
Evaluating a New Approach to Strong Web Cache
Consistency with Snapshots of Collected Content ∗

Mikhail Mikhailov
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609

mikhail@cs.wpi.edu

Craig E. Wills
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609

cew@cs.wpi.edu

ABSTRACT
The problem of Web cache consistency continues to be an impor-
tant one. Current Web caches use heuristic-based policies for de-
termining the freshness of cached objects, often forcing content
providers to unnecessarily mark their content as uncacheable sim-
ply to retain control over it. Server-driven invalidation has been
proposed as a mechanism for providing strong cache consistency
for Web objects, but it requires servers to maintain per-client state
even for infrequently changing objects. We propose an alternative
approach to strong cache consistency, called MONARCH, which
does not require servers to maintain per-client state. In this work
we focus on a new approach for evaluation of MONARCH in com-
parison with current practice and other cache consistency policies.
This approach uses snapshots of content collected from real Web
sites as input to a simulator. Results of the evaluation show MO-
NARCH generates little more request traffic than an optimal cache
coherency policy.

Keywords
Web Caching, Cache Consistency, Change Characteristics, Object
Relationships, Object Composition, Collected Content, Server In-
validation.

1. INTRODUCTION
The problem of Web cache consistency continues to be an im-

portant one. Current Web caches use heuristic-based policies for
determining the freshness of cached objects, often forcing content
providers to unnecessarily mark their content as uncacheable sim-
ply to retain control over it. These heuristic policies also gener-
ate unnecessary validation requests for content that is marked as
cacheable. Server-driven invalidation has been proposed as a mech-
anism for providing strong cache consistency for Web objects, but
it requires servers to maintain per-client state even for infrequently
changing objects [6, 10, 11, 12].

We propose an alternative approach to maintaining strong cache
consistency for Web objects, called MONARCH (Management of
Objects in a Network using Assembly, Relationships and Change
cHaracteristics). An initial version of this approach was presented
in [7]. MONARCH exploits the fact that Web pages are often con-
structed from a set of objects with a mix of change characteristics.
Instead of treating all objects independently, as is done in other

∗This work is partially supported by the National Science Founda-
tion Grant CCR-9988250.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.xxx.

approaches, MONARCH identifies useful relationships among ob-
jects composing a page and uses these relationships to keep all ob-
jects strongly consistent.

In [7] we evaluated the performance of an initial version of MO-
NARCH that worked for Web pages with no shared objects. Our
evaluation in [7] used simulations with synthetic content and com-
pared MONARCH with a limited set of other policies. It did not
allow us to evaluate MONARCH and other policies on content from
real Web sites and did not allow for comparison with current prac-
tice.

The de facto evaluation standard in the Web research community
is to perform trace-driven simulations using Web or proxy server
logs. It is well-known that such logs are hard to find and they tend
to be from smaller or research-oriented sites. They also tend to be
dated. It is difficult to obtain (recent) traces from large and pop-
ular commercial Web sites. Yet, evaluation of new proposals on
precisely these types of sites is of most interest.

In this work we propose a new evaluation methodology that can
be applied to the content from any Web site of interest. The idea is
to collect a snapshot of content for the site by using the home page
as a starting point and following a sample of links available on that
page. This sample includes both links that persist on the page over
long periods of time and links that come and go over shorter periods
of time. By taking a snapshot at frequent intervals we can capture
the dynamics of the site. We then use the collected data as an input
to a simulator and evaluate a wide range of cache consistency poli-
cies over a range of access patterns. Downloading content from a
site also allows us to obtain HTTP directives related to caching as
used by the site. The availability of these directives makes it possi-
ble to compare policies with current practice for cache consistency.

In evaluating cache consistency policies using our simulator, we
examine the amount of request traffic between a client cache and a
server as well as the number of stale objects served from the cache.
We also examine the overhead, both at the server and in message
traffic, incurred by a policy in the process of maintain strong cache
consistency. We use results from another study [5] to better under-
stand how the relative performance differences between policies are
expected to translate into the differences in the end user response
time.

The rest of the paper is organized as follows. In Section 2 we
describe our approach to strong cache consistency on the Web. In
Section 3 we describe the set of Web sites that served as the source
of real content for this study. In the same section we also present
our methodology for content collection and converting it into the
format used by our simulator. In Section 4 we discuss the simu-
lation methodology that we used and describe cache consistency
policies studied in this work. In Section 5 we present the results of



our study. We then discuss related work in Section 6 and conclude
the paper.

2. THE MONARCH APPROACH TO
STRONG CACHE CONSISTENCY

MONARCH is an approach to strong Web cache consistency
motivated by two observations. We first observe that the majo-
rity of Web pages consist of multiple objects and the retrieval of all
objects is required for proper page rendering. Current approaches
to caching on the Web treat all such objects independently from
each other. We believe ignoring relationships between objects is
a lost opportunity. We also observe that objects composing Web
pages change at different and identifiable rates. The container ob-
ject may be changing every few minutes while embedded objects
remain unmodified for months. The essence of our approach to
strong cache consistency is to examine objects composing a Web
page, select the most frequently changing object on that page and
have the cache request or validate that object on every access. Such
requests also carry enough information for the server to determine
related objects the client is likely to have cached and to determine
if invalidations for these related objects need to be sent as part of
the reply.

2.1 Object Change Characteristics
We classify objects into four categories, shown in Figure 1, based

on how frequently objects change and whether their changes are
predictable. The three categories on the left side of the figure
represent predictably changing objects, for which the server has
a priori knowledge at what time or upon which event the change
will occur. We define the three predictable categories as follows.
The Static (St) category includes objects that never change and
can be cached for as long as necessary. ThePeriodic (Per) cate-
gory includes objects that the server updates at predetermined in-
tervals. Periodic objects can be assigned explicit expiration times.
TheBorn-On-Access (BoA)category covers objects that the server
can only generate at the time of the client’s access. TheNon-
Deterministic (ND) category on the right side of the figure, sub-
divided into Relatively Dynamic (RDyn) and Relatively Static
(RSt) subcategories, represents unpredictably changing objects.
TheRDyn andRSt subcategories divideND objects into those that
are relatively more and relatively less likely to change between ac-
cesses. As we will show, the distinction is useful, but not critical,
for the MONARCH approach.

on
 e

ac
h

ac
ce

ss

Static

Changes predictably?
(Can be managed deterministically?)

