19.1 (62.6) 8.3 (21.7)
research.com 3.4 (33.3) 4.5 (6.2)
wpi.edu 5.8 (39.5) 7.4 (11.0)
cs.wpi.edu 1.8 (19.6) 2.4 (3.0)
bonetumor.org 14.8 (50.5) 9.5 (19.8)
aus.cricinfo.org 25.7 (68.9) 10.4 (36.1)
uk.cricinfo.org 25.0 (71.0) 10.6 (30.9)
usa.cricinfo.org 26.3 (68.3) 9.8 (28.4)

5.1.4 Rich Client Characterization
As a contrast to characterizing poor clients, Table 8 shows

results for characterizing rich clients for all logs with a policy
parameter combination of �=0.7 and a needed con�dence
level of 6 accesses with clustering. A higher level of con-
�dence is expected to classify a client as rich because the
most likely server action to take in this case is serving en-
hanced content to the user. Doing so for a client incorrectly
classi�ed as rich could have serious negative e�ects for the
client.

Table 8: Accesses by Clients Classi�ed as Rich
(�=0.7, cf=6 with clustering)

Good Bad
Performing Performing
Accesses Accesses

Log (% All Good) (% All Bad)
largesite.com 3.5 (9.1) 0.3 (1.0)
research.com 19.0 (26.1) 0.6 (5.9)
wpi.edu 29.1 (43.1) 2.1 (14.3)
cs.wpi.edu 26.0 (33.0) 0.4 (4.3)
bonetumor.org 5.8 (12.1) 0.6 (2.0)
aus.cricinfo.org 2.4 (8.3) 0.3 (0.8)
uk.cricinfo.org 4.4 (12.8) 0.4 (1.1)
usa.cricinfo.org 3.7 (10.7) 0.3 (0.8)

The meaning of results shown in Table 8 mirror those
shown in Table 7. The second column in Table 8 is the
percentage of accesses with good performance from clients
classi�ed as rich with the relative percentage of all accesses
with good performance in parentheses. The WPI and re-
search.com results show the best absolute and relative per-
formance. The last column of Table 8 shows the percentage
of accesses with bad performance from clients classi�ed as
rich. As desired these absolute and relative percentages are
low.

5.1.5 Per-Client Characterization
For a given policy, each client is initialized to the normal

class unless access information is known for other clients
within the same cluster in which case the client inherits the
class of its cluster. Each client is potentially reclassi�ed
after each sequence access. For each policy, we counted the
number of clients in each class at the end of processing each
log. We also kept track of the class for clients who were
inactive for over a day and whose state information was
removed.
Table 9 shows the percentage of distinct clients in each

class for the largesite.com logs. The policy parameters of
�=0.7, cf=1 with clustering are used for the results. Clients
are classi�ed according to the number of sequence accesses
they made in the log. Because client information is discarded
after a day of inactivity, accesses from the same client sep-
arated by more than a day are classi�ed as separate clients.

Table 9: Percentage of Distinct Clients In Each
Class (largesite.com)

Number of Client Class
Client Accesses Poor Normal Rich Total

1-4 15.2 73.0 6.9 95.0
5-9 1.6 1.6 0.6 3.8
10-14 0.2 0.3 0.1 0.5
15-19 0.1 0.1 0.0 0.2
20-24 0.0 0.1 0.0 0.1
25+ 0.1 0.2 0.0 0.3
Totals 17.2 75.2 7.6 100.0

The results show that the vast majority of clients coming
to this site access a relatively few number of pages containing

embedded objects. Among all clients, about 75% remain
classi�ed as normal. About twice as many of the remaining
clients are classi�ed as poor compared to rich. As a contrast,
using the same policy parameters for the research.com logs
shows 78% of clients classi�ed as normal, 18% as rich as
the remaining 4% as poor. The di�erence simply re
ects
di�erent characteristics amongst the set of clients visiting
these sites.
We also examined the client characterization policies for

their stability in terms of the frequency that the client class
changed. We found that for 72.5% of the largesite.com
clients stayed in the same class as its initial class. In most
cases, the client was initialized to normal and stayed in that
class, but if cluster information was available then the client
may have been initialized to the poor or rich class. For
18.6% of clients, there was at least one transition from the
poor class to another class or from another class to the poor
class. Given that 17.2% of all clients �nished in the poor
state (shown in Table 9), these results indicate that the
classi�cation is stable. In fact only 1.2% of clients had more
than two transitions in or out of the poor class. Similarly,
9.8% of clients had at least one transition into or out of the
rich class. Given that 7.6% of all clients �nished in the rich
class, these results also indicate stability of the classi�ca-
tion. Only 1.1% of clients had more than two transitions in
or out of the rich class.

