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Abstract— Many TCP connections show an asymmetric
traffic pattern where significantly more data is sent in
one direction than the other resulting in large numbers of
ACK-only packets to be generated. In this work we propose
and evaluate two independent approaches for how to make
better use of the available space in TCP ACK-only packets
to improve data transfer. The first approach provides
packet-efficient throughput in the reverse direction of a
connection without sacrificing forward throughput, while
the second approach provides more detailed and complete
information about the state of the forward connection that
could be used by a TCP implementation to obtain better
throughput under different network conditions.
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I. INTRODUCTION

TCP is a widely used protocol on the Internet designed
for reliable bidirectional data transfer. However, large
numbers of TCP connections show an asymmetric traffic
pattern where significantly more data is sent in one
direction than the other. It is a common scenario with
applications such as HTTP or bulk data transfer that a
client initiates a request to a server and then the data
flow is entirely from the server to the client. Traffic
in the reverse direction is only TCP ACK packets to
acknowledge receipt of the downloaded data.

The large number of small TCP packets on the Internet
is well documented. Results in [19] show a trimodal
distribution of TCP packet sizes where the size of ACK-
only packets (40 bytes with no TCP options) is one of
the modes. Statistics in [13] show just under 50% of
TCP packets are of TCP header size. Various traces from
the IP Monitoring Project taken at monitoring points in
the SprintLink IP backbone in February 2004 show 40-
70% of packets in individual traces are of TCP header
size [18]. Another study [17] also shows that over 40% of
packets are 40 bytes for traffic collected at five different
network points, including Los Nettos, a USC Internet2
connection, and three connections monitored by NLANR
during December 2004 to October 2005 period.

The large fraction of small TCP packets in the Internet
motivates our work to examine whether the performance
of applications using TCP for data transfer in the forward
channel can be improved by making better use of the
reverse channel acknowledgment packets [16]. In this
work we explore the potential of two approaches to
enhance how TCP handles the ACK-only packets it
generates.

The first approach is to piggyback application-level
data onto ACK packets sent in the reverse channel.
Normally TCP piggybacks acknowledgment information
onto the data packets it sends. In this work we explore
the potential for a mechanism to piggyback data only
when an ACK packet would normally be generated.
If a mechanism was available for applications to send
reverse-channel data without generating additional net-
work packets then client receivers of data could upload
feedback to the server providers of the data without in-
curring new connections or generating additional traffic.
Such a mechanism could also be used by peers in a
peer-to-peer environment where the transfer of desired
content from peer A to peer B could simultaneously
support the exchange of useful content via piggybacked
transfer from B to A.

The second approach we explore in this work for
making better use of ACK-only TCP packets is for a
receiver to provide additional control information to the
sender via additional TCP header information. We exam-
ine the introduction of a new TCP option that provides
more detailed and more complete information about
the reception of data packets at the receiver compared
with the existing TCP Timestamps Option [10]. This
information allows a TCP sender to track the spacing
between all data packets arriving at the receiver and to
have complete timing information for the forward and
reverse directions of the connection. The information
can be used to better detect jitter and congestion in the
forward direction than what is currently available.

The organization of the paper is as follows. In Sec-
tions II and III of the paper, we describe the data piggy-
backing and enhanced ACK approaches in more detail



and compare them with previous work. In Section IV
we describe the symmetric and asymmetric network
environments used to evaluate each of these approaches.
The methodology and results for evaluating data piggy-
backing are described in Sections V and VI followed by
methodology and results for evaluating enhanced ACKs
in Sections VII and VIIL. In Section IX we summarize
observations from the evaluations and consider the im-
pact of combining the two approaches. We conclude with
a summary of our findings and directions for future work
in Section X.

II. PIGGYBACKING DATA

The TCP protocol allows data transfer in both di-
rections of a connection with ACKs for data packets
received in the forward direction piggybacked onto data
transferred in the reverse direction. However because
many connections primarily transfer data in only one
direction many ACK-only packets are generated by the
receiver. The key idea of our work is to invert the
traditional TCP transmission mechanism and piggyback
data onto packets carrying needed ACK information.
This approach creates a clear primary and secondary
direction of data flow within a TCP connection.