Cacheable

Uncacheable

Legend:

D
et

er
m

in
is

ti
c 

(N
D

)
N

on

Relatively
Static
(RSt)

Relatively
Dynamic
(RDyn)fr

eq
ue

nt
ly

ra
re

ly
ne

ve
r

yes no

Born−on−Access
(BoA)

C
ha

ng
es

 h
ow

 o
ft

en
?

P
er

io
di

c

Figure 1: Classification of Object Change Characteristics

Having defined these categories, a key question is whether it is
possible and feasible to classify the often large number of objects

at a server site into these categories. Servers already automatically
generate many objects based on measurable events or at regular in-
tervals. To mark the resulting objects with appropriate change cha-
racteristics is a trivial addition to these automated tasks. The type of
an object or its location within a file system may define its change
characteristic. For example, a manually created image, such as a
digital photograph, may be marked as static. A set of objects that
are known to change frequently, but unpredictably, may be grouped
together and marked as RDyn. If the change characteristics of an
object are not known then it should be marked as RSt by default.
Another observation, that we believe makes this approach feasible,
is that MONARCH need only be applied to the most popular pages
at a site.

2.2 Combining Object Relationships with
Object Change Characteristics

Once objects are classified based on their change characteris-
tics, the server examines relationships between objects at the site.
In [7] we only considered relationships between objects on the
same page. In this work we have extended MONARCH to also
consider cases when objects are shared across pages. The server
performs the following tasks: 1) it groups all ND objects that are
embedded on more than one page into a singleglobal volume; 2) it
constructs per-pagelocal volumesby grouping page-specific ND
objects; 3) it determines the most frequently changing object—the
manager—within each page; 4) it assigns each object on the page
aContent Control Command (CCC)providing explicit instructions
to caches on how to handle that object.

The CCC commands that MONARCH assigns to St and Per
objects and to BoA objects that have no related ND objects are
shown in Table 1. MONARCH uses CCC commands for objects
with these change characteristics for uniformity reasons. These ob-
jects could be managed using mechanisms currently available in the
HTTP protocol [2]: Per objects can be assigned explicit expiration
time via theExpires or the “Cache-Control: max-age ”
header, and St objects can also be assigned an expiration time that
is far into the future; BoA objects with no related ND objects could
be marked as uncacheable using the
“Cache-Control: no-cache ” header.

Table 1: CCC Commands Used by MONARCH for St and Per
Objects and BoA Objects with no Related ND Objects (bold
font highlights text used to identify commands in our imple-
mentation)

Object Change
Characteristic CCC Command

St Cache
Per Cache,Validate after TTL or Expires

BoA Not Cache

The goal of MONARCH is to provide strong cache consistency
for non-deterministically changing objects because other types of
objects can already be managed with strong cache consistency, as
shown in Table 1. Thus, the most useful relationships are between a
frequently changing object, such as a BoA object, and an ND (RSt
or RDyn) object. MONARCH ignores the relationships that St and
Per objects have with other objects, since these relationships do
not help manage ND objects. Two possible relationships between a
BoA and an ND object are shown in Figure 2a. The first example in
Figure 2a shows a BoA container object with an embedded ND ob-



ject. The other example in Figure 2a shows an ND container object
with an embedded BoA object. When a BoA object is not avail-
able on the page, MONARCH selects one ND object to manage
the other ND objects on the page, as discussed below. The rela-
tionship between two ND objects is shown in Figure 2b. The three
combinations shown in Figure 2 depict important combinations of
the composition relationship and object change characteristics that
are useful for deterministic object management. Adding more ob-
jects to each of the three combinations, irrespective of the change
characteristics of the newly added objects, does not fundamentally
affect the behavior of the relationship. We call each of the three
combinations apattern (a page patternin the context of a Web
page).

NDBoA

ND BoA

a. BoA-ND and ND-BoA Pattern
(BoA Object is the Manager)

ND

ND

b. ND-ND Pattern
(One ND Object is the Manager)

Figure 2: Useful Page Patterns

A given page pattern determines which object MONARCH se-
lects as the manager. If a pattern is BoA-ND, then the BoA con-
tainer object is the manager, as shown in Figure 2a. If a pattern is
ND-BoA, then one of the BoA children of the ND container ob-
ject is the manager. Finally, if a pattern is ND-ND the distinction
between RSt and RDyn objects becomes important. If the ND-ND
pattern can be represented as a RDyn-RSt pattern, then the RDyn
container object is the manager. If the ND-ND pattern can be rep-
resented as a RSt-RDyn pattern, then one of the child RDyn objects
is the manager. If, however, the ND-ND pattern is represented by
either RSt-RSt or RDyn-RDyn pattern, then the container object is
selected as the manager.

The CCC commands that MONARCH assigns to the manager
and managed objects are listed in Table 2. All of these commands
stem directly from the three page patterns. If the container object
is BoA with ND embedded objects (BoA-ND pattern) the server
instructs caches to keep meta information (global and local vol-
ume versions) for the container and cache embedded objects un-
til the server explicitly invalidates them. If the container is ND
with at least one BoA embedded object (ND-BoA pattern), the
server instructs the cache to cache the container, and to satisfy a
precondition—the retrieval of the BoA object—before re-using the
cached copy of the container. If both container and embedded ob-
jects are ND (ND-ND pattern), the server instructs the cache to
cache all objects, but validate a RDyn object (expected to change
more frequently) on each access. If all objects are RSt or RDyn
then the container page is selected for validation. In all three cases,
upon subsequent requests for the page, the cache contacts the server
and presents it with the version of the cached global and local vol-
umes. The server satisfies the request and piggybacks [4] invali-
dations for those global and local objects that have changed since
the last request from the cache. The CCC command assigned to
the manager object in the ND-ND pattern is the same as the one as-
signed to Per objects in Table 1, except it does not explicitly specify
a Time-To-Live or expiration time. Lack of such explicit value in-
dicates validation on every access by default. The CCC command
assigned to the managed ND objects is actually the same as the
one assigned to St objects in Table 1, except invalidation can never

occur for St objects. When a page contains no ND objects, includ-
ing cases when the page is described by the BoA-BoA pattern, all
objects on the page are assigned CCC commands shown in Table 1.

