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Abstract

The protocols used by the majority of Web transactions are HTTP/1.0 and HTTP/1.1.
HTTP/1.0 is typically used with multiple concurrent connections between client and server
during the process of Web page retrieval. This approach is inefficient because of the overhead
of setting up and tearing down many TCP connections and because of the load imposed on
servers and routers. HTTP/1.1 attempts to solve these problems through the use of persistent
connections and pipelined requests, but there is inconsistent support for persistent connections,
particularly with pipelining, from Web servers, user agents, and intermediaries. In addition,
the use of persistent connections in HTTP/1.1 creates the problem of non-deterministic con-
nection duration. Web browsers continue to open multiple concurrent TCP connections to the
same server.

This paper examines the idea of packaging the set of objects embedded on a Web page
into a single bundle object for retrieval by clients. Based on measurements from popular Web
sites and an implementation of the bundle mechanism, we show that if embedded objects on a
Web page are delivered to clients as a single bundle, the response time experienced by clients
is better than that provided by currently deployed mechanisms. Our results indicate that the
use of bundles provides shorter overall download times and reduced average object delays as
compared to HTTP/1.0 and HTTP/1.1. This approach also reduces the load on the network
and servers. Implementation of the mechanism requires no changes to the HTTP protocol.
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1 Introduction

The World Wide Web has significantly evolved over the past few years. The amount of offered

content and the number of content consumers have grown exponentially, complexity and richness

of content has increased, functionality and performance of Web servers and user agents has im-

proved. Web transactions, carried over the HyperText Transfer Protocol (HTTP) [2, 7] running on

top of the Transmission Control Protocol (TCP) [22], account for 70-75% of traffic on the Internet

backbone according to one study [4]. With the Web being the main application on the Internet, it

is vital to ensure the efficient use of network (and server) resources by Web transfers while quickly

delivering the requested content to end users. In previous work we proposed a new method for

Web page retrievals that involves bundling of all embedded objects on a Web page into a single

object [32]. The bundle method seeks to address the inefficiencies of HTTP/1.0 while avoiding

the problem of inconsistent support for the features of HTTP/1.1. In this work we describe the ap-

proach and evaluate its use as a Web page retrieval method. We present the results of experiments

performed using both simulated bundles from popular sites and a working bundle mechanism to

compare bundling with existing retrieval methods.

The idea of bundles is intended to address problems with the current approaches to retrieving

multiple objects needed to render a Web page. Versions 0.9 and 1.0 of the HTTP protocol are based

on the model that uses a new TCP connection for each request/reply exchange with the Web server.

To speed up the retrieval of content, many popular Web browsers open multiple concurrent TCP

connections. Such a model, whether implemented with serialized or concurrent TCP connections,

makes inefficient use of network and server resources. The overhead of setting up and tearing

down each TCP connection contributes to router congestion. The operating system of the Web

server also incurs per connection overhead and experiences TCP TIME WAIT loading for each

closed TCP connection. Response latency is affected because a new TCP connection is created for

each request and each transfer independently goes through the TCP slow start phase.

Early on in the development of the Web this inefficiency of the simple HTTP model was re-

alized and addressed by a number of proposals [24, 8, 18] advocating the use of a single TCP

connection for multiple request/reply exchanges. Two new HTTP methods were also suggested,

GETALL and GETLIST, which could be used to get all objects from a Web page in a single

1



retrieval, and to get an arbitrary list of objects from a server in a single request respectively [21].

These efforts contributed to the decision to adopt persistent connections as default in the HTTP/1.1

protocol [7, 11].

HTTP/1.1 compliant clients and servers SHOULD (not MUST) (for the definition of these

terms as applied to standards see [3]) permit persistent connections, although either side is allowed

to terminate a persistent connection at any time. Both clients and servers can also indicate their

unwillingness to hold a connection as persistent by including a “Connection: close” header

as part of the HTTP request or reply respectively.

This flexibility in dealing with persistent connections was deemed necessary, particularly for

servers, during the development of the HTTP/1.1 specification, but has led to mixed success in

the current use of persistent connections. Studies have shown that 70-75% of Web servers at

popular Web sites support HTTP/1.1 persistent connections, meaning that more than one object

was successfully retrieved over the same TCP connection [10, 14].