This approach is interesting to explore because it
allows data transfer to occur in both directions while
being potentially more efficient in the number of packets
generated for data transfer in the reverse direction. Po-
tential applications of this approach include asymmetric
connections where previous work shows that less band-
width in the reverse direction impacts performance for
forward data transfer [3]. Other work [11] has shown
that bidirectional traffic can cause reduced throughput
due to undesired interaction effects such as ACK com-
pression [23].

Peer-to-peer (p2p) applications can also be written to
take advantage of reverse ACK traffic where the transfer
of content from peer A to peer B could simultaneously
support the transfer of useful content from peer B to peer
A. Incentives in a p2p application such as BitTorrent
encourage clients to exchange data tit-for-tat in both
directions [7], which could be done more efficiently with
our approach. Others have proposed the idea of general-
izing BitTorrent with a Data Exchange Market [20]. Our
approach could be used with this idea as well.

Our approach does require a new mechanism to be
supported by TCP with modifications to client and
servers. To illustrate, Figure 1 shows the core code for a
standard data transfer from a server to a client. The server
continually sends data in a buffer (buf) to a socket (s)
while the client reads data from its socket into a buffer
and processes it.

// Client

while (not done) {
recv from s into buf;
process buf data;

} }

// Server

while (not done) {
put data into buf;
send buf to s;

Fig. 1. Standard Core Client and Server Code

Figure 2 shows the modified code using a new data
piggybacking TCP option, which causes the TCP im-
plementation to only send buffered data if a packet is
generated to ACK data received. In Figure 2 the client
checks if reverse direction send buffer space is available
and if so then sends data to the socket (s). Otherwise
the client works just as the standard case. The server
requires fewer modifications as it simply checks the
availability of input data on the socket, using a call such
as select (), and if available it receives and processes
that data. Because each loop is driven by the data being
sent in the forward direction a mechanism is needed
for the client to query how much of the buffered data
has actually been sent. Depending on the application,
the client may need to finish sending any unsent data
via the traditional mechanism or simply terminate the
connection if the data do not need to be sent.

// Client
turn on data piggyback;
while (not done) {

recv from s into buf;

if (send buf space)

send revdata to sj; }

process buf data; put data into buf;

} send buf to s;
}

// Server
while (not done) {
if (revdata avail) {
recv from s into rbuf;
process rbuf data;

Fig. 2. Modified Core Client and Server Code

A primary issue with this approach is how much data
can be piggybacked onto an ACK packet. In a bandwidth
constrained environment trying to piggyback too much
data could have a negative effect of forward traffic. This
issue is examined in our testing. In our testing we did
not modify the TCP implementation for this initial work,
but used the existing TCP implementation with the code
shown in Figure 2. The result is that each time data is
received from the socket in the loop, we send reverse data
to the socket if buffer space is available. The amount of
reverse data sent is a parameter of each experiment. This
approximated approach does not guarantee that reverse
data and ACKs are sent together, but with a client buffer
big enough to receive a full packet we observe that
generally each application-level receive corresponds to



a packet reception thus the client generally sends one
packet for each received.

Ideally, we could have a kernel-level support to ensure
that each data transmission matches an ACK packet.
However, we use the user-level approach to evaluate
the concept of data piggybacking. The experiments over
different paths do show that the results using the approx-
imated approach are close to those we calculate under
the ideal situation where the kernel-level support would
be available. With only a user-level modification, we are
able to test the data piggybacking method widely as no
privileges to change the TCP/IP kernel are needed.

III. ENHANCED ACKS

The data piggybacking approach seeks to use available
bandwidth in TCP ACK packets to send reverse data. The
second approach we explore in this work uses a bit of the
available bandwidth to enhance the contents of ACKs to
provide more detailed and complete information about
the reception of data packets at a receiver. The TCP
Timestamps option allows TCP implementations to cal-
culate round-trip times (RTTs) on more than one packet
per window of packets and allows time stamp echoing in
either direction [10]. The contents of the option include
four fields: one-byte each for the kind (k) and length (1)
with four-bytes each for the packet timestamp (TSval)
and echo reply timestamp (TSecr).

The use of these timestamp fields is illustrated in Fig-
ure 3, which shows two common scenarios for how the
Timestamps option is used when an ACK is generated
by the receiver. The example is illustrative and does not
show all packets in a TCP connection nor does it show
how the TCP option is used when packet loss occurs.
The first ACK in the example is generated at time 30 in
response to data segment 1 being received at time 28 with
a TSval of 18. The delay between when a packet is re-
ceived and the corresponding ACK generated is defined
in [2] to be within 500ms of the arrival of unACKed
packet and at least every second full-sized segment,
although 200ms is a commonly used maximum time.
Previous work [6] found that transmission of small data
packets often incurred close to 200ms ACK generation
delay in the presence of the TCP Nagle algorithm [14].