Table 2: CCC Commands Used by MONARCH for the Ma-
nager and Managed Objects (bold font highlights text used to
identify commands in our implementation)

Page CCC for the
Pattern Manager Object Managed ND Objects

BoA-ND CacheMeta info Cache until invalidated
ND-BoA Not Cache Cache withprecondition
ND-ND Cache,Validate Cache until invalidated

2.3 Prototype Implementation
We have designed and implemented a MONARCH prototype

system on top of Apache Web server. The system is comprised
of three components: MONARCH Content Management System,
which handles volume management, analysis of object change cha-
racteristics and relationships, manager selection and CCC assign-
ment; MONARCH Web Server, responsible for serving content
to clients and performing volume invalidation; and MONARCH
Proxy Server, responsible for caching individual page components
and assembling pages before serving them to clients. MONARCH
requires no changes to the HTTP protocol. Volume identifiers and
object and volume versions are implemented as extra HTTP head-
ers. The CCC commands, the ones shown in Tables 1 and 2 and
those that carry a list of invalidated objects, are also implemented
as extra HTTP response headers. The syntax of our CCC com-
mands, shown in Figure 3, is described by the augmented Backus-
Naur Form discussed in RFC 2616 and used for the HTTP/1.1 pro-
tocol [2]. Abbreviations identifying each CCC command use the
text in Tables 1 and 2 shown in bold font.

CCC = ‘‘cmd=’’ cmd-C | cmd-NC | cmd-CM |
cmd-CV | cmd-INV

cmd-C = ‘‘C’’ [‘‘; pre=’’ token]
cmd-NC = ‘‘NC’’
cmd-CM = ‘‘CM’’
cmd-CV = ‘‘CV’’ [‘‘;’’ ‘‘ttl | expires’’ ‘‘=’’ 1*DIGIT]
cmd-INV = ‘‘INV; objs=’’ <‘‘> invalidation-list <’’>
invalidation-list = invalidated-object

[‘‘;’’ *invalidated-object]
invalidated-object = token ‘‘ˆ’’ 1*DIGIT

Figure 3: Grammar for the CCC Commands

3. COLLECTION METHODOLOGY
Having defined the MONARCH approach, an important issue is

to evaluate its performance relative to current and proposed cache
coherency policies. In an ideal world we would be able to obtain
current information about the content dynamics and access patterns
at busy Web sites. We could then use this information in a trace-
driven simulation to evaluate our policy against others. However,
obtaining such information from a single site is difficult, and ob-
taining it from a variety of sites is not realistic.

In this section we describe an alternate to this ideal, a methodo-
logy that we developed and used for collecting content from Web
sites. This content is converted into a format appropriate for a simu-
lator we use to evaluate MONARCH against current and proposed
coherency policies. The methodology must address a number of



important issues: 1) what is the set of Web sites from which to col-
lect content; 2) what content is collected from each site; and 3) how
frequently is it collected. In this section we address all three issues.
In the following section we discuss how accesses to this content are
generated.

3.1 Source Web Sites
The number of existing Web sites is large and is growing con-

tinuously. Evaluation of a newly proposed approach that improves
some aspect of the Web cannot possibly be carried out on the con-
tent of the entire Web. However, a relatively small number of re-
cognizable Web sites are responsible for much of Web traffic. Thus
to evaluate the usefulness of a new proposal it is only necessary to
investigate whether it offers improvements for a sampling of such
sites. We also argue that sites with semantically different types of
content—news site vs. educational site vs. corporate site—may use
different page construction mechanisms and have different content
update patterns. It is thus important to ensure that the sites selected
for a study cover a range of content characteristics. Given these site
selection guidelines, our approach was to pickrecognizableWeb
sites that offer semantically different types of content. Table 3 lists
the eleven Web sites that we selected for this study. The Web sites
in our set vary widely in the number of embedded objects that their
pages have, in the frequency of updates and in the use of the HTTP
directives related to caching. More information about the dynamics
of these sites is provided in subsequent sections.

Table 3: Web Sites Used in Study
Web Site Type of Site
amazon.com large e-commerce site
boston.com international/national/local news
cisco.com corporate site
cnn.com international/national news site
espn.com sports scores/news
ora.com corporate/publishing site
photo.net graphics heavy discussion site
slashdot.org discussion site
usenix.org technical/scientific association
wpi.edu educational site
yahoo.com all inclusive portal

3.2 Content to Collect
Having identified a set of sites to study, we needed to decide on

the set of objects to study at each site. While we could perform an
exhaustive study of a site, we did not want to turn the study into
a denial of service attack. In addition, only a small fraction of all
objects at a site are responsible for the majority of client requests.
Therefore, we focused on collecting the dynamics for a subset of
content at a site that is likely to be requested by clients. Providing
strong cache consistency for such content would be a significant
improvement.

We used the home page for a site as the starting point for our
collection. While it is possible to access a specific page within a
site directly, by finding the link using a search engine or receiving
a pointer via e-mail, many users “enter” a site and search engines
navigate from the home page. Home pages of popular sites are also
likely to change frequently as sites add more information, add poin-
ters to new resources, or simply rotate existing content to create the
feeling of frequent updates so users return often.

We also wanted to collect a sample of content that could be ac-

cessed via the home page. Rather than follow all links on the page
or a random subset of links, we took a two-pronged approach. We
first identified links on the home page that are always present. We
label these linksstatic. These links represent aspects of the site
that are constant features such as the world news for a news site
or admissions information for an academic site. Some users may
frequently visit the site because they monitor this aspect of the site.

We also identified links on the page that change over time. We
label these linkstransient. These links are of interest to repeat vis-
itors to a site because they do change. They include breaking news
stories or new corporate press releases.

While examining different Web sites for this study we realized
that home pages of sites known to beportalsoften serve as aggre-
gators for links to real sites. To make sure that static and transient
links contain content related to that of the site home page, we re-
quired these URLs to have the same hostname as the site itself.