5.2 Applicability of Potential Server Actions
In addition to using the Web server logs to classify clients,

we also used the logs to identify sequences exhibiting bad
performance and determine which of these actions could be
applied to improve performance. For this portion of the
study we analyzed the characteristics of all sequence accesses
in which the delay for the last object retrieval was more than
8 seconds. We sought to match the sequence characteris-
tics identi�ed for possible server actions in Table 3 with the
characteristics of accesses with bad performance in the set
of logs. We considered all such accesses and did not limit
our analysis to only those accesses from clients classi�ed as
poor.
The criteria to determine which sequences are appropriate

for which server actions will vary according to the di�erent
administrative policies at each site. For purposes of com-
parisons between di�erent types of sites and di�erent server
actions we apply a common criteria to all sites, but this ap-
proach is used only to understand the potential applicability
of di�erent server actions.
Table 10 shows the percentage of sequences with bad per-

formance for which each type of server action is applicable.
Table 5 has the results on the percentage of sequences with
bad performance in each log.
We �rst examine the applicability of server actions that

do not alter the contents of a page. The �rst of these ac-
tions is to redirect a client to a \closer" content provider.
This action could be applied to any sequence, but we focus
on sequences where the delay to retrieve the �rst embed-
ded object in the sequence is large. A large initial delay
may indicate the e�ect of a big RTT between the client and
server, which can be reduced if the client can retrieve the
content from a site that is closer to it. For these results we
use a threshold of greater than 5 seconds because it is the
corresponding threshold we used in classifying poor clients.
The values in column two of Table 10 show the percentage

Table 10: Pct.of Sequences with Bad Performance for Application of Server Actions
Redirect Alter Compress Alter Alter

to Meta- Content Object Page
Log Replica Information Delivery Delivery Contents
largesite.com 42 25 59 67 72
research.com 38 16 42 26 52
wpi.edu 26 43 54 56 71
cs.wpi.edu 31 17 50 29 68
bonetumor.org 37 10 83 3 84
aus.cricinfo.org 47 45 9 32 35
uk.cricinfo.org 59 39 10 20 23
usa.cricinfo.org 53 27 15 24 28

of all sequences with bad performance that have a delay for
the �rst object greater than 5 seconds. The percentage of
sequences is greater than 25% in all cases and shows the
largest percentage across all potential server actions for the
cricinfo.org logs.
Note that the initial delay would not include time spent

by a server to generate the content because the timestamp
on the base object is the time at which its content is written
to the client. It is possible that a large base page could
cause a longer initial delay as the client has more bytes to
receive and process before it can request subsequent objects.
For example in the largesite.com logs, 37% of all sequences
with bad performance had a �rst object delay greater than
5 seconds and a base page larger than 10K bytes.
The next column in the table (altering meta-information)

indicates the percentage of sequences that include at least
one 304 Not Modified response. These requests could be
eliminated by increasing the freshness lifetime for objects
or allowing clients to piggyback validation requests onto
other requests. The results show that this approach could
be of moderate usefulness, particularly for the wpi.edu and
cricinfo.org logs.
It is diÆcult to apply a precise criterion for when com-

pression is appropriate. We selected a value of 40K total
bytes in a sequence as the threshold for a sequence with a
large number of bytes. This is approximately the median
value for total bytes in a sequence across all logs in our
study. The medians for individual logs ranged from 15{65K
bytes. The fourth column in the table shows the percent-
age of sequences with bad performance that have more than
40K total bytes. The bonetumor.org logs have the highest
percentage of large sequences. All but the cricinfo.org logs
have a signi�cant number of sequences matching this crite-
ria. A direction of future work is further distinction between
text and image objects as image data cannot be generally
compressed as much.
The next column in the table identi�es the percentages of

