Exploiting Object Relationships for Deterministic Web Object
Management*

Mikhail Mikhailov and Craig E. Wills

Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609
{mikhail,cew}@cs.wpi.edu

Abstract

This paper presents a novel Web object man-
agement mechanism called MONARCH. The
primary goal of our mechanism is to pro-
vide strong cache consistency without re-
quiring servers to maintain per-client state.
MONARCH also seeks to reduce overhead in-
curred by heuristic-based cache consistency
mechanisms.

Servers first classify objects at a site based
on object change characteristics. Then the
servers analyze relationships between the ob-
jects composing a page in conjunction with ob-
ject change characteristics and compile that
information into concise and explicit object
management instructions. Client caches follow
these instructions and deterministically man-
age objects, including those objects that are
currently managed heuristically. The mecha-
nism utilizes request-driven server invalidation,
where servers invalidate only those objects that
reside on the currently retrieved page. The ap-
proach works well when pages contain objects
with a mix of change characteristics, which is
often the case for content from popular sites.

We have implemented the proposed mechanism
in a prototype system and present its design
and implementation. We also present results

*This work is partially supported by the National
Science Foundation Grant CCR-9988250.

of a simulation-driven performance evaluation
of our approach. Simulation results show that
strong cache consistency without any per-client
server state can be achieved and that for many
categories of Web pages the performance of our
approach is better than that of heuristic poli-
cies in terms of generated traffic. We also show
that although exposing constituent page com-
ponents to clients tends to generate more re-
quests that reach the server, the amount of
cacheable content increases by 30%—-50%.

Keywords: Web Caching, Distributed Object
Management, Cache Consistency, Server Inval-
idation, Change Characteristics, Object Rela-
tionships, Object Composition.

1 Introduction

The content and services being offered on the
World Wide Web are increasingly becoming
richer, more frequently changing, and more per-
sonalized. There are now sites serving content
encoded for wireless devices and providing Web
services. The user population of the Web is not
only growing, it is also changing in that more
automated clients are being introduced.

The sheer size, diversity, and constant growth
of the World Wide Web demand powerful

techniques for scaling the Web and improv-
ing its performance. Since the early days of
the Web, organizations successfully deployed
caching proxy servers to lower bandwidth us-
age on their Internet connections and decrease
the response time for their internal users. Aca-
demic and industrial efforts to advance the
state-of-the-art in Web performance led to the
introduction of caching hierarchies, intercep-
tion proxies, surrogate servers and more re-
cently to the deployment of Content Distri-
bution Networks (CDNs). More recent pro-
posals such as Akamai’s EdgeSuite based on
the Edge Side Includes (ESI) [8] allow servers
to expose page structure to clients and allow
clients to cache page fragments at the edge of
the network. On-going work on mechanisms
such as the Web Cache Invalidation Protocol
(WCIP) [13] aims at having origin servers in-
validate objects cached at CDN servers.

While caching and content delivery infrastruc-
tures are integral parts of the Web, typical
browser and proxy caches still rely on heuris-
tics for object management. Heuristic-based
approaches are imprecise by definition and pro-
vide weak cache consistency where caches may
serve stale objects to their clients. Heuris-
tic approaches also generate unnecessary traf-
fic when they revalidate objects that have not
changed. In this paper we present an alterna-
tive approach to managing Web objects, called
Managing of Objects in a Network using As-
sembly, Relationships and Change cHaracter-
istics (MONARCH). The goal of MONARCH
is to provide strong cache consistency without
requiring servers to maintain per-client state.
MONARCH also seeks to reduce the amount of
messages and bytes that the cache and server
exchange. To achieve its goal, MONARCH ex-
ploits the relationships between objects com-
posing a Web page and takes into account
change characteristics of these objects. Based
on that information, MONARCH selects an ob-
ject management strategy that is specific to
and most appropriate for a given set of ob-
jects. It then communicates the chosen man-
agement strategies to the caches. MONARCH

works particularly well when pages contain ob-
jects with a mix of change characteristics (both
frequently and rarely changing), which is often
the case for content from popular sites.

In our previous work, we evaluated potential
gains of our approach and reported encourag-
ing results [20]. In this paper, we present the
details of our approach and describe the design
and implementation of the MONARCH pro-
totype system that we built. We show that
while MONARCH does require servers to main-
tain state, the amount of state does not de-
pend on the number of clients. We also show
that MONARCH performs better than heuris-
tic policies and similarly to the optimal object
management policy on a range of realistic sce-
narios.

The rest of the paper is organized as follows. In
Section 2 we discuss how objects are currently
managed on the Web. In Section 3 we intro-
duce our classification of object change char-
acteristics and present our approach to deter-
ministic object management. Implementation
of the MONARCH prototype system is dis-
cussed in Section 4. The simulator that we
wrote and used for performance evaluation of
MONARCH, simulation scenarios, and results
are presented in Sections 5 and 6 respectively.
We compare our work to ideas proposed by oth-
ers in Section 7 and conclude the paper with a
discussion of our on-going work.

2 Current Practice

We discuss how objects are managed on the
Web today using the Web page shown in Fig-
ure 1. This example is motivated by home
pages of popular news portals. The container
object CO is changing frequently—every few
minutes—because content designers update the
top story and add and remove links leading to
the major news articles. Irrespective of fre-
quent updates to the news stories, every re-
quest for CO results in a different response be-
cause the origin server dynamically generates

CO, changing which ad banner image to dis-
play and where on the page to place it. Em-
bedded objects EO1—FEQO3 change only occa-
sionally. Such changes are applied by a human,
occur at unpredictable points in time, and are
saved under the same name as the previous ver-
sion of the object. Objects FO4 and EO5 never
change. If changes are required, content design-
ers save them under a different name, effectively
creating a new object.