The first ACK TSval indicates it was sent at time 30
and is an echo response to the packet with timestamp 18.
The second ACK is generated at time 70 after two data
segments have been successfully received. This behav-
ior occurs with the TCP delayed ACK feature, which
effectively ACKs every other packet. The TSecr value
of 45 indicates the timestamp of the earliest previously
unACKed packet as defined in [10].
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Fig. 3. Example Usage of TCP Timestamps Option

The Timestamps option was proposed to enable the
sender of a TCP connection to more frequently determine
the RTT of sent data segments, but as the example shows
the option still does not capture as much information
about the nature of the connection as it could. We conjec-
ture that more complete information about the pattern of
received packets would allow better transmission of sent
packets despite issues due to congestion or the delayed
ACK option. It can also help to detect the effects of ACK
compression when ACKs are grouped together [23].

The layout for the variable-length enhanced TCP
Timestamps option we propose is shown in Figure 4.
It extends the existing Timestamps option in two ways.
First, the reception time for each data segment received
by the receiver is returned to the sender in a TSrcv field,
and second the TSecr and TSrcv values are returned for
all packets received since the last ACK was sent. Given
that the maximum size of a TCP option field is 40 bytes,
information for up to four packets could be included,
although if every other packet is ACKed then information
for no more than two packets would need to be included.
For the example in Figure 3, the second ACK would have
the fields: val=70, ecr1=45, rcv1=55, ecr2=50, rcv2=70.
Once sent, the receiver no longer needs to retain the
information thus the amount of receiver state maintained
is bounded.
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Fig. 4. Enhanced TCP Timestamps Option Layout

This enhanced Timestamps option provides three im-
provements relative to current TCP functionality.
1) The capability to measure one-way jitter and



packet spacing in each direction. The enhanced
option allows the packet spacing on the receiver
side to be communicated to the sender rather
than trying to use ACK spacing at the sender to
approximate packet spacing.

2) The option explicitly captures the delay for gener-
ating an ACK at the receiver. While ACK gen-
eration may be immediate for full-size packets
received during slow start or when the second of
two full-sized packets is received, the sender does
not know unless this information is recorded.

3) The option captures the delay information for
all received packets. In the presence of delayed
ACKs, information is lost because an ACK is only
generated for every other received packet and there
is no way to know when the first packet of each
pair arrives at the receiver. The current Timestamps
option is intended for a round-trip measure that
includes delays, not for precise timing of each
packet.

We envision the enhanced Timestamps option to be
particularly useful in asymmetric networks. Balakrish-
nan, et al [4] describe a number of issues using TCP
with asymmetric networks where low bandwidth on the
reverse link causes problems for the timely arrival of
ACK packets needed for the ACK-clocked nature of
TCP. Variants of TCP such as TCP Vegas [5] and TCP
Westwood [22] use rate estimation to drive when packets
are sent based on the rate at which ACKs are received.
However work such as [9] shows that in asymmetric
networks TCP Vegas does not perform well because it
is using ACK rate to estimate data rate at the receiver.
They describe the need to encode the arrival times at
the receiver and show improved results if these data are
available, but imply the TCP Timestamps option can be
used for gathering forward path flow rate without speci-
fying details. Similarly, [1] uses the Timestamps option
to estimate forward trip time in a TCP connection, but
this option does not account for ACK generation delay
and it loses information when delayed ACKs are used.
Finally, the availability of one-way jitter information
allows investigation of using jitter to predict congestion
loss before it occurs. As part of measurement work on
audio transmission, [15] found that RTT variation can be
an indicator of packet loss.

IV. TESTING ENVIRONMENT

We tested the two approaches over network connec-
tions between our home institution of WPI, on the east
coast of the U.S., and seven endpoints with various RTT
and throughput connectivity values as summarized in Ta-
ble I. The RTT and throughput values are representative

of those obtained during testing, although some variation
in packet loss occurred, which is noted as appropriate.
Four of the links to institutions in California and Georgia
in the U.S. as well as to Italy and the Netherlands show
relatively good bandwidth in both directions, although
as shown in Table I demonstrate asymmetric throughput.
Further investigation of this throughput asymmetry found
that for the California to WPI path the advertised receiver
window was 64K bytes by Linux on the WPI side while
it was only 32K bytes by the Linux version running
in California. For the other three links, the asymmetric
throughput is primarily due to higher packet loss in one
direction than the other.