However, support for persistent connections does not necessarily lead to reduced retrieval times

for a set of objects from a server. One of the authors evaluated the impact of different strategies for

using TCP connections to retrieve multiple objects from the same server on the end-to-end response

time and found a number of interesting results [14]. First, persistent connections with serialized

HTTP requests generally do not provide better response time than parallel requests. Second, per-

sistent connections with pipelining generally provide better response than parallel requests, but

pipelining was only supported by about 30% of the servers. Moreover, performance benefits are

lost if TCP connections must be re-established.

Overall, persistent connections address inefficiencies associated with multiple concurrent con-

nections, and when successfully used with pipelining can improve the response time. In practice,

however, there is inconsistent support from Web servers, user agents, and intermediaries for per-

sistent connections, particularly with pipelining. In this environment, browsers continue to open

multiple concurrent TCP connections to the same server [28, 1], which leads to considering more

efficient approaches for retrieving multiple objects from a server.

This work evaluates a new approach to the problem of delivering multiple Web objects from

a single server to a client. Our approach is more efficient than using multiple concurrent TCP

connections and more deterministic than a persistent connection carrying a variable number of
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client requests. The basic idea is for servers to group sets of related objects, such as objects needed

to render a Web page, into a new object, called a bundle [32]. In its simplest form, a bundle is

a concatenation of a URL string, HTTP headers, and content for each of its constituent objects.

Servers advertise the availability of a bundle (or bundles) for each of their container (HTML) pages

via a new HTTP response header Bundles. Clients understanding this header can then choose to

issue a single HTTP request (over an existing or a new TCP connection) and fetch the entire bundle

or to ignore the availability of the bundle and retrieve all remaining objects for the container page

as is currently done. Upon obtaining the bundle, clients recover the objects encapsulated in it and

cache each of them using the supplied URLs and HTTP headers. As clients render the page, the

embedded objects should already be cached, but if a bundle does not contain all the necessary

objects, then clients simply retrieve them from the server as is currently done.

An origin server or a server in a Content Distribution Network (CDN) can use this approach

to serve multiple objects grouped together. In evaluating this approach, our focus has been on a

set of objects necessary to fully render a Web page. In general, bundles could include objects that

have some other form of relationship than being part of the same page. For example, all “popular”

images at a site could be packaged into a bundle.

In the remainder of the paper we discuss the details of this approach and examine its impact on

the entities involved in the handling of the HTTP requests and responses. We include results from

a measurement study that examines performance impact if bundles were available from popular

Web sites. We describe a server and client implementation of the bundle mechanism and present

performance results under varying network conditions. We go on to examine the interaction be-

tween our approach and client side caching as well as content distribution. We conclude with a

summary of our findings and a discussion of directions for future work.

2 Packaging Objects into Bundles

A common way to distribute software on the Internet is to package a collection of related files

into a single file, using tools such as tar and gzip. We are also aware of Web sites that package a

subset of their content (mostly static resources) using similar techniques and provide a pointer to

the resulting file on their home pages (see [23] as an example). We are unaware, however, of any
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work that has proposed and evaluated a more selective and automated packaging of related objects.

In our approach the use of bundles is initiated by the content provider. In the simplest case,

an origin server packages all objects embedded on a Web page into a bundle. Each object in a

bundle is represented by its URL, relevant metadata (HTTP headers), and contents. HTTP headers

associated with each object, local headers, are specific to that object. For example, an object can

have Content-Length (used by the client in recovering the encapsulated objects) or Last-

Modified HTTP header associated with it. When a bundle is requested by a client, the Web

server also assigns it a set of HTTP headers, as it would for any other object. In the content of

bundles, we will refer to such headers as global headers. In cases where global headers have the

same names as the local headers, the local headers always take precedence over global headers.

Otherwise, individual objects within a bundle inherit the global headers. Since all objects served

by the same Web server naturally share some common HTTP headers, such as Server or Date,

serving a single bundle instead of multiple individual objects results in a simple header compaction

mechanism. With many small objects included in a bundle, byte savings could be significant.