In our methodology we explicitly divided the links on each home
page retrieval for a Web site into static and transient. We then
needed to decide how many of each type of link to follow for con-
tent collection. We believed that following only a single link was
too little and that following all links was too much, in addition to
potentially causing denial of service issues if collection was too fre-
quent. For the study we decided to use up to three of each type of
links (not all sites had three transient links). We believe this num-
ber allows us to track the dynamics of a subset of popular pages at
a site while not overwhelming the site with requests nor our con-
tent collector with data. An obvious direction for future work is to
examine the effect of alternate criteria for picking the number and
type of pages to study at a site.

3.3 Content Collection Methodology
For each Web page URL, the Content Collector that we wrote

fetches the container page and all objects embedded in it. The Con-
tent Collector does not interpret or parse JavaScript code embedded
within HTML, and thus it misses those objects that need to be re-
trieved because of the JavaScript code execution. The Content Col-
lector detects frames, iframes and layers, then fetches them along
with their embedded objects. For each retrieval of each object, the
Content Collector stores the current time, complete set of the HTTP
response headers, length of the response body, and MD5 checksum
that it computes on the object’s body. The Content Collector also
keeps the content of HTML objects.

We started the Content Collector on June 20, 2002 and it col-
lected content every 15 minutes from 9 am EST until 9 pm EST
daily for 14 days, until July 3, 2002. We focused on the daytime
hours as the primary time for user and server activity. The 15-
minute interval was deliberately chosen to be small enough to cap-
ture site dynamics and large enough to avoid any appearance of a
denial of service attack. At the beginning of each daily retrieval cy-
cle, the Content Collector saved the 9 am version of all home pages
so that the next day it could decide on transient links. We also pre-
fetched and stored all home pages on June 19—one day before we
started data gathering.

The Content Collector also retrieved objects that it had seen wi-
thin the last hour, even if these objects were no longer embedded on
any of the pages in our sets. Having information about an object’s
updates for one hour after that object was first accessed allows us
to model server invalidation with the length of a volume lease for
up to one hour.

3.4 Content Conversion
We wrote the Content Converter software to convert collected

content into format required by our simulator. The Content Con-



Table 4: Dynamics of the Collected Objects
local and global objects (global objects)

Site Total BoA RDyn RSt St

amazon 2642 1071 23 (2) 1548 (942) 0
boston 3987 1788 (5) 687 (10) 1342 (443) 172 (163)
cisco 76 2 5 69 (5) 0
cnn 1448 58 (20) 87 (3) 1303 (378) 0
espn 2095 742 (14) 71 (9) 1222 (529) 60 (30)
ora 180 17 13 (2) 150 (35) 0
photonet 5256 321 141 4794 (319) 0
slashdot 8830 358 (8) 151 (5) 8321 (907) 0
usenix 56 0 0 56 (18) 0
wpi 86 0 3 83 (26) 0
yahoo 1890 231 30 (7) 423 (88) 1206 (444)

verter first detects object updates by comparing MD5 checksums
of the successive retrievals, and then uses the value of the
Last-Modified HTTP response header, if it was present, or the
retrieval timestamp as the time of the update. We are aware that the
latter approach provides only an estimate of the exact update time
and potentially underestimates the number of updates to an object,
but it matches the granularity of our study. The Content Converter
creates a list of updates for each object, keeping track of update
time, new size, and the set of added and deleted embedded objects.

The Content Converter assigns collected objects appropriate
change characteristics using the following rules: 1) an object is
BoA if it changes on every retrieval; 2) an object is St if it does not
change over the course of the retrievalsand hasExpires HTTP
response header with a value of one year or more; 3) an object is
RSt if the median time between object updates is 24 hours or more;
4) an object is RDyn if the median time between object updates was
less than 24 hours.

We did not observe any periodic objects in our data sets. The
Cumulative Distribution Function (CDF) of the median times be-
tween object updates for all ND objects across all sites is shown in
Figure 4. The graph shows that in our data about 15% of all nonde-
terministic objects are classified as RDyn, with the remaining 85%
classified as RSt. The smallest time between object updates that we
were able to detect for objects that did not have last modification
timestamps was 15 minutes. The graph thus shows virtually no ob-
jects with update intervals smaller than 15 minutes. Also, we did
not have enough information to determine the median time between
updates for those ND objects that did not change during the course
of our retrievals. For these ND objects we set the time between
updates to one year for the purposes of including these objects in
the CDF; that value has no effect on the simulations. As Figure 4
shows, about 85% of all ND objects in our data set did not change
over the two-week period of our study.

Table 4 shows the total number of objects collected from each
site along with the number of objects in each category of change
characteristic. Numbers in parenthesis indicate how many of these
objects appeared on more than one page at the site. The Content
Converter marks shared objects asglobal. If a frame or a layer
is shared between multiple pages, the Content Converter marks all
embedded objects of the container as global.

The Content Collector encountered a non-trivial number of redi-
rects, some pointing to the same location on every retrieval and
others pointing to different locations. We modeled the former by
creating a permanent mapping between the original URL and the
new URL. We modeled the latter by introducing a zero-size layer

0

10

20

30

40

50

60

70

80

90

100

100 101 102 103 104 105 106

C
D

F

Minutes

15m 1h 12h 1d 1w

1y

Figure 4: CDF of the Median Time between Non-Deterministic
Object Updates

object that on every access contains a different embedded object.
Objects composing Web pages may reside on servers other than

the origin server. For this work, we treat all objects composing a
page as if they came from the same server. We believe this approach
is justified because content served by other servers, such as image
or CDN servers, is often under the same control as that from the
origin server.

4. PERFORMANCE EVALUATION
Our goal in this work is to evaluate and compare the performance

of the cache consistency policies that are currently deployed and
that were proposed in research literature. In this section we de-
scribe our simulation methodology, the cache consistency policies
that we studied, and the performance metrics used.

4.1 Simulation Methodology
For this study we extended the Web Object Management Sim-

ulator (WOMS) used in our earlier work [7] to support collected
content. Once the collected content is converted, it is presented
to WOMS in the form of a (large) configuration file that contains
all the necessary information about objects at a site, their relation-
ships, sizes, HTTP response headers and updates. WOMS is also
presented with information about what URLs the Content Collector
fetched and when.