Let us now consider how these objects are cur-
rently managed within a proxy-style caching
architecture. Caches cannot store the con-
tainer C'O because it changes frequently and
either carries an explicit indication that it is
uncacheable or has no cache control meta in-
formation associated with it. The five embed-
ded objects EO1—FQO5 change rarely or never
and may be cached. Currently, the more cache-
friendly origin servers assign cacheable objects
an expiration or a last modification time, via
the Expires and Last-Modified HTTP re-
sponse headers respectively. When an explicit
expiration time is not available, caches, such
as Squid [18], consider a configurable fraction
of object’s age to be a reasonable estimate for
the freshness lifetime for that object. The age
of an object is the difference between current
time and that object’s last modification time.
The heuristic used here, referred to as the Alex
protocol [2], suggests that the younger files are
likely to change sooner than the older files. It is
impossible for caches to deterministically know
when cached objects EOI—FOS5 become stale
because servers cannot accurately predict ob-
ject expiration times and heuristic time-to-live
is imprecise by definition. Also, servers can in-
advertently provide misleading expiration and
last modification times [19]. As a result, caches
may serve stale objects to their clients. Caches
also generate unnecessary traffic and place ad-
ditional load on the origin servers when they
validate objects that have expired in the cache
but are unchanged at the origin server.

3 MONARCH-—A Deterministic
Approach to Object Management

Our work is motivated by the lack of determin-
ism and the inefficiency exhibited by the heuris-
tic approach to cache consistency. Studies show
that unnecessary validation requests generated
by caches represent 15-18% [11], 30% [16] and
37% [1] of all requests served by origin servers.
These requests utilize server resources that
could have been used to serve other requests.
More importantly, revalidations increase client
perceived latency. Prior research has shown
that revalidations increase the average latency
by 1-5.7 times and the median latency by 5.5—
9.2 times for an individual object [6]. Depend-
ing on the network distance between the cache
and server and on the HT'TP protocol option
used, client perceived per page latency increases
due to cache validations by 2.6-5.1 times [12].
Also, as reported in [10], reducing the qual-
ity of embedded objects does not significantly
improve client perceived latency. This result
suggests that revalidation of embedded objects,
particularly smaller ones, is not significantly
better latency-wise than fetching these objects
anew.

In this section we describe our approach to pro-
viding strong cache consistency and reducing
the inefficiency of the heuristic cache consis-
tency approach. We use the example in Fig-
ure 1 to illustrate how our approach works.

3.1 Object Change Characteristics

A key observation motivating our approach is
that Web objects not only have different con-
tent types, but also exhibit distinct change
characteristics. Our classification of object
change characteristics is given in Figure 2. The
three categories on the left—Static, Periodic
and BoA—represent predictable changes. Ob-
jects in these predictable categories can be
managed deterministically: cached and never
validated, cached for a predetermined period,
and always retrieved from the origin server re-

CO i ndex. htm
EO3

CO - HTML page (container)

| ogol. gif

| EO5 adbanner . gi f

EO1 - CSS object

EO4t op. phot o. j pg |

EQ2 - JavaScript code
EO3 - sitelogo image
EO4 - top story photo
EOS5 - ad banner image

| EO1 main.css

| EO2 main.js

Figure 1: Home Page of a Popular News Site

spectively. The two categories on the right—
RDyn and RSt—cover objects that can be
cached but change unpredictably and, there-
fore, cannot be managed deterministically. Ex-
isting caches manage objects in the latter two
categories using heuristics.

One question about our approach is whether it
is feasible to classify a large number of objects
at a Web site based on these change characteris-
tics. Our viewpoint is that servers already auto-
matically generate many objects based on mea-
surable events or at regular intervals. To mark
the resulting objects with appropriate change
characteristics is a trivial addition to these au-
tomated tasks. The type of an object or its lo-
cation within a file system may define its change
characteristic.
ated image, such as a digital photograph, may
be marked as static. All objects in one direc-
tory may be treated as RSt and in another di-
rectory as RDyn. Another observation, that
we believe makes this approach feasible, is that
only the most popular objects at a site require
classification, with others being managed using
currently adopted mechanism. Further, even
within popular pages, only frequently changing
objects need to be marked as such, with others
left unmarked and classified as RSt by default.

For example, a manually cre-

3.2 Design

The basic idea of MONARCH is to exploit the
fact that some objects on a page change fre-
quently and must be retrieved from the ori-
gin server. In our work, we use the notion of
a volume [15], a collection of related objects,
to group the set of objects composing a page.
Upon requests for frequently changing objects,
the server can provide fine-tuned targeted in-
validation information to clients for objects re-
siding in the same volume as the requested ob-
ject. MONARCH identifies a single object—a
manager—within a volume and uses it to help
manage nondeterministically changing objects
in the volume. The process of selecting a man-
ager object is carried out as follows.

The server first classifies objects at a site based
on their change characteristics. The server then
performs per-page compilation by analyzing the
relationships between objects constituting the
page in conjunction with change characteristics
of these objects, selecting the object with the
most dominant change characteristic to be the
manager for that page, and assigning Content
Control Commands (CCCs) to all objects on
the page. CCCs provide concise and explicit
instructions to clients on how to handle each
object. The server also keeps track of object
updates and of changes in volume membership
so that on repeat visits from clients it can inval-
idate those nondeterministically changing ob-

S8 Legend:
2% Born-(%rgﬁ)cce& O Cacheable
% 2 Iselative_ly @ Uncchesbe ’ Class ‘ Example
£ 8 amic
; g ()Flzrlsyn) Periodic | periodically updated weather map
2 _ BoA container CO in Figure 1
g3 Relatively . - —
D g Satic Static objects FO4 and FOJ5 in Figure 1
g (RS) RSt objects BOI—EO3 i Figure 1
2 RDyn list of latest news stories
Ch edictably?
(Canbe n?gn%giﬂaerlr?qi ni stl)(/:él ly?)