sequences with bad performance that have a long list of ob-
jects in the sequence. The handling of these long sequences
can be altered by bundling objects together. Alternately
a server can improve the e�ectiveness of handling each re-
quest by extending the connection lifetime or giving higher
scheduling priority for these clients. The results shown in
the table are the percentage of sequences with at least 10 ob-
jects. This is approximately the median length of sequences
with poor performance across all logs. The medians for in-
dividual logs are between 4 and 14. The results show the

most applicability of this server action for the largesite.com
and wpi.edu logs. The bonetumor.org logs have virtually no
long sequences.
In contrast to actions that do not alter page contents, the

last column in the table shows the percentage of sequences
with bad performance that could be improved by serving an
altered (by size and number of objects) Web page. This ac-
tion could be applied to all sequences, but is most applicable
to those with either a large number of objects or total bytes.
The percentages in the table are for all sequences with bad
performance that have at least 10 objects or more than 40K
total bytes. This action could be applied to the majority of
sequences in all logs except for the cricinfo.org logs.
Additional work is needed to identify appropriate server

actions for a sequence with bad performance. Beyond eval-
uating applicability we have to examine e�ectiveness. How-
ever, the results do indicate that each of the potential server
actions could be applied to a signi�cant number of sequences
at least one site. In addition, the variety of server sites yield
di�erent server actions that would be most applicable.

5.3 Results Summary
There are number of results we wish to summarize about

our basic premise that clients can be classi�ed based on char-
acteristics determined by a server and that a range of server
actions could be applied in the case of a client classi�ed as
poor.

� A relatively simple classi�cation policy can correctly
classify clients as poor so that the majority of se-
quences with bad performance come from these clients.

� Client clustering improves the number of clients who
can be initially classi�ed based on cluster information
in most logs and signi�cantly improves in some logs.
There are not only more classi�cations, but the ac-
curacy of these classi�cations is comparable to when
information for only a single client is used.

� There are tradeo�s for the aggressiveness of client clas-
si�cation. The negative implications of a wrong clas-
si�cation should determine the aggressiveness of the
policy to use.

� Classi�cation also helps characterize rich clients, but
the impact is reduced when these policies need to use a
greater degree of con�dence because the cost of serving
enhanced content to a client incorrectly classi�ed as
rich is higher.

� Client classi�cation works best for sites with a variety
of clients. Classi�cation of poor clients does not work
well when there are relatively small numbers of poor
clients visiting the site.

� Client characterization is stable for particular clients
with few transitions between classes observed beyond
initial transitions for a client.

� Not a single type of server action is most applicable
for all sites and each server action is applicable to a
signi�cant number of sequences with bad performance
on at least one site.

6. RELATED WORK
The concept of dynamically altering multimedia content

in a Web page depending on network path characteristics
was reported in a recently issued United States patent [19].
In this proposed scheme, a Web server would monitor a va-
riety of network characteristics (such as round trip time,
packet loss) between itself and the client and correspond-
ingly adjust the quality of the content returned to the client.
However, this patent deals exclusively with altering the con-
tent or its delivery. It does not cover the range of other
server actions that are part of our approach. Additionally,
the network aware clustering we use to construct a coarse
grouping of clients has been shown to be superior to the
\nearness" approach discussed in [19]. We are not aware of
any published research on the idea proposed in this patent.
Rather than let the server estimate a client's character-

istics, other approaches can be used. Explicit client spec-
i�cation of network connectivity is used in many multime-
dia players. The SPAND system uses an approach where a
group of clients estimate cost to retrieve resources and share
it amongst themselves [23].
There is related work in adapting the content served to

users based on server load [1]. As a server becomes loaded
it begins to degrade the content served to lower-priority
clients. In comparison with our work, server load is the
only performance measure that triggers an action and the
only action considered is to serve degraded content.
The Apache Web server's contributed collection of plug-

ins include a plug-in called Apache::Throttle [24] that im-
plements content negotiation based on the speed of the con-
nection with the client. For example, poorly connected
clients can receive lower resolution images. Connectivity
is measured via a high resolution timer by noting the time
between the beginning and the end of sending the response
to the client at the application level.
Recent work also seeks to estimate the service time for a

client through examination of server logs [4]. However this
work focuses on how to more precisely estimate the total
time by instrumenting an Apache server to log additional
data. This information is used to analyze how the size of
the write bu�er at the server in
uences performance mea-
surements. This work tries to make a more accurate esti-
mation of client response time than our work, but uses this
information for a much more narrow purpose.