WOMS takes additional input parameters instructing it which of



the collected pages to simulate requests for (container and embed-
ded objects) and at what times to make the requests. Ideally we
would base this input on the specific access patterns for pages at a
Web site, but without server logs from the site we needed an alter-
nate approach. The approach we used was to investigate a range
of possibilities for what content was retrieved on each access and
the frequency of these accesses. We simulated the following sets of
pages for a site:

• home page only to represent the minimal set,

• home page and the static links to represent a user interested
in regular features of the site, and

• home page, the static links and the transient links for that
retrieval time to represent the maximal set of the collected
content.

In addition, we simulated the following retrieval times based on
our collection period of every 15 minutes from 9 am to 9 pm each
day:

• every 15 minutes, the maximum rate possible with the gran-
ularity of our collection data, which could simulate requests
from a proxy server for a pooled set of users,

• once a day at 9 am representing a regular, but relatively in-
frequent visitor to the site, and

• multiple times a day at 9 am, noon, 4 pm and 8 pm represent-
ing a frequent visitor to the site.

These content and frequency patterns yield a total of nine com-
binations that were simulated for the collected content of each site.

4.2 Cache Consistency Policies
As the simulator processes the requests, it simulates all imple-

mented cache consistency policies. All policies studied in this work
faithfully obey object expiration times and do not cache objects
marked as uncacheable. All simulations assume an infinite capa-
city cache. In addition toMONARCH (M) , we simulated eight
other policies. TheNo Cache (NC)policy mimics a non-caching
proxy positioned between a client and a server counting messages
and bytes transferred. TheNever Validate (NV) policy never val-
idates cached objects. TheAlways Validate (AV) policy validates
cached nondeterministically changing objects on every access. The
Optimal (Opt) policy has perfect knowledge of object updates,
maintains strong consistency, and contacts the server only when
necessary.

We studied the de facto standardHeuristic policy, with 5%(H5)
and 10%(H10) of the object’s age used as adaptive expiration
time for non-deterministic objects. In addition, we examined the
Current Practice (CP) policy, which is identical to the H5 pol-
icy, except the CP policy also faithfully obeys the HTTP direc-
tives related to caching, such asCache-Control , Expires ,
andLast-Modified . The CP policy exemplifies the behavior
of a caching device deployed on the Internet today. The CP policy
is theonly policy in our study that is aware of the HTTP response
headers. All other policies use only change characteristics identi-
fied by the Content Converter.

We also studied a form of server invalidation—theObject and
Volume Leases (OVL)policy [10], where servers maintain per-
client volume and object leases. Clients must hold valid volume
and object leases to reuse a cached copy of an object and to receive
object updates from the server. In this work we use one hour as the
volume lease length and set the object lease length to be longer than

the duration of the simulation. The server sends out updates only
for non-deterministic objects. Our simulation assumes reliable and
timely delivery of invalidation messages to client caches. We do
not account for the details of how to handle updates in the face of
slow or unavailable clients [12].

4.3 Performance Metrics
In order to evaluate the performance of each cache consistency

policy and to compare the policies we used the following perfor-
mance metrics. For each policy we computed the number of stale
objects served from the cache, the number of requests that the cache
sent to the server, and the number of bytes served by the server.

For the MONARCH and server invalidation policies we com-
puted the amount of server state that must be maintained, the num-
ber of separate invalidation messages, the number of invalidation
messages piggybacked onto server responses, and the average num-
ber of objects invalidated in a piggybacked invalidation message.
We discuss these state-related metrics in more detail in Section 5.3.

5. RESULTS
For each of the eleven sites we performed simulations with all

scenarios discussed in Section 4.1. For the purpose of the discus-
sion, unless indicated otherwise, all results in this section are from
the scenario where the home page, static links and transient links
are retrieved from a site four times each day. This scenario was
chosen for focus from the nine described in Section 4.1 because it
represents the maximal amount of content at an intermediate ac-
cess frequency. The relative performance of different policies for
the other scenarios is generally consistent in tone with those shown.
More frequent accesses result in more reusable cache content, less
frequent accesses result in more content that must be retrieved from
the server. In general, the content on site home pages is more dy-
namic than the content of linked pages.

We first discuss the effectiveness of the policy that models the
behavior of modern caches. Then we compare the performance of
different policies in terms of the amount of generated traffic and
staleness. After that we discuss the amount of overhead that the
two stateful policies incur at the server. Finally, we examine the
extent to which cache consistency policies affect end user response
time.

5.1 Effectiveness of Current Practice
One of the performance goals in this work is to evaluate the ef-

fectiveness of the cache consistency policy that reflects the current
practice. Performance of the CP policy across all eleven sites in
terms of the average number of requests that the server received
and the average number of KBytes that the server served per page
retrieval is shown in Table 5. For comparison, the table also shows
the best (Opt) and the worst (NC) case policies. The results in-
dicate that the CP policy avoids transferring 50–60% of bytes (up
to 96% for theusenix site) as compared to the NC policy. For
seven sites in our set the CP policy also transfers only marginally
larger number of bytes than the Opt policy. For the other four sites,
however, the CP policy transfers 1.2–7 times more bytes than the
Opt policy. We investigated the reason for such discrepancy and
discovered that sites often mark objects that change infrequently as
uncacheable or generate such objects upon request and provide no
information that caches can use to subsequently validate these ob-
jects. The results further indicate that the CP policy issues 1.8–5.4
times more requests to the server than the Opt policy. In terms of
staleness, the CP policy serves stale objects for eight sites in at least
one simulation scenario. For two sites (usenix andora ) the CP
policy serves stale objects under all simulation scenarios.