The three other links in Table I do exhibit asymmetric
bandwidth. These links include local machines accessing
WPI via DSL and cable modem as well as one in the
Netherlands connected via DSL. All seven of these links
were used for data piggyback tests described in the
following section while just the Calif/WPI, Italy/WPI
and WPI/Local DSL links were used for the enhanced
ACK tests described in Section VII because tcpdump
was needed on both sides of the link to capture pack-
ets. Unless noted, all tests were run using Linux TCP
implementations.

TABLE 1
SUMMARY OF NETWORK CONNECTIONS USED IN EXPERIMENTS

AtoB Bto A
End Points RTT | Thruput | RTT | Thruput
A B (ms) | (KBps) (ms) | (KBps)
Calif WPI 80 600 80 350
Italy WPI 120 | 200 120 | 400
Georgia | WPI 30 600 30 1100
NL WPI 90 150 90 520
WPI NL DSL 90 280 90 80
WPI Local DSL 27 190 27 40
WPI Local Cable | 10 350 10 40

V. PIGGYBACKING DATA METHODOLOGY

The question for the data piggybacking approach is
to understand how much data can be piggybacked with
ACK packets without introducing more packets and not
influencing the performance of forward-channel traffic.
We answer this question with a series of experiments
conducted under the variety of real network conditions
described in Table I. For each experiment we evaluate
performance and efficiency of different transmission
methods, where throughput (transmitted bytes divided by
transmission time) is used as the metric of performance
and packet counts is used as the metric of efficiency.

As a standard, we used the transfer of a 1MB file
for all testing. We deliberately chose this size as its



transfer normally takes around 700 packets, which is
large enough to avoid throughput effects of slow start,
but small enough for a reasonable experimental time.

We evaluated the approach described in Section II
where a server sends a 1M byte file in the forward
direction to a client. As shown in Figure 2, each time
the client reads some data it sends data of a particular
size to the server if buffer space is available. Ideally the
TCP implementation on the client-side only sends the
data when it would normally generate an ACK, but given
that we have not modified the TCP implementation the
reverse data sent is not exactly matched with the sending
of ACKs. However, because the client application code
sends data immediately after it receives data from the
server, the sending of the data is roughly matched with
the sending of ACKs (that are generated for the received
data). As part of the experiment we control how much
data is sent in the reverse direction for each packet
received. In an ideal implementation, this amount of data
would be piggybacked with each ACK. Idealized values
for throughput and the number of packets are shown in
the results for each size.

In addition, we evaluated two control approaches: In
the first, labeled “2Con” in the results, the algorithm in
Figure 1 is used by two identical and separate processes
on each side to transfer IMB in each direction. In the
second control approach, labeled “1Con”, 1MB is again
transfered in each direction, but only a single connection
is used for the transfer so that ACKs may be piggybacked
on reverse data traffic. The identical endpoints are written
so that they do not needlessly block waiting to send or
receive data.

For each network condition, experiments are con-
ducted with each of the three approaches, where the size
of piggyback data sent in the reverse direction varies
from zero (i.e. no piggyback) to 1500 bytes. Note that
the size of 1500 bytes is over the size of the MSS (1460
in this experiment). It is intended to check the effects
when the piggybacked data is more than the MSS. The
maximum piggyback size tested within the MSS is 1400
bytes in these experiments. Results are reported based
on five runs for each case, although in cases where the
loss rate is generally over 1%, 10 runs are conducted to
mitigate fluctuations in throughput.

VI. PIGGYBACKING DATA RESULTS

Tests for all links in Table I were made as described
in the previous section. Rather than show all results,
this section shows results across a representative set of
network conditions. The first set of results are shown
in Figure 5 for the connection from the California

site to WPL. The first graph shows throughput results
and the second graph shows packet count results. In
each figure, the curves on the left side are for the
piggyback approach, where one curve represents the
download direction and the other curve represents the
upload direction. There are two sets of bars on the right
side of each figure. The rightmost set of bars are for the
1Con approach where one network connection is used
to download and upload a 1MB file. The set of bars
to its left are for the approach where two individual
connections are used. In each set of bars, the left one
represents the download direction and the right one
represents upload direction.
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Fig. 5. Calif to WPI (less than 1% packet loss)

For the Down and Up piggyback curves, the mea-
sured throughput and packet count results are shown
for piggyback sizes of 0 (no piggybacking), 50, 100,
200, 300, 400, 700, 1000, 1400 and 1500 bytes. The
Ideal throughput results are obtained by multiplying the
number of ACKSs observed in the no piggybacking case
by the piggyback size, constrained by the maximum
observed reverse throughput.