Figure 2: Classification of Object Change Characteristics

jects that are on the same page as the requested
object. When volume membership changes, the
server repeats the process of page compilation
and may change the CCC commands associated
with objects on the updated page.

In our example in Figure 1, the container CO
has the most dominant change characteristic
since it is changing on every access while all
other objects either never change or change in-
frequently. Therefore, the server selects the
container object to be the manager for the page
and assigns appropriate CCCs to all objects
based on that. The CCCs assigned to objects
EO4 and EOS5 notify caches that these objects
can be cached for as long as necessary and do
not need to be validated. Objects EOI—FEO3
belong to the RSt category and would be man-
aged heuristically in current practice. In our
approach, however, servers can use the deter-
ministic retrieval of the container C'O to inval-
idate the RSt objects embedded in it so that
caches can store these RSt objects and treat
them as fresh until the server sends an inval-
idation. Figures 3 and 4 show sample server
responses to requests for a RSt object (FO1 in
this case) and for the BoA container CO re-
spectively. The CCC associated with the con-
tainer instructs caches to keep only meta infor-
mation about the CO and provides name and
current version of the volume associated with
the page. Both responses were generated by
the MONARCH prototype system, which we
discuss in Section 4.

HTTP/1.1 200 OK

Date: Sat, 04 May 2002 10:04:31 GMT
Server: Apache/1.3.19 (Unix)

CCC: cmd=C; version=996109498

Figure 3: Server response with CCC for
EO1—FEOS8

HTTP/1.1 200 OK

Date: Sat, 04 May 2002 10:11:00 GMT

Server: Apache/1.3.19 (Unix)

CCC: cmd=CM; version=1020507067;
vname=index.html;
vversion=1008104231-1020507067

Figure 4: Server response with CCC for con-
tainer CO

The server reply to a request for the container
CO looks slightly different if the server sends
an invalidation. Suppose a client requested and
cached the objects shown in Figure 1. Later on,
after object EO1 is updated, the same client is
requesting the container C'O again, indicating
to the server that it had previously seen version
1008104231-1020507067 of the volume named
index.html. The server determines which ob-
jects the volume contained at the time of the
previous request and invalidates the RSt ob-
jects that have been updated—FO1. For effi-
ciency, the server piggybacks invalidation infor-
mation onto its response to the client [11], as
shown in Figure 5.

The client invalidates object FO1 in its cache

HTTP/1.1 200 0K

Date: Sat, 04 May 2002 10:45:58 GMT

Server: Apache/1.3.19 (Unix)

CCC: cmd=CM; version=1020509159;
vname=index.html;
vversion=1008104231-1020509159

CCC: cmd=INV;
objs="main.css~1020508627"

Figure 5: Server response with CCC for con-
tainer C'O and invalidation for embedded ob-
ject

and retrieves a new copy of it. The client reuses
cached copies of those RSt objects that the
server did not explicitly invalidate: FO2 and
EOS8. 1If the client does not indicate to the
server that it had previously seen the CO ob-
ject, the server can either provide no invalida-
tion information at all, as is done currently, or
inform the client about the current versions of
the RSt objects embedded in CO.

3.3 Design with Page Components

The scenario that we just discussed is fairly sim-
ple in that it has a single frequently changing
container object embedding a few rarely chang-
ing objects. Now that major Web browsers
provide better and more consistent support for
the W3C’s Document Object Model specifica-
tion [7] and with the introduction of page as-
sembly services at the edge of the network [§],
Web sites may choose to expose constituent
page components to clients. Under such a sce-
nario our example in Figure 1 may look to
clients as shown in Figure 6.

Those parts of the original BoA container CO
that change frequently or on every access are
now captured in separate components: CMP1
and CMP2 are BoA, and are the only objects in
our modified page that must be retrieved from
the server on every access; CMP4 and CMP5
are RDyn and can be cached until invalidated
by the server. We relocated cacheable and
deterministically manageable content—a daily

opinion poll on a controversial question—into
the Periodic component CMP6. We also moved
RSt content that is shared between many pages
at the site into components CMPS and CMP7.
This content, as well as the new RSt container
CO’; can now be cached.

The transition of the container object from BoA
to RSt fundamentally affects how we manage
this set of objects. Since C'O’ is now RSt, the
server selects a different object that is chang-
ing frequently to assist caches in managing the
container CO’ and other non-deterministically
changing objects on the page. The CCC that
the server associates with C'O’is shown in Fig-
ure 7. That CCC instructs caches that they
may cache the container but should always
satisfy the provided precondition—retrieval of
CMP1 in this case—before reusing the cached
copy of the container.

HTTP/1.1 200 OK

Date: Sat, 04 May 2002 10:45:58 GMT

Server: Apache/1.3.19 (Unix)

CCC: cmd=C; pre=username.cmp;
version=1008104231;
vname=index.html;
vversion=1008104231-1020509159

Figure 7: Server response with CCC for con-
tainer CO’. CCC includes precondition.

Upon receiving a request for CMP1, referred
from the RSt container CO’ the server at-
tempts to invalidate the container and nonde-
terministically changing objects embedded in
it.