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 B

yt
es

 F
et

ch
ed

% Requests to Server

*NV

Opt,M,OVL AVCP

H5*H10

Figure 6: ESPN, 38.7 Requests, 159.5KB under the NC Policy

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 B

yt
es

 F
et

ch
ed

% Requests to Server

AV

CP

Opt,OVL,M,*H10,*H5

*NV

Figure 7: Cisco, 19.2 Requests, 55.4 KB under the NC Policy

Table 5: Performance of the Current Practice Policy (* indi-
cates stale content served in at least one simulation scenario)

Requests and KB served by Server
Site Opt CP NC
amazon* 3.2 45.1 5.9 45.7 35.2 107.5
boston* 3.6 50.6 19.3 54.4 25.5 113.5
cisco 1.9 2.9 3.5 19.6 19.2 55.4
cnn* 6.3 56.1 16.4 77.6 31.4 190.8
espn* 4.3 75.3 19.4 85.4 38.7 159.5
ora* 0.9 13.8 2.7 14.2 19.9 97.1
photonet 3.1 33.4 3.7 34.5 8.5 55.5
slashdot* 3.1 38.4 7.8 39.5 15.0 70.5
usenix* 0.3 0.8 0.9 0.9 21.1 28.4
wpi* 0.5 2.9 2.3 15.3 25.8 61.2
yahoo 3.7 34.1 6.5 39.2 15.6 71.0

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 B

yt
es

 F
et

ch
ed

% Requests to Server

AV

CP

*H10,H5
*NV

Opt,M,OVL

Figure 5: CNN, 31.4 Requests, 190.8 KB under the NC Policy

5.2 Comparison of Cache Consistency Policies
We examined performance of policies other than CP on all sites

and present results for three sites—cnn , espn , andcisco —in
Figures 5–7. These sites represent a range of policy results. The
horizontal and vertical axes are expressed in percentages relative
to the NC policy. On the horizontal axis we plot the percentage
of requests that each policy sent to the server per page retrieval,
and on the vertical axis we plot the percentage of bytes that the
server served under each policy. Policies that served a non-zero
number of stale objects to clients in these simulation are marked
with asterisks. The number of requests and bytes under the NC
policy is shown in the figure captions.

The graphs indicate that caching of content using any of the poli-
cies shown, including the AV policy, offers substantial (at least 50–
60%) byte savings. The two heuristic policies H5 and H10 outper-
form the CP policy both in terms of requests and bytes. The results
indicate that in terms of the traffic between the cache and the server
both MONARCH and the OVL policies provide indistinguishable
performance from the Opt policy.

Staleness results across all sites indicate that under at least one
simulation scenario both H5 and H10 policies on average served
a small number of stale objects per page retrieval. The amount of
stale content served is substantially smaller than the upper bound
on staleness provided by the NV policy. Across all sites and all
simulation scenarios the NV policy served on average 0.4–3.0 stale
objects per page retrieval, and for the simulation scenario used in
this discussion it served 0.4–1.5 stale objects.

5.3 Server Overhead
The MONARCH and OVL policies provide strong cache consis-

tency and also exhibit similar performance in terms of the gener-
ated traffic. However, compared to other policies studied, the MO-
NARCH and OVL policies incur overhead at the servers because
they require servers to maintain state and perform additional pro-
cessing to achieve strong cache consistency. In this section we de-
scribe the metrics that we use to evaluate server overhead imposed
by each of the two policies and present values for these metrics
obtained from the simulations.

Both the MONARCH and OVL policies must keep track of up-
dates to non-deterministically changing objects in order to main-
tain volume information and notify clients of such updates. As a
measure of the overhead associated with these updates we compute
the average number of daily updates to non-deterministic objects
(NDU). The NDU results for each site are shown in Table 6.



Table 6: Server Overhead
Site NDU MONARCH OVL (AOL)

VOL VR avg max
amazon 4 1271 159 464 706
boston 300 138 218 409 657
cisco 125 4 121 67 70
cnn 109 84 198 580 941
espn 67 63 167 525 806
ora 29 22 13 122 151
photonet 220 434 211 432 770
slashdot 167 33 330 404 731
usenix 0.3 5 0 55 56
wpi 2 6 0 83 86
yahoo 110 51 187 145 248

MONARCH maintains per-page local volumes and one global
volume that incorporates objects shared between pages. MONARCH
increments a volume version when volume membership changes.
We capture the overhead associated with volume maintenance us-
ing the average number of the unique volume revisions (VR) cre-
ated daily. In computing the VR numbers we take into account
original volume versions created at the start of the simulation. The
average daily number of volume revisions and the total number of
local volumes created (VOL ) are shown in Table 6.

The OVL policy maintains a list of per-client volume leases and
per-client object leases. We focus only on object leases as the
overhead associated with volume leases is likely to be significantly
smaller than that of object leases. We measure the overhead of ob-
ject leases by recording the number of active object leases (AOL )
held for one client after it makes requests. Table 6 shows the av-
erage and maximum number of active volume leases held for one
client at each site.

As we examine the metrics shown in Table 6, we see that the
rate of updates to non-deterministic objects varies from 0.3 to 300
per day. We further investigated the NDU results and discovered
that for two sites, includingboston , only a handful of objects
(10 or fewer) are responsible for over 50% of all NDU updates.
These frequently changing objects could be marked as BoA instead
of RDyn to reduce the overhead associated with changing objects,
albeit with diminished cached content reuse.

The highest daily number of volume revisions in our simulations
is 330 and was observed for only one site. For seven other sites,
the daily VR increase is under or slightly over 200. The number of
volume revisions for less frequently changing sites, such asora ,
wpi andusenix , is either small or zero. Our results show that
for six sites the OVL policy must maintain over 400 active object
leases per-client, and must also maintain leases even for sites that
do not have many object changes. We also investigated the effect
that frequency of request arrivals has on the overhead of the two
policies. For four sites—wpi , usenix , ora , andcisco —the
overhead of the OVL policy remains unchanged as the request ar-
rival rate increases from 4 times a day to every 15 minutes. For the
other seven sites the number of active object leases maintained by
the OVL policy increases as follows. For five of the seven sites the
average AOL grows by 27–58% and the maximum AOL grows by
29–48%. For the other two sites—photonet andslashdot —
the increase is especially large. For the former site, the average and
the maximum AOL increase by 5.6 and by 5.7 times respectively.
For the latter site, the average and the maximum AOL increase by
9.6 and by 10.2 times respectively. The overhead of MONARCH

is not affected by fluctuations in the request arrivals or the number
of clients.