The results show that the downlink throughput is unaf-



fected by the piggyback size while the uplink throughput
rises to a level comparable to the 2Con and 1Con
approaches. The packet count graph shows the number
of uplink packets to be relatively constant and fewer
than the control cases. More important, the uplink packet
count is significantly less that the two control cases
with comparable throughput for the largest piggyback
sizes. The results show that for piggyback sizes of a
few hundred bytes, the existing TCP implementation
does not generate many more packets than the ideal
implementation.

Figure 6 shows results for a forward network con-
nection from WPI to a host connected locally via DSL.
As the throughput results show, the downlink throughput
is significantly affected once the uplink capacity of ap-
proximately 40KBps is reached. The control approaches
show how saturation of the uplink negatively affects both
directions. For this asymmetric network, these results do
show that our approach can be effective for uploading
more modest amounts of data without increasing the
number of uplink packets and without impacting the
downlink throughput.
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Fig. 6. 'WPI to Local DSL Home (less than 1% packet loss)

VII. ENHANCED ACKS METHODOLOGY

The methodology for testing the enhanced ACK
Timestamp mechanism described in Section III seeks to
examine the measurement of connection metrics using
the enhanced mechanism compared to using TCP with
no options and the existing TCP Timestamps Option.
With our enhanced Timestamps Option, the sender can
learn exactly when the data packets are received on the
receiver side. It allows several potential benefits:

« enables the capability to calculate packet interar-
rival spacing, which can be combined with packet
sending spacing to determine forward direction jitter
effects,

« provides the sender information about the delay for
generating an ACK at the receiver, and

o allows more accurate calculation of RTTs by the
sender.

We choose packet interarrival spacing, ACK gener-
ation delay and RTT as the three metrics to examine
the potential benefits of using the enhanced Timestamps
Option compared to currently available methods.

The interarrival spacing of data at the receiver is
important because this information can be combined
with the spacing of sent data to monitor the queuing
delays in the forward direction, which may be used to
infer congestion in this direction before packet drops
occur. The spacing can be explicitly calculated using
our enhanced Timestamps option. With no Timestamps
option, the sender must match an ACK with the corre-
sponding sent data. This match is non-trivial to do in the
case of packet loss and the use of delayed ACKs. The
spacing calculation also includes ACK generation delays
as well as reverse direction congestion effects. The use
of the current TCP Timestamps option removes reverse
direction congestion effects from the calculation, but
ACK generation delays are still present. In addition, with
the presence of delayed ACKs, an ACK may represent
two received data packets.

The delay to generate an ACK at the receiver is explic-
itly captured with our enhanced Timestamps Option, but
unavailable using existing approaches. Variability in the
ACK generation algorithm by a TCP receiver introduces
variability in the ACK receiver spacing at the sender
irregardless of any congestion in the network between
the sender and receiver.

In terms of RTT calculation, the existing TCP Times-
tamps Option allows more frequent and accurate RTT
calculation than without use of the option. Our approach
yields a yet more accurate RTT and it allows the RTT
for all packets to be calculated in the presence of the
delayed ACK option, although as discussed in [10], the



sender must be less aggressive in using the RTT for
retransmission time out (RTO) calculation.

In order to examine the behaviors of the delayed ACK
option on different platforms, we conducted experiments
on both Windows and Linux. The Linux kernel versions
we tested are 2.4.21 and 2.6.11, while for Windows we
used Windows 2000 and Windows XP. Our experiments
show the two Linux versions have similar behavior and
the two Windows variants behave similarly. However,
Windows and Linux do show differences on how ACKs
are generated. While both platforms set the maximal
ACK delay as 200ms, Linux uses the measured RTT
as the waiting time whereas Windows uses a round-
robin scheme rotating from 100ms to 200ms. In addition,
Linux ACKs immediately during the slow-start phase
while Windows tries to acknowledge two data packets
if possible even at slow-start. Furthermore, Linux sends
an ACK immediately for data packets whose sizes are
smaller than 500 bytes assuming they belong to an
interactive session. Windows shows no discrimination
based on packet sizes. In general, Linux reacts more
aggressively than Windows on ACK generation.