4 MONARCH Prototype
Implementation

We have designed and built a prototype sys-
tem implementing the MONARCH approach
to object management. The system consists
of three components: the MONARCH Proxy
Server (MPS), MONARCH Web Server (MWS)
and MONARCH Volume Manager (MVM). We

CO’ i ndex. htm’

L CO' - HTML page (container)

N EO1 - CSSobject

EO3 CMP1 CMP2 ad. cnp i
| 1. qif - EO2 - JavaScript code
©0go-. ol username. cnmp |E05adbanner. gi f EO3 - sitelogo image
CMP4 top_story. cnp EO4 - topstory photo
EO4 t op. phot o. j pg | CMP5 EOS - ad banner image

CMP1 - personalized greeting
CMP2 - personalized ad banner

CMP3 - site navigation menu

CMP3 top_articles.cnp
navnenu. cnp votcg/lpcerrp
CMP7 policy.cnp

CMP4 - top story headline

CMP5 - linksto latest news articles

[EO1 nmuin.css

CMP6 - opinion poll form

| EO2 main.js

CMP7 - site usage policy

Figure 6: Objects and Components Composing Home Page of a Popular News Site

describe each of the components next.

4.1 MONARCH Volume Manager

The MONARCH Volume Manager is responsi-
ble for monitoring content available at a Web
site and keeping track of object changes and
volume membership changes. When an object
update takes place, the volume manager de-
termines which volumes are affected and up-
dates volume membership information, which
is stored in a relational database (MySQL).
MVM updates volume version only when vol-
ume membership changes. Depending on a par-
ticular mix of objects at a site, the volume
manager can run periodically, or be invoked by
trigger mechanism upon object updates. For
example, the volume manager can run when
updated objects are uploaded to a production
server from a staging server. The Web server
can also invoke MVM to process dynamically
generated objects.

4.2 MONARCH Web Server

We implemented the MONARCH Server as a
plug-in for the Apache Web server. Apache can
be configured to hand off all or certain requests
to MONARCH plug-in. The main responsibil-
ity of the MONARCH server is to communicate
with the volume manager and obtain object and

volume version and volume invalidation infor-
mation that is included in the server response.
The MONARCH server provides its clients with
targeted invalidations that are likely to be im-
mediately useful. MWS maintains no per-client
state and relies on its clients to provide volume
information on subsequent visits. When a pre-
viously retrieved volume name and version is
present in the request, MWS asks the volume
manager to determine which objects need to be
invalidated. If client has no previous volume in-
formation, or chooses not to use it, MWS can-
not perform volume invalidation.

The MONARCH server is capable of assem-
bling page components into a monolithic page
for clients that either cannot or are not autho-
rized to perform assembly themselves. MWS
also adjusts HT'TP response headers associated
with the assembled pages.

4.3 MONARCH Proxy Server

The MONARCH Proxy Server is also imple-
mented as a plug-in for the Apache Web server.
Upon receiving a client request, the proxy at-
tempts to find the requested object, either re-
trieving it from its cache or fetching it from the
origin server. MPS always manages objects us-
ing the MONARCH object management policy,
but falls back to heuristic policy if the server
does not provide CCC commands.

Whenever MPS contacts the origin server to
validate a cached object, it includes the cached
object version identifier and the cached volume
version identifier in its request. Upon receiv-
ing the server response, MPS examines the at-
tached CCC commands and removes those ob-
jects that the server invalidates. If MPS re-
ceives a request for a cached object that the
server associated a precondition with, MPS al-
ways satisfies the precondition first, by fetching
the precondition object from the server.

5 Web Object Management
Simulator

In this section we describe the Web Object
Management Simulator (WOMS) that we de-
veloped in order to evaluate the performance
of MONARCH and compare it to that of other
object management policies on a range of sce-
narios.

WOMS is a discrete event-based simulator
that handles request arrival and object update
events. WOMS generates requests using an ex-
ponential distribution with a given mean inter-
arrival time. It generates object update events
based on object change characteristics. WOMS
can run in two distinct modes. While running
in object composition mode, WOMS exposes all
objects to client requests. While running in
monolithic mode, WOMS never generates client
requests for components that constitute the
top-most container object. WOMS still takes
components into account in that the size of the
resulting container is the sum of sizes of all con-
stituent objects, and the change characteristic
of the resulting container is the most dominant
of all constituent objects. In both modes, each
object, including private components, is up-
dated individually to guarantee that the same
scenario simulated under the two modes always
has exactly the same sequence of object up-
dates. It also makes it easy to simulate breaking
a large container page into components.

WOMS contains a Web content simulation

component that generates Web objects based
on provided descriptions of object change char-
acteristics and relationships. WOMS can clone
an object, creating new objects with the same
change characteristic as the original object,
but different names. WOMS uses cloned ob-
jects to simulate rotating ad banners by cycling
through a pool of cloned objects in a round-
robin fashion and embedding the next object
in the pool into the parent object. WOMS can
also simulate addition of a new, never before
seen, object to the page by creating a large pool
of cloned objects. WOMS can also generate and
write to disk real Web pages (see Section 8).
WOMS assumes an infinite cache and no cache
replacement policy. Object management poli-
cies are implemented as plug-ins—as long as
policies use the simulator’s programming inter-
face, new policies can be written and added to
the simulator. The simulator simply feeds each
occurring event to all available plug-ins.

6 Performance Evaluation

Our goal in this work is to compare the per-
formance of MONARCH to that of the exist-
ing policies that maintain no per client state at
the server. In particular, we are interested in
comparing MONARCH with heuristic policies.
We used the number of stale objects served to
clients and the number of messages and bytes
transferred between the cache and server as the
performance metrics. All object management
policies studied in this work faithfully obey ob-
ject expiration times and do not cache objects
marked as uncacheable. Currently WOMS does
not interoperate with the MONARCH proto-
type system, therefore we implemented the
MONARCH policy as a simulator plug-in. In
addition to MONARCH (M) we simulated the
following policies: 1. the Optimal (Opt) pol-
icy that has the perfect knowledge of object
updates, maintains strong consistency and con-
tacts the server only when absolutely necessary;
2. the de facto standard Heuristic policy, with
5% (H5) and 10% (H10) of the object’s age used

as adaptive expiration time; 3. the Always
Validate (AV) policy that validates cached
nondeterministically changing objects on every
access and 4. the Never Validate (NV) pol-
icy that never validates cached objects.