We also examined the overhead associated with the invalidation
activity of the MONARCH and OVL policies. The invalidation
behavior of the two policies is different and cannot be compared
directly. MONARCH always piggybacks invalidations onto its re-
sponses to clients, while the OVL policy sends out invalidations
both piggybacked onto other messages and as separate messages.
Our results indicate, however, that these differences are not that
important. Invalidation traffic in terms of separate messages, pig-
gybacked messages and objects invalidated in one message is neg-
ligible for both policies across all sites and all simulation scenarios.

5.4 Response Time Implications for Different
Policies

This study allows us to determine the performance of different
policies in terms of the requests and byte traffic between caches
and servers. It is less clear how this performance impacts the end
user. As a means to study this issue we use performance data that
was gathered as part of another work [5].

The authors in [5] characterized pages based on the amount of
content on a page, which is defined as the number of bytes in the
container object, the number of embedded objects and the total
number of bytes for the embedded objects. Using proxy logs of
a large manufacturing company, popular URLs containing one or
more embedded objects were successfully retrieved and the 33%
and 67% percentile values were used to create a small, medium and
large value range for each characteristic. Using these three ranges
for each of the three characteristics defines a total of 27 “buckets”
for the classification of an individual page. The cutoffs for con-
tainer bytes in small, medium and large were less than 12K, less
than 30K bytes, and more than 30K bytes respectively. Similarly,
for embedded objects it was less than 7, 22, and more than 22 and
for embedded bytes 20K, 55K, and more than 55K bytes. The au-
thors identified test pages that spanned the space of these characte-
ristics and created a test site of content. They installed the test site
on unloaded servers on both coasts of the U.S. and usedhttperf [8]
from six other client sites to make automated retrievals to each test
server for each test page.

In this work, we use the results from [5] as benchmark response
time performance measures for different types of clients and amo-
unts of content. We focus on results from retrievals using up to four
parallel TCP connections and HTTP/1.0 requests. Persistent TCP
connections with pipelining are expected to produce better results,
but pipelining is not commonly used by real clients and proxies.
Persistent connections with serialized HTTP requests have been
shown to perform no better than four parallel connections [5]. Our
methodology is to map the requests and amount of content served
under each policy in this work to a corresponding bucket from [5].
We then use the benchmark performance of different clients tested
in [5] as an estimate of the relative performance of the various poli-
cies.

The buckets in [5] are only coarse classifications and, not surpris-
ingly, in many cases policy traffic performance maps to the same
bucket. For example, the Opt, MONARCH and OVL policies in-
variably map to the same bucket across different Web sites and re-
trieval patterns. This convergence is realistic as only significant
differences between policies for the number of objects or number
of bytes is going to translate into significant response time differ-
ences between the policies. The heuristic policies sometimes map
to the same bucket as the Opt, MONARCH and OVL policies and
in other cases map to the same bucket as CP. The AV and NC poli-
cies generally map to distinct buckets. Given these observations,



0

0.5

1

1.5

2

2.5

3

boston/cnn/espn cisco/photonet/slashdot

R
es

po
ns

e 
T

im
e 

(s
ec

.)

Web Sites

M MCP CPAV AVNC NC

a. from Commercial Client

0

5

10

15

20

boston/cnn/espn cisco/photonet/slashdot

R
es

po
ns

e 
T

im
e 

(s
ec

.)

Web Sites

M MCP CPAV AVNC NC

b. from Modem Client

Figure 8: Estimated Response Time Performance for Different Policies for Web Site Pages Using Para-1.0 Results in [5]

we show results for the MONARCH, CP, AV and NC policies for a
commercial and modem client.

Figure 8a shows results for two sets of sites in our study. The
response time results, obtained in [5], are from a commercial client
on the East Coast of the U.S. to the West Coast server. Results for
theboston , cnn andespn sites are mapped to the same buckets
and are shown together. Response time for the MONARCH policy
is improved relative to current practice and is much better than no
cache, although the absolute differences are smaller because the
client is well connected. Figure 8a also shows that for pages on
Web sites with less content, there is less difference between the
performance of different policies. The AV policy generally yields
worse response time than current practice, although pipelining of
responses can reduce the difference.

We also used results from a modem client on the East Coast to the
East Coast server. These results for the various policies and Web
site pages are shown in Figure 8b. Due to the reduced bandwidth of
the client, the absolute differences between the policies is greater,
particularly for Web site pages with more content.

The results above are averages for all pages at each Web site. We
also examined the relative response time differences when retriev-
ing just the home page at multiple times each day. For this analysis,
four of the sites showed some response time difference between the
MONARCH and CP policies. Overall, the results show that better
cache consistency policies can improve expected response time rel-
ative to current practice for larger, more dynamic, pages.

6. RELATED WORK
The issue of maintaining strong cache consistency on the Web

has been explored by a number of researchers. Gwertzman and
Seltzer compared heuristic approaches to Web cache consistency
with server invalidation [3]. They showed that heuristic approaches
have substantially lower cost than server invalidation and concluded
that weak consistency approaches are the most suitable for the Web.
They did acknowledge, however, that invalidation protocols are re-
quired for perfect cache consistency. Cao and Liu also compared
heuristic approaches with polling every time and invalidation [6].
Their work showed that the cost of strong consistency achieved
with server invalidation can be comparable to the cost of the heu-
ristic approaches. Subsequent work by Yin et al. introduced volume
leases as a means of reducing the cost of server invalidation [10].
They showed that the introduction of volumes reduces traffic at the

server by 40% and can reduce peak server load when popular ob-
jects are modified. Yin et al. further explored scalability aspects of
volume leases and proposed to extend volume leases to cache con-
sistency hierarchies [11]. Yin et al. also explored engineering tech-
niques for improving scalability of server-driven invalidation [12].

Our work differs from the server-driven approaches to invali-
dation in two main aspects. First, MONARCH does not require
servers to maintain per-client state and does not send object updates
to multiple clients in bursts. Invalidation in MONARCH is driven
by client requests. Second, MONARCH does not require servers to
delay object updates until all clients that hold valid leases are noti-
fied, which eliminates the issue of waiting for slow or unreachable
clients. MONARCH can be deployed using the HTTP protocol and
without any extra support from the network, such as multicast.