We conducted experiments on the three links described
in Section IV for both directions. We varied the client
receiver platform between Linux and Windows. During
the tests, packets were captured at both endpoints using
tcpdump with millisecond time granularity. As compar-
ison, [21] found about 75% of popular Web servers
support the existing TCP Timestamps Option with the
majority using a 10ms timestamp granularity.

We transfer a data file on each side to generate FTP-
like traffic simultaneously in both directions over two
separate connections. The file size is set to 1IMB on both
sides. We use two-way traffic to introduce cross traffic
in the reverse direction, which may influence the latency
of ACK packets. As expected, we only found reverse
traffic to have an effect for the DSL client connected with
asymmetric bandwidth. We did run each test with and
without the delayed ACK option, but all results shown
use the default where the delayed ACK option is turned
on. We also introduce tests with the download of Web
and streaming data from actual Web sites as described
in the following section.

VIII. ENHANCED ACKS RESULTS

Using the file transfer test with 1MB of data, Figure 7
shows one of the more pronounced cases for differences
of using ACK spacing to calculate spacing of received
data packets. The results are for data sent from California
to a client at WPI running on a Windows platform. The
results in the CDF are obtained by comparing the data

packet reception spacing (drecv) with the ACK send
spacing at the receiver (asend) and ACK receive spacing
at the sender (arecv). The results show the cumulative
differences between the data spacing and each of the
ACK spacings. In computing the difference in spacing
between data and ACKs, if the sending or receiving
of a delayed ACK represents the reception of two data
packets, half of the ACK spacing is used to approximate
each of the data spacings.

The significance of these results is that for over 50%
of the packets there is a difference between the actual
data reception spacing and the approximated spacings
obtained using the ACK sent or ACK received results.
In the figure, the two data lines overlap for these results
because there is no congestion in the reverse direction.
The average absolute difference is 60ms as shown in Ta-
ble II, which contains a summary of all file transfer tests.
There are two important points about the calculation of
results in Table II: 1) we count a difference or delay
as zero if it is less than 1ms; and 2) we use absolute
values of packet spacing differences to calculate mean
and median values.
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Fig. 7. Packet Spacing Difference among Data Recved, ACK Sent,
and ACK Recved for California to WPI Windows Client

Table II shows the spacing differences are almost non-
existent for the California to WPI connection when the
client receiver is running Linux. The reason for the
different results for a Windows client versus a Linux
one is because there are many packet losses (about 10%)
on the path from California to WPI for this test. Linux
responds with an ACK immediately after a packet loss
is detected and continues to respond with one ACK for
each received data packet for a while even after the
lost packet is recovered, which causes almost one ACK
for every data packet for a high loss path. Windows
also sends an ACK immediately once packet loss is



TABLE 11
SUMMARY OF PACKET SPACING AND ACK DELAY UNDER FILE TRANSFER TRAFFIC (TIMES IN MS)

Recv |Asend-Drecv| > 0 |Arecv-Drecv| > 0 Last ACK Delay > 0 || First ACK Delay > 0
Connection | O.S. % Mean | Med. %o Mean | Med. % | Mean | Med. %o Mean | Med.
WPI—=IT Linux 8.8 26 19 13.9 17 7 2.1 41 40 56.4 2 1
IT—WPI Linux || 38.9 16 7 40.2 16 6 3.2 44 41 23.8 7 1
Win 19.6 17 3 20.1 16 3 0.3 101 101 10.3 15 1
WPI—Calif | Linux | 38.7 17 10 429 15 8 3.5 34 32 23.7 19 26
Calif—WPI | Linux 0.5 25 10 3.1 5 1 0.3 25 10 0 0 0
Win 57.6 60 44 57.5 60 44 5.9 146 139 46.0 87 88
DSL—WPI | Linux || 28.6 4 1 36.2 15 4 0 0 0 100.0 30 30
WPI—DSL | Linux || 13.6 150 3 92.9 33 7 0 0 0 100.0 8 8
Win 20.5 73 87 99.9 21 7 0.3 110 110 100.0 8 8

detected, but right after the loss is recovered, delayed
ACK processing is immediately restored.