In designing scenarios for the simulation, we at-
tempted to create realistic scenarios that cumu-
latively cover a wide range of pages available on
the Web today. We informally analyzed pages
at a set of Web sites and noted such page char-
acteristics as object composition, object sizes,
and update frequencies. We used these char-
acteristics to create synthetic content. Even
though specific Web sites motivated our sce-
narios, each scenario depicts a category of Web
pages rather than a specific page. Using only
synthetic content is sufficient for preliminary
evaluation of our policy across a range of Web
page categories. To model Web content more
accurately and to validate our preliminary re-
sults we also plan to collect and use actual con-
tent from a set of Web sites.

We evaluated each scenario under differ-
ent request arrival frequencies and simulation
lengths. While changing these parameters af-
fects the absolute results, the relative perfor-
mance of the policies studied remains the same.
For the results presented here, the mean request
inter-arrival time was set at 15 minutes, and
the length of the simulation was set at 3 weeks.
For two scenarios these parameters are different
and are described below. To ensure that ob-
jects (especially RSt ones) have more realistic
creation times, each simulation run had a warm
up period of 6 months during which the simula-
tor generated and processed only object update
events. We now describe each of the scenarios
used and present the simulation results.

6.1 News Portal

The first simulation scenario is similar to the
one discussed earlier in the paper and mim-
ics the home page of a busy Web news portal.
Types of objects composing the page in mono-
lithic and object composition modes are shown

at the top of Table 1. BoA objects change on
every access and St objects do not change at all.
Modification times for RSt and RDyn objects
are drawn from pre-defined ranges using a uni-
form distribution. The range configured for the
RSt container object, for example, is 1-2 days.
Therefore, the time between any two modifica-
tions of the container is at least one day and
not more than 2 days. Other RSt objects in
this scenario have ranges on the order of weeks
and months. Ranges for the RDyn objects in
this scenario are on the order of tens of minutes
and a couple of hours.

In monolithic mode, BoA, Per, RDyn and one
RSt components are merged together to pro-
duce a (larger) container object with the BoA
change characteristic. Even though the simula-
tor continues updating the RDyn, RSt, and Per
components, these changes are masked by the
BoA components on the page. In both mono-
lithic and object composition modes, the page
contains rotating ad banners. In addition, from
time to time a new, never before seen object,
representing a topical news photo, is created
and added to the page. Popular news sites, such
as boston.com and cnn.com have pages that re-
semble the page modeled by this scenario.

Simulation results for this scenario are shown
in Table 1. For each policy the table shows the
average number of: requests that the caching
proxy sent to the origin server, bytes that the
server sent to the proxy, stale objects that the
proxy served to clients, and unnecessary valida-
tion requests that the proxy sent to the server.

To better understand how to read the table,
consider the results for the Optimal policy. In
monolithic mode, the page consists of 13 ob-
jects, one of which changes on each access and is
uncacheable. On the first request, the Optimal
policy fetches all 13 objects and caches 12 of
them. On subsequent requests it always fetches
the BoA object and fetches other objects only
when they change. Thus on each page retrieval
the Optimal policy always sends at least one
request to the server. On average, across mul-
tiple retrievals of the page, the Optimal policy

sends 1.65 requests to the server. All other poli-
cies, except for the Always Validate policy, send
the same or a few more requests to the server.
The Always Validate policy sends substantially
more requests to the server than other policies
in order to ensure strong consistency, although
HTTP/1.1 pipelining, if supported, could re-
duce the impact of these requests on the re-
sponse latency.

In object composition mode, the server makes
more objects composing the page visible to its
clients. As a result, the presence of 2 BoA ob-
jects on the page and frequent changes in the
RDyn objects force the Optimal policy to send
on average 3.60 request to the server per page
retrieval compared to 1.65 in monolithic mode.
The number of bytes received from the server,
however, decreases in object composition mode
since more of the content can be cached and
reused.

In monolithic mode, all objects embedded on
the page are RSt. As a result, the simulated
policies have to deal with only a handful of ob-
ject changes. Nevertheless, as the table shows,
heuristic policies H5 and H10 serve 0.06 and
0.08 stale objects to the client, while still mak-
ing 0.13 and 0.06 unnecessary validation re-
quests to the server per page retrieval respec-
tively. The MONARCH policy not only pro-
vides strong cache consistency and contacts the
server the same number of times as the Op-
timal policy, but also does not noticeably in-
crease number of bytes that the server sends to
the cache. In object composition mode, where
policies have to handle changes to more objects,
invalidation traffic introduced by MONARCH
becomes more noticeable, but the amount of
overall traffic from the server per page retrieval
is still less than under heuristic policies. We
also notice a significant increase in the amount
of stale content and unnecessary validation re-
quests under heuristic policies.

Comparing the results in the top and bottom
parts of each column we notice that exposing
components forming the page to clients resulted
in more requests reaching the server, while the

number of bytes served by the server was re-
duced by at least 53%. In our earlier work
we examined home pages of popular Web sites
and also found that treating pages as composed
from objects increases the amount of cacheable
content by 50% [20]. To lower the number of
compulsory requests for BoA objects reaching
the server, servers could advertise a single ag-
gregate BoA object that is used to generate all
the required BoA objects at once. Once a client
receives such an aggregate object, or a bun-
dle [21], it recovers all individual BoA objects
encapsulated in it.

6.2 Discussion/Storytelling Site

The next scenario simulates pages that contain
content submitted by Web users. Page com-
position for this scenario is shown at the top
of Table 2. The RDyn component representing
user-submitted content changes every few min-
utes and contributes the most bytes to the page.
Two more RDyn components change every few
minutes and every 12 to 24 hours respectively.
RSt objects include the container object, em-
bedded images and two components. Update
ranges for the RSt objects are on the order of
a few months to a year. Ad banners are ro-
tating within a separate public component: a
layer or a frame. The site that motivated this
scenario is slashdot.org. Given the popular-
ity of slashdot.org and availability of the code
that runs it [17], it is not surprising that many
other sites are similar to it.