Cohen et al. investigated approaches for grouping related Web
objects intovolumesand reducing volume size [1]. They explored
directory structure and client access patterns as indicators of rela-
tionships between objects. In our work we construct volumes based
on known relationships between objects instead of using heuristics
to infer relationships.

Shi et al. also download pages from a set of Web sites at regular
intervals. They use the collected data to analyze page structure and
derive models that characterize dynamically generated content [9].

7. SUMMARY
This work examines a new policy, MONARCH, for strong cache

consistency on the Web and uses a novel evaluation method to
compare the performance of this policy with current and proposed
policies. One contribution of the work is the evaluation of MO-
NARCH, which combines object relationships with object change
characteristics to manage Web objects with strong consistency and
no per-client state at the server. Results of the evaluation show MO-
NARCH generates little more request traffic than an optimal cache
coherency policy.

The evaluation methodology used in this work is also a contribu-
tion. Our methodology is to actively gather selected content from
sites of interest. This content is then used as input to a simulator to
evaluate a wide range of cache consistency policies over a range of
access patterns. Traditional use of proxy and server logs for such
evaluation has its limitations. While proxy logs contain real client
request patterns, they do not contain the complete request stream
to a particular site and provide no indication of when resources



change. Logs from popular server sites are not generally available
to the research community and do not contain a record of object
modification events. Our content collection methodology is a step
towards filling these gaps and obtaining data for any site of interest
that is not otherwise available for study.

Results of the simulations with real content, obtained in this
work, agree with the limited results from the simulations with syn-
thetic content, obtained in our previous work [7]. While we do
not discount the usefulness of the simulations with synthetically
generated content, we see substantial value in using real content to
drive simulations. First, downloading content from sites of interest
allows us to obtain HTTP cache directives used by these sites, and
not only compare proposed policies with each other, but to compare
them with current practice. The results show that for some sites the
current practice policy yields close to optimal cache performance,
but for larger, more dynamic, sites it generates more request and
more byte traffic than is necessary. Second, using real content pro-
vides more realistic composition of objects and change characteris-
tics, including more realistic sharing of objects across pages, than
synthetic content. This better understanding of page composition
can lead to better synthetic content generators, and steps are already
being taken in that direction [9].

The simulation also allows us to compare the relative overhead of
strongly consistent cache policies, although each policy evaluated
incurs different types of overhead. The Always Validate policy can
generate a large number of requests, the Object and Volume Lease
policy requires the server to maintain a potentially large number
of per-client leases and the MONARCH policy must track volume
membership changes. Results for the OVL policy show that for
many of the sites studied the number of per-client object leases is
in the hundreds even though few of the objects actually change.
The amount of state for the MONARCH policy is up to a couple
hundred volume membership revisions per day.

The last part of this work uses results from previous work to
study how traffic variations between the policies affect the response
time that might be expected by a user. The results show that for all
sites, current caching practice yields significantly better response
time than if no caching is used. For some sites and pages, proposed
policies provide no improvement in terms of estimated response
time. However, for Web site pages that require many validation re-
quests, proposed policies, such as MONARCH and OVL, do show
response time improvement over current practice.

As part of our ongoing work we are interested in further explor-
ing our methodology of taking snapshots of a site. A better under-
standing of the appropriate size and frequency of these snapshots
is needed. In terms of the MONARCH approach, we are inter-
ested in examining the use of alternate object relationships such as
common object dependencies. Finally, we are interested in investi-
gating potential performance improvements if Web sites expose the
internal components of large container pages to caches. With the
weak consistency model of current caching, servers have limited
control over when cached objects are validated. With the strong
cache consistency approach of MONARCH, Web servers would be
able to reliably invalidate such cached objects if they change.

8. ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers for the detailed and

thoughtful comments that helped us improve the presentation of the
paper.

9. REFERENCES
[1] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving

end-to-end performance of the Web using server volumes

and proxy filters. InACM SIGCOMM’98 Conference,
September 1998.

[2] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen,
L. Masinter, P. J. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol—HTTP/1.1. RFC 2616, June 1999.

[3] J. Gwertzman and M. Seltzer. World-Wide Web cache
consistency. InProceedings of the USENIX Technical
Conference, pages 141–152. USENIX Association, Jan.
1996.

[4] B. Krishnamurthy and C. E. Wills. Piggyback server
invalidation for proxy cache coherency. InProceedings of the
Seventh International World Wide Web Conference, pages
185–193, Brisbane, Australia, Apr. 1998.

[5] B. Krishnamurthy, C. E. Wills, and Y. Zhang. Preliminary
Measurements on the Effect of Server Adaptation for Web
Content Delivery. InProceedings of the Internet
Measurement Workshop, Short abstract, Marseille, France,
Nov. 2002.

[6] C. Liu and P. Cao. Maintaining Strong Cache Consistency in
the World-Wide Web. InProceedings of the 17th IEEE
International Conference on Distributed Computing Systems,
May 1997.

[7] M. Mikhailov and C. E. Wills. Exploiting Object
Relationships for Deterministic Web Object Management. In
Proceedings of the 7th International Workshop on Web
Content Caching and Distribution, Boulder, CO, Aug. 2002.

[8] D. Mosberger and T. Jin. httperf – a tool for measuring web
server performance. InWorkshop on Internet Server
Performance, Madison, Wisconsin USA, June 1998.

[9] W. Shi, E. Collins, and V. Karamcheti. Modeling Object
Characteristics of Dynamic Web Content. InProceedings of
the IEEE Globecom, Taipei, Taiwan, Nov. 2002.

[10] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Using leases to
support server-driven consistency in large-scale systems. In
Proceedings of the 18th International Conference on
Distributed Systems. IEEE, May 1998.

[11] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache
Consistency in a WAN. InProceedings of the USENIX
Symposium on Internet Technologies and Systems, Boulder,
Colorado, USA, Oct. 1999. USENIX Association.

[12] J. Yin, M. Dahlin, L. Alvisi, C. Lin, and A. Iyengar.
Engineering server driven consistency for large scale
dynamic web services. InProceedings of the Tenth
International World Wide Web Conference, Hong Kong, May
2001.