Except for these two extreme cases, the other file
transfer tests in Table Il show non-zero differences
between the data reception spacing and ACK sending
spacing for 8-38% of the packets received with an
average difference generally between 15 and 25ms.

When using ACK reception spacing to infer data
reception spacing, the estimation error is further enlarged
as the reverse side congestion causes ACKs themselves
to get delayed. For the path from WPI to the local DSL
host, ACKs are transmitted with varied latency due to
the congestion in the reverse direction. The ACK delay
variance causes a difference for each estimation that is
on average 20-30ms in magnitude.

The remainder of Table II shows ACK Delay results
for all tests. The results show little delay to generate
an ACK after the last packet is received, but frequently
there is a delay between the receipt of the first and last
packet of a pair.

These results are for FTP-like traffic. We postulate the
method is more useful for Web and streaming traffic,
where Web objects or streaming frames are not always
sent at the rate allowed by TCP as is typical with during
a file transfer. ACK delay on the receiver side is more
significant. Table III shows the results for accessing
two Web site home pages and two streaming media
sites from two different client locations. We used the
Internet Explorer (IE) browser for Web access on the
Windows platform and Firefox for access on the Linux
platform. Each browser used persistent connections. We
were unable to access the streaming media sites using
a Linux client. For the Amazon audio stream, which
provides online listening for sample music, we used
Real Player, a plug-in to IE. For the Yahoo video,
which provides movie previews, we used the Window
Media Player, also a plug-in to IE. As we only have
client side packet traces, we are not able to determine
the difference between ACK reception spacing and data

reception spacing.

The “Last ACK Delay” and “First ACK Delay” results
in Table III show significantly higher non-zero percent-
ages as well as mean and median values than those
results under FTP-like traffic in Table II.

Another interesting result is the ACK delay for the
Amazon streaming audio to the Home DSL Windows
platform. The last ACK delay is nearly a constant 110ms
and there is no first ACK delay because each ACK is
generated for exactly one data packet and the receiver
is trying to wait for a second packet to arrive. The
constant ACK generation delay does result in little dif-
ference between the data reception and ACK generation
spacing for the Amazon to Home DSL connection as
shown in Table III. However, in general there is a large
discrepancy between these two spacing calculations in
Table III because the sender of Web and streaming traffic
is not always sending packets and the receiver delays
waiting for a second packet to arrive before generating
the ACK. These gaps between when data packets are
sent combined with the delayed ACK feature mean that
the gap between ACK transmissions is an unreliable
estimator for the gap between data packet arrivals.

The final benefit of having more complete data and
ACK packet transmission information is to calculate
more accurate path RTT than using the Timestamps
option. The difference is trivial when there is no ACK
delay and packet loss. However, in many cases as shown
in Table II and III, ACKSs are delayed and consequently
the RTT is overestimated. The situation becomes much
worse when packet loss occurs because the RTT calcu-
lation could include packet retransmission time [10].

IX. OBSERVATIONS

Results from the two sets of experiments lead to a
number of observations about the potential benefits of
the data piggybacking and enhanced ACKs approaches
as well as consideration of the merits in using them



TABLE III
SUMMARY OF PACKET SPACING AND ACK DELAY UNDER WEB AND STREAMING TRAFFIC (TIMES IN MS)

Traffic Recv |Asend-Drecv| > 0 Last ACK Delay > 0 First ACK Delay > 0
Type Connection 0O.S. % Mean | Med. % Mean | Med. % Mean | Med.
Web CNN—DSL Win 81.1 | 853 20 52.4 50 4 100.0 13 7
CNN—WPI Win 87.0 | 427 26 69.0 66 57 7.7 10 10
Linux || 542 | 814 15 17.1 25 39 12.5 29 29
Cisco—DSL Win 709 | 346 48 33.8 84 101 95.3 18 8
Cisco—WPI Win 73.6 | 155 44 34.1 81 107 414 37 2
Linux || 56.5 93 40 21.2 40 40 323 2 2
Stream- Amazon—DSL | Win 90.3 7 100.0 111 110 0 0 0
ing Audio | Amazon—WPI | Win 30.9 3 1 100.0 108 107 0 0 0
Stream- Yahoo—DSL Win 12.3 | 9382 121 0.3 111 130 99.6 8 8
ing Video | Yahoo—WPI Win 24.0 | 2319 7 1.1 143 151 12.0 12 13