For this scenario we decreased the observation
period from 3 weeks to 1 day in order to focus
on the effect of frequently changing RDyn ob-
jects on the studied policies. We also lowered
the mean request inter-arrival time from 15 to
5 minutes to generate more requests over the
course of the simulation. We believe that for a
busy discussion site both of these changes are
realistic.

Simulation results for this scenario are shown
in Table 2. We see that heuristic policies, even
with unnecessary requests to the server, gener-

Table 1: News Portal Scenario

monolithic (13 objs): BoA container, 8 RSt and 4 St objects.
composition (21 objs): RSt container, 2 BoA, 3 RDyn, 2 Per, 9 RSt and 4 St objs
Metric Policy

Mode (per page retrieval) Opt M H5 H10 AV NV
g Requests to Server 1.65 1.65 1.78 1.72 9.65 1.65
= Bytes from Server 67284 | 67284 | 67315 | 67300 | 69203 | 67273
g Stale Objects 0.06 0.08 1.7
= Unnecessary Validations 0.13 0.06 7.99
8 Requests to Server 3.60 | 3.60 | 5.79 | 5.36 | 15.66 | 2.67

i Z Bytes from Server 29809 | 29823 | 30316 | 30140 | 32704 | 6748

5 £ Stale Objects 0.13 | 0.27 6.6
S Unnecessary Validations 2.20 1.77 | 12.06

ated less traffic than both the Optimal policy
and MONARCH, but did serve a small num-
ber of stale objects to clients (too small to
show in the table). The MONARCH policy
maintained strong cache consistency at the ex-
pense of sending server invalidations with vir-
tually every server response. In object com-
position mode, heuristic policies generate more
traffic, more unnecessary traffic, and serve more
stale objects than both the Optimal policy and
MONARCH. We also see that letting clients re-
trieve individual components forming a page re-
sults in more cacheable content than when the
container is treated as monolithic. In this sce-
nario, however, due to one RDyn component
contributing the most bytes, only about 30%
more content can be cached.

6.3 Corporate Web Presence

This scenario is characterized by the lack of ob-
jects that change on every access or every few
minutes. Most of the objects on the page are
RSt and remain unmodified for months, while a
couple objects are RDyn and are updated daily.
Examples of pages that this scenario models
can be found at ora.com and ieee.org.

Simulation results for this scenario are shown
in Table 3. In both monolithic and object com-
position modes, the MONARCH policy gener-

ates more unnecessary requests and induces the
server to send more bytes than heuristic poli-
cies. This is due to the fact that MONARCH
sends at least one request to the server on
each page retrieval and this scenario has no
frequently changing objects. On the other
hand, this extra overhead allows MONARCH
to maintain strong cache consistency. As in
previous scenarios, breaking page into compo-
nents allows to cache more content—at least
50% more in this case.

6.4 User Home Pages

Our last scenario models a category of pages
that have no frequently changing objects at
all. The container and all embedded objects
change rarely (update ranges are on the order
of months) and the page does not contain any
components. The authors’ home pages follow
this model. We also consider a variation of this
scenario that introduces a BoA access counter.
For this scenario we increased the mean inter-
arrival time from 15 minutes to 12 hours and
also increased the length of the simulation from
3 weeks to 1 year. These increases produce
more realistic arrival times and more object up-
dates for the page in this scenario.

Simulation results for this scenario are shown in
Table 4. For this scenario, both monolithic and

Table 2: Discussion/Storytelling Site Scenario

monolithic (9 objs): RDyn container, 1 BoA, 6 RSt and 1 St objects.
composition (14 objs): RSt container, 1 BoA, 3 RDyn, 9 RSt and 1 St objects.

Metric Policy
Mode (per page retrieval) Opt M H5 H10 AV NV
2 Requests to Server 1.96 1.96 2.02 2.01 8.02 | 1.03
5 Bytes from Server 53093 | 53107 | 53024 | 52938 | 54548 | 2945
5 Stale Objects 0.00 | 0.00 1.00
= Unnecessary Validations 0.06 0.06 6.06
8 Requests to Server 2.67 | 2.67 | 348 | 3.28 | 13.02 | 1.04
8 % Bytes from Server 36955 | 36979 | 37099 | 36989 | 39438 | 2947
5 £ Stale Objects 0.03 | 0.06 2.97
S Unnecessary Validations 0.81 0.61 | 10.35

Table 3: Corporate Web Presence Scenario

monolithic (10 objs): RDyn container, 3 RSt and 6 St objects.
composition (13 objs): RSt container, 2 RDyn, 1 Per, 3 RSt and 6 St objects.
Metric Policy

Mode (per page retrieval) Opt | M H5 | H10 | AV NV
g Requests to Server 0.06 | 1.02 | 0.59 | 0.43 | 4.01 0.02
= Bytes from Server 1535 | 1766 | 1660 | 1561 | 2485 84
g Stale Objects 0.08 | 0.09 1.06
= Unnecessary Validations 0.96 | 0.54 | 0.38 | 3.96
8 Requests to Server 0.06 | 2.04 | 0.87 | 0.57 | 6.03 0.03

g % Bytes from Server 483 | 959 | 674 | 595 | 1915 138

5 £ Stale Objects 0.13 | 0.25 2.15
S Unnecessary Validations 1.98 | 0.81 | 0.51 | 5.97

object composition modes produce identical re-
sults since the page has no components. Results
show that even though the MONARCH pol-
icy contacts the server on every page retrieval
and generates substantially more traffic than
the Optimal policy, it generates slightly fewer
requests, unnecessary requests, and bytes than
H5 policy, while maintaining strong cache con-
sistency. With the introduction of a BoA access
counter the performance of MONARCH virtu-
ally matches that of the Optimal policy.