7. SUMMARY AND FUTURE WORK
We have outlined a way to identify client's characteris-

tics automatically by passive analysis of Web server logs.
Even our simple set of categories (poor, normal, and rich)
can be used to drive a wide range of possible server actions.
The characterization does not have to be foolproof and our
methodology allows more liberal and conservative classi�ca-
tion approaches. We provide a map between classi�cation
and the kind of server action that might be most appro-
priate for a client. Although our classi�cation is based on
examining sequences of accesses, we are able to identify in-
dividual client's stability during the analysis: a more stable
client stays in the identi�ed category for a large portion of
the analysis period. The stability of a client can help the
server to decide if it is an appropriate candidate for tailoring
server actions.
We have explored applicability of our methodology by

conducting a range of experiments using a large number of
real and extensive server logs. The logs were obtained from
diverse organizations such as a university, a large corpora-
tion, and a popular sports site mirrored in multiple coun-
tries. We demonstrated stability of our client characteriza-
tion technique in each of the logs. We estimated that sig-
ni�cant portions of sequences with bad performance could
bene�t from some server action.
Our methodology is extensible; other techniques to char-

acterize clients could be incorporated to increase con�dence
in the classi�cation and server action. The use of network-
aware clustering to coarsely group clients is also a helpful
aid in the characterization. Our novel proposal can be tai-
lored to an individual Web site, applied automatically, and
validated to examine if the server actions result in speci�c
improvements. The amount of state that needs to be main-
tained can be altered depending on the improvements.
While this work has examined the potential feasibility of

client characterization and server adaptation, it leads to a
number of directions for future work. First, we plan to exam-
ine a wider range of thresholds and policies for categorizing
rich and poor clients as well as what constitutes good or bad
performance. Second, we intend to validate our characteri-
zation results to see if poor/rich clients are really poor/rich
by active measurements from known clients in di�erent lo-
cations to a server under our control.
Third, we plan to instrument a real Web server to study

the practicality of a server maintaining such information for
clients and using the information to make decisions in serv-
ing content. We need to better understand the memory and
computational overhead of our approach. Finally, we need
to study not just the applicability of various server actions,
but more importantly their e�ectiveness in reducing user-
perceived latency.

Acknowledgments
We would like to thank all those who gave us access to their
logs without which such research would be impossible. We
thank Mikhail Mikhailov and the anonymous reviewers for
their comments on an earlier version of the paper.

8. REFERENCES
[1] Tarek F. Abdelzaher and Nina Bhatti. Web Server

QoS Management by Adaptive Content Delivery. In
Proceedings of the International Workshop on Quality
of Service, London, England, June 1999.
http://www.eecs.umich.edu/~zaher/iwqos99.ps.

[2] Mark Allman. Measuring end-to-end bulk transfer
capacity. In Proceedings of the ACM SIGCOMM
Internet Measurement Workshop, San Francisco, CA,
November 2001.

[3] V. Almeida, D. Menasce, R. Riedi, F. Peligrinelli,
R. Fonseca, and W. Meira Jr. Analyzing the impact of
robots on performance of Web caching systems. In
Proceedings of the 6th International Web Caching
Workshop and Content Delivery Workshop, Boston,
MA, June 2001.

[4] O. Ardaiz, F. Freitag, and L. Navarro. Estimating the
time of service in a Web client starting from the
server logs. In Proceedings of the ACM SIGCOMM
America Latina Conference, San Jose, Costa Rica,
April 2001. ACM.

[5] Pierre Beyssac. BING: Bandwidth pING, March 1998.
http://www.cnam.fr/reseau/bing.html.

[6] Peter Bickford. Worth the wait? View Source, Human
Interface Online, 1999.
http://devedge.netscape.com/viewsource/

bickford_wait.htm.

[7] Ramon Caceres, Fred Douglis, Anja Feldmann,
Gideon Glass, and Michael Rabinovich. Web proxy
caching: the devil is in the details. In Workshop on
Internet Server Performance, Madison, Wisconsin
USA, June 1998.