together. First for the data piggybacking approach we
found that the reverse channel throughput can match the
effective reverse bandwidth limit without negative effects
on forward channel throughput. Second, the number
of reverse channel packets generated to achieve this
throughput is significantly less than a simple bidirec-
tional transfer over one connection or two independent
connections. Even in the case of an application-only
approach with no TCP implementation support there is
a reduction in the number of reverse-channel packets.
Third, even in the case of asymmetric links such as
a home DSL connection, data piggyback sizes up to
a few hundred bytes per packet can be supported in
either an application-only or TCP-level implementation
without reducing forward-channel throughput nor having
an appreciable effect on the number of reverse-channel
packets.

We also obtained many useful results from the en-
hanced ACK experiments to maintain more complete
packet transmission information at the receiver in a TCP
connection and share this information with the sender via
a new Timestamps Option. A desirable feature in a TCP
connection is to be able to know the spacing between
data packets received at the receiver and hence establish
jitter in the forward data transmission channel. Currently
this spacing can only be inferred from spacing between
ACK generation at the receiver or ACK reception at
the sender. However, results from many file transfer
experiments show discrepancies between the spacing of
ACKs and the actual spacing of received data packets.
In one file transfer experiment we found a difference
between these spacings in over 50% of cases with an
average difference of 60ms. These differences are due to
reverse channel congestion, variation when data packets
are received, which is masked with the delayed ACK fea-
ture, as well as delays when ACK packets are generated
by the receiver. These differences occur more frequently
with generally a larger magnitude when traffic is not sent

as frequently as allowed by TCP as can be the case with
Web or streaming data. All of these variations, combined
with packet loss, make the determination of the actual
RTT difficult for the sender resulting in conservative
estimates to be made in determining the RTO for the
connection.

An important point concerning the availability of this
more complete and accurate information about the TCP
connection is that it is obtained with minimal, bounded
overhead by the TCP receiver and only a small amount
of additional information added to an ACK packet that
must be sent anyways. Results from our data piggyback-
ing experiments show that adding a small number of
bytes to reverse-channel traffic over even a bandwidth-
constrained link can be accommodated.

An interesting question about the two approaches
is whether they improve or exacerbate problems that
occur due to dropped or out-of-order packets. In the
case of data piggybacking and forward-direction con-
gestion, duplicate ACKs in the reverse direction provide
more opportunities for piggybacking. However, too much
data piggybacked in the reverse direction could cause
congestion and negatively affect forward throughput. If
dropped or out-of-order packets occur with the enhanced
ACK approach as did occur in some of our experiments
then its additional information provides a more complete
picture of what is happening with the data transmission,
although the approach would complement, not replace,
the existing selective ACK option [12] in retransmission
of missing packets.

Another interesting question about the two approaches
is whether they can and should be combined. Because
the enhanced Timestamps approach is proposed as a
TCP option it could be combined with the data piggy-
backing approach. In terms of whether the combination
makes sense, the enhanced ACK information could help
both endpoints of a connection determine the available
bandwidth between them, although use of the proposed



option in the direction of data flow would cause a
small reduction in the per-packet data capacity for that
direction. Further research is needed to study the relative
tradeoffs of combining the approaches.

X. SUMMARY

In this work we have proposed and evaluated two
independent approaches for how to make better use of
the available space in TCP ACK-only packets to improve
data transfer. The first approach provides packet-efficient
throughput in the reverse direction of a connection
without sacrificing forward throughput, while the second
approach provides more detailed and complete infor-
mation about the state of the forward connection that
could be used by a TCP implementation to obtain better
throughput under different network conditions.

Results from the work also lead to a number of
directions for future work. First, both the data piggyback
mechanism and the enhanced Timestamps Option need
to be implemented and tested. Second, for the enhanced
Timestamps Option, an obvious direction is to investigate
potential improvements to TCP implementations using
the more detailed and complete timestamp informa-
tion. Third, for asymmetric connections, too much data
transmission in the reverse direction negatively affects
forward-direction throughput. Mechanisms for the data
piggybacking approach to monitor and adjust to available
bandwidth limits, such as with the proposed enhanced
ACK option, need to be investigated. Finally, wireless
network performance could improve by using the en-
hanced Timestamps Option to help a sender determine
whether transmission problems occur because of conges-
tion or packet loss.
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