This example, without the access counter, rep-
resents a page that does not have a mix of
change characteristics and hence is not a prime
candidate for our mechanism. The approach of
designating one of the objects to be a manager
that must be validated on each access is not
unlike the idea of a volume lease [22], although
we validate the manager and its volume on each
access rather than combining it with server in-
validation. If client caches want to avoid poten-
tially unnecessary validations, they could use a
heuristic approach in this case with some pos-
sibility of serving stale content.

7 Related Work

Previous work has examined volumes and ways
of constructing them. Krishnamurthy and
Wills studied site-wide volumes and volumes
based on the first level prefix of object’s path
name [11]. They report that for sites with fre-
quently changing resources the latter type of
volume is more appropriate because site-wide
volumes can generate a large number of invali-
dations. Cohen et al. [5] studied volumes based
on access patterns and directory structure and
proposed heuristics for thinning volumes. In
our approach to volume construction, only ob-
jects composing a page are included in a vol-
ume, which results in tighter volumes, meaning
that clients receive few invalidations that are
not useful.

Prior work has also studied ways in which
servers can provide strong cache consistency to

client caches by sending object updates to all
clients that accessed that object since its previ-
ous modification [14]. The number of invalida-
tions that the server sends out and the number
of clients that it has to keep track of can be re-
duced by using the concept of leases, proposed
in [9] and studied by Yin et al. [22]. A subse-
quent study combined volume leases with server
invalidation for handling dynamic Web work-
loads [23]. While these invalidation based ap-
proaches can maintain strong consistency, there
are issues with the amount of per-client state
that a server must maintain as well as with re-
synchronization when clients are disconnected
from the server. The amount of state can be re-
duced through the use of volume leases for vali-
dating or invalidating a set of objects, but then
clients must issue additional requests for renew-
ing the lease. In addition, any server invali-
dation approach needs an infrastructure, such
as multicast-based or hierarchical, to commu-
nicate the invalidations from the server to the
client caches. In contrast, our request-driven
approach requires no additional infrastructure;
rather it simply uses other requests between
the client and server to invalidate objects. Our
approach also eliminates the need for servers
to keep per-client state. Furthermore, in our
approach, in case of network outages between
clients and the server, clients receive an error
condition instead of using a potentially stale
object.

Challenger et al., in their work on the IBM 1998
Olympics Web site, had developed the Data
Update Propagation (DUP) mechanism to au-
tomatically update cache contents at the ori-
gin severs when underlying data changes [3, 4].
DUP was intended to be used between servers
and reverse proxies. Our approach is intended
for the client-side caches, such as browser
caches, forward proxies and CDN servers, but
could also be deployed at reverse proxies.

Authors of the Cachuma caching system [24]
advocate grouping dynamic pages into classes
based on URL patterns and exploiting coarse-
grain dependencies between the resulting

Table 4: User’s Home Page Scenario

’ 7 RSt objs.
Metric Policy
(per page retrieval) Opt | M H5 | H10 | AV | NV
Requests to Server 0.04 | 1.02 | 1.03 | 0.56 7 0.01
Bytes from Server 144 | 380 | 382 | 269 | 1816 | 41
Stale Objects 0.18 | 0.43 4.15
Unnecessary Validations 0.98 | 0.99 | 0.52 | 6.96
8 objs: 7 RSt and 1 BoA access counter
Requests to Server 1.03 | 1.03 | 1.97 | 1.52 8 1.01
Bytes from Server 1321 | 1322 | 1547 | 1439 | 2993 | 1232
Stale Objects 0.18 | 0.45 4.1
Unnecessary Validations 0.94 | 049 | 6.97

groups and underlying data. Servers invalidate
a group of dynamic pages when underlying data
changes. While the Cachuma approach may re-
quire servers to maintain less state than our
finer-grained approach, we believe invalidating
entire pages when only a portion of the underly-
ing data changes is inefficient. Our approach in
such situations invalidates only a single chang-
ing component, shared between all pages in a
group.

8 Conclusions and On-going Work

In this paper we presented a Web object
management approach that improves upon
heuristic-based strategies for management of
Web objects. We discussed the design and im-
plementation of the prototype system and eval-
uated the performance of our approach using
simulation. We show that for many categories
of Web pages the performance of our approach
is better than that of heuristic policies in terms
of generated traffic while providing strong cache
consistency. This consistency is obtained with-
out requiring the server to maintain any per-
client state. We also evaluated how existing
and proposed object management policies are
affected by exposing internal page components
to clients. We show that although exposing

constituent page components to clients tends
to generate more requests that reach the server,
the amount of usable cached content increases
by 30%—50%.

Our on-going work is proceeding in four direc-
tions. First, we are in the process of extend-
ing WOMS to handle wider variety of situa-
tions, such as when object’s change character-
istic changes during the simulation, and to han-
dle more object management policies, such as
server invalidation with leases [14, 22].

Second, we are working on making WOMS
drive the MONARCH prototype system. The
idea is for WOMS to generate real Web content
(which it can already do) that the MONARCH
server can access and serve to clients and to
also convert simulated requests into real HT'TP
requests and send them to the MONARCH
Proxy. Our main interest in connecting the two
systems is to study the scaleability of the entire
MONARCH system, and of the volume man-
ager in particular, over a range of categories of
Web content. We are also evaluating the possi-
bility of further thinning volumes by grouping
objects shared by many pages at a site into a
separate volume.