[8] CC/PP Working Group.
http://www.w3.org/Mobile/CCPP/.

[9] Willy Chiu. Best practices for high volume web sites,
February 2001.
http://www.worldinternetcenter.com/Other_Events/

Challenge-The-Expert/Feb28megawebsite/

SVWIC_Chiu_2_28_01.pdf.

[10] Edith Cohen, Balachander Krishnamurthy, and
Jennifer Rexford. Improving End-to-End Performance
of the Web Using Server Volumes and Proxy Filters.
In Proceedings of the ACM SIGCOMM '98
Conference, September 1998.
http://www.acm.org/sigcomm/sigcomm98/tp/abs_20.html.

[11] Allen B. Downey. Using pathchar to estimate Internet
link characteristics. In Proceedings of the ACM
SIGCOMM '99 Conference, Cambridge,
Massachusetts USA, September 1999. ACM.

[12] Balachander Krishnamurthy, Je�rey C. Mogul, and
David M. Kristol. Key Di�erences between HTTP/1.0
and HTTP/1.1. In Proc. Eighth International World
Wide Web Conference, Toronto, May 1999.
http://www.research.att.com/~bala/papers/h0vh1.html.

[13] Balachander Krishnamurthy and Jennifer Rexford.
Web Protocols and Practice: HTTP/1.1, Networking
Protocols, Caching, and TraÆc Measurement.
Addison-Wesley, May 2001. ISBN 0-201-710889-0.

[14] Balachander Krishnamurthy and Jia Wang. On
network-aware clustering of Web clients. In
Proceedings of ACM SIGCOMM, August 2000.
http://www.acm.org/sigcomm/sigcomm00/program.html.

[15] Balachander Krishnamurthy and Craig Wills. Study of
Piggyback Cache Validation for Proxy Caches in the
World Wide Web. In USENIX Symposium on Internet
Technology and Systems, pages 1{12, December 1997.
http://www.research.att.com/~bala/papers/

pcv-usits97.ps.gz.

[16] Balachander Krishnamurthy and Craig E. Wills.
Piggyback server invalidation for proxy cache
coherency. In Seventh International World Wide Web
Conference, pages 185{193, Brisbane, Australia, April
1998.

[17] Robert B. Miller. Response time in man-computer
conversational transactions. In Proc. Sprint Joint
Computer Conference, Montvale, NJ, 1968. AFIPS
Press.

[18] J. Mogul, B. Krishnamurthy, F. Douglis,
A. Feldmann, Y. Goland, A. van Ho�, and
D. Hellerstein. Delta encoding in HTTP. RFC 3229,
IETF, January 2002. Proposed Standard.

[19] Je�rey C. Mogul and Lawrence S. Brakmo. Method
for dynamically adjusting multimedia content of a
Web page by a server in accordance to network path
characteristics between client and server, June 2001.
United States Patent 6,243,761.

[20] Je�rey C. Mogul, Fred Douglis, Anja Feldmann, and
Balachander Krishnamurthy. Potential bene�ts of
delta encoding and data compression for HTTP. In
Proceedings of the ACM SIGCOMM 1997 Conference,
pages 181{194, August 1997.
http://www.acm.org/sigcomm/sigcomm97/papers/p156.html.

[21] Jakob Nielsen. Designing Web Usability. New Riders,
2000.

[22] Ram Rajamony and Mootaz Elnozahy. Measuring
client-perceived response time on the WWW. In
USENIX Symposium on Internet Technology and
Systems, San Francisco, California, USA, March 2001.

[23] Srinivasan Seshan, Mark Stemm, and Randy H. Katz.
SPAND: shared passive network performance
discovery. In USENIX Symposium on Internet
Technologies and Systems, Monterey, California, USA,
December 1997.

[24] Apache::Throttle - Apache/Perl module for
speed-based content negotiation.
http://www.dmi.usherb.ca/laboratoires/

documentations-logiciels/Perl/lib/Apache/

Throttle.html.

[25] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. N
for the price of 1: Bundling Web objects for more
eÆcient content delivery. In Proceedings of the Tenth
International World Wide Web Conference, Hong
Kong, May 2001.
http://www.cs.wpi.edu/~cew/papers/www01.pdf.