Currently our simulator uses synthetic content
with characteristics based on informal analysis
of a set of Web sites. To make the simulated

content more realistic, we plan to collect real
content from a variety of Web sites over a pe-
riod of time and then use the collected content
to drive the simulator. Such an approach would
allow us to evaluate the simulated object man-
agement policies on the same content that a real
cache is required to handle. It would also allow
us to simulate the behavior of a real cache, in-
cluding the handling of the HTTP cache control
directives. Using real content can also facilitate
the study of multiple pages at a site, and the
study of how to handle objects that are shared
between multiple pages.

Finally, we are extending the basic content as-
sembly functionality of our prototype system
with capabilities for caches to dynamically cre-
ate such content as rotating ad banners, and for
handling content personalization. While simi-
lar systems have been proposed and even de-
ployed [8], we are interested in evaluating how
this addition may affect our approach to Web
object management.

9 Acknowledgments

The authors thank the anonymous reviewers for
their detailed and helpful comments on techni-
cal aspects of the paper and on the presenta-
tion. The authors also thank Janet Burge for
reading draft and final versions of the paper
and providing corrections and suggestions that
improved the paper.

References

[1] Martin Arlitt and Tai Jin. A Workload
Characterization Study of the 1998 World
Cup Web Site. IEEE Network, May /June
2000.

[2] Vincent Cate. Alex - a Global Filesystem.
In Proceedings of the USENIX File Sys-
tems Workshop, pages 1-12, May 1992.

[3] Jim Challenger, Arun Iyengar, and Paul
Dantzig. A scalable system for consistently
caching dynamic web data. In Proceedings
of the IEEFE Infocom ’99 Conference, New
York, NY, March 1999. IEEE.

[4] Jim Challenger, Arun Iyengar, Karen Wit-
ting, Cameron Ferstat, and Paul Reed. A
publishing system for efficiently creating
dynamic web content. In Proceedings of the
IEEE Infocom 2000 Conference, Tel Aviv,
Israel, March 2000. IEEE.

[5] Edith Cohen, Balachander Krishna-
murthy, and Jennifer Rexford. Improving
end-to-end performance of the Web using
server volumes and proxy filters. In ACM
SIGCOMM’98 Conference, September
1998.

[6] John Dilley. The Effect of Consistency
on Cache Response Time. IEEE Network,
May /June 2000.

[7] DOM: Document Object Model. W3C
Working Draft. http://www.w3.org/DOM/.

[8] Edge Side Includes. http://esi.org/.

[9] Cary G. Gray and David R. Cheriton.
Leases: An efficient fault-tolerant mecha-
nism for distributed file cache consistency.
In Proceedings of the 12th Symposium on
Operating Systems Principles, pages 202—
210, December 1989.

[10] Balachander Krishnamurthy, Craig Wills,
and Yin Zhang. Preliminary measure-
ments on the effect of server adaptation for
web content delivery. In Proceedings of the
ACM SIGCOMM Internet Measurement
Workshop, Marseille, France, November
2002.

[11] Balachander Krishnamurthy and Craig E.
Wills. Piggyback server invalidation for
proxy cache coherency. In Seventh Interna-
tional World Wide Web Conference, pages
185-193, Brisbane, Australia, April 1998.

[12]

[13]

[14]

[16]

Balachander Krishnamurthy and Craig E.
Wills. Analyzing Factors That Influ-
ence End-to-End Web Performance. In
Proceedings of the Ninth International
World Wide Web Conference, Amsterdam,
Netherlands, April 2000.

Dan Li, Pei Cao, and Mike Dahlin. WCIP:
Web Cache Invalidation Protocol. Internet
Draft. http://www.wrec.org/Drafts/
draft-danli-wrec-wcip-00.txt.

Chengjie Liu and Pei Cao. Maintaining
strong cache consistency in the world-wide
web. In Proceedings of the 17th IEEE
International Conference on Distributed
Computing Systems, May 1997.

Jeffrey Mogul. An alternative to explicit
revocation?, January 1996.
http://www.roads.lut.ac.uk/lists
/http-caching/1996/01/0002.html.

Erich M. Nahum. WWW Workload char-
acterization work at IBM Research. In
Web Characterization Workshop, Cam-
bridge, MA, November 1998. World Wide
Web Consortium.
http://www.w3.0rg/1998/11/05/
WC-workshop/Papers/nahum.html.

The Slashdot Code.
http://slashcode.com/.

Duane Wessels. Squid Internet Object
Cache. http://squid.nlanr.net/Squid/.

Craig E. Wills and Mikhail Mikhailov. To-
wards a better understanding of Web re-
sources and server responses for improved
caching. In Fighth International World
Wide Web Conference, Toronto, Canada,
May 1999.

Craig E. Wills and Mikhail Mikhailov.
Studying the Impact of More Complete
Server Information on Web Caching. In
Proceedings of the 5th International Web
Caching and Content Delivery Workshop,
Lisbon, Portugal, May 2000.

[21]

22]

[24]

Craig E. Wills, Mikhail Mikhailov, and
Hao Shang. N for the Price of 1: Bundling
Web Objects for More Efficient Content
Delivery. In Tenth International World
Wide Web Conference, Hong Kong, May
2001.

Jian Yin, Lorenzo Alvisi, Michael Dahlin,
and Calvin Lin. Using leases to sup-
port server-driven consistency in large-
scale systems. In Proceedings of the 18th
International Conference on Distributed
Systems. IEEE, May 1998.

Jian Yin, Mike Dahlin, Lorenzo Alvisi,
Calvin Lin, and Arun Iyengar. Engineer-
ing server driven consistency for large scale
dynamic web services. In Proceedings of
the Tenth International World Wide Web
Conference, Hong Kong, May 2001.

Huican Zhu and Tao Yang. Class-Based
Cache Management for Dynamic Web
Content. In Proceedings of the IEEE Info-
com 2001 Conference, Anchorage, Alaska

USA, April 2001.