For serving objects embedded in a Web page, a server can adopt a convention that bundles

have the same names as their respective pages, except for the extension. For example, the bundle

http://www.wpi.edu/index.bndl contains the embedded objects for the

http://www.wpi.edu/index.html page. Bundles could be dynamically computed upon

a client’s request or could be precomputed. Dynamic construction of bundles is likely to incur

substantial overhead due to a Web server parsing the page to determine which objects to include

in the bundle. Precomputation avoids critical path processing but requires additional storage at the

server since both bundled and original objects are stored. Popular objects, such as logos embedded

on all site pages, will belong to many bundles, and should be separated into a separate bundle.

Ultimately, servers decide if, when, and how to construct bundles.

One approach for constructing bundles is to group objects on a page, or across pages, based on

their relationships and change characteristics, as discussed in [31]. Such grouping is reminiscent

of the notion of volumes [16, 13, 5]. For example, static or infrequently changing objects on a page

can be packaged together. Frequently changing objects on the same page can be organized into a

separate bundle—or not grouped at all. While clients need to retrieve more than one bundle for

a page in such cases, each bundle contains objects with similar change characteristics and cache
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control directives.

A sample interaction between a browser and a server using bundles is shown in Figure 1.

When processing a request for a Web page that has an associated bundle, the Web server includes

an additional HTTP header in its response, advertising the availability of bundles to the client. For

example, the server includes the “Bundles: index.bndl” header when processing a request

for index.html. If the requesting client chooses to take advantage of the available bundle, it

issues a single HTTP request (over the existing or a new TCP connection) and indicates its ability

to accept a new content type, application/x-bndl. Upon obtaining the bundle, the client

extracts individual objects from it and reconstructs their metadata. These objects can then be stored

in the local client cache (whether the client is a user agent or a caching proxy). At this point, the

client can discard the bundle itself, although it may want to retain meta-information about the

bundle for future retrievals (see Section 8). Clients that do not support bundles or choose to ignore

them, fetch embedded objects as usual. The use of bundles is optional for both clients and servers,

and it does not require any changes to the current method of content retrieval.
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Figure 1: Basic HTTP Interactions with Bundles

An obvious extension of simply concatenating a set of objects together is to use a compression

tool such as gzip to reduce the size of the bundle for transmission (potentially for storage as well).

In the likely case that bundles primarily contain images, which are already compressed, opportu-
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nities for additional compression come mostly from textual HTTP headers within the bundle. In

cases where bundles encapsulate textual objects, such as HTML frames, Cascading Style Sheets,

or scripts to be executed on the client side (JavaScript that is not part of HTML, for example),

applying compression could significantly reduce the size of the bundle.

3 Performance Impact on Servers

This section examines the performance implications that the use of bundles has on servers. The

following section examines the performance impact for clients. Bundles are unlikely to find wide

adoption unless shown to be beneficial to both clients and servers.

HTTP uses TCP as its transport protocol. As a connection-oriented protocol, TCP maintains

state at each end point of the connection thus placing per-connection memory overhead on each

peer host. With a large number of simultaneously active TCP connections, a Web server’s memory

requirements can grow large. A more significant per-connection overhead occurs when a host

performs an active close on the TCP connection. After sending the final TCP ACK, that host must

keep the closed connection in the TIME WAIT state for twice the Maximum Segment Lifetime

(MSL) [25]. MSL is specified as 2 minutes [22], but commonly used values are 30 seconds, 1

and 2 minutes [25]. Consequently, the local port number used by the connection that is currently

in TIME WAIT state cannot be reused for 1 to 4 minutes. In HTTP, Web servers are the ones

normally closing the connection. Therefore, depending on the local port range made available by

the operating system (it is not always 1024-65535), and the client request rate, servers might be

unable to open new TCP connections, even if few are currently active. HTTP throughput reductions

of up to 50% have been reported [6]. TIME WAIT loading of busy Web servers is studied in [6].

Intuitively it is clear that Web servers should benefit from maintaining fewer TCP connections.

And yet experience shows that support for persistent connections is not always implemented in

Web server software or is deliberately turned off. The latter might be explained by the fact that

lifetime of a persistent connection is non-deterministic—Web servers and clients are free to close

a persistent connection when they deem necessary. The default connection-per-request model of

HTTP/1.0, on the other hand, is deterministic—a server closes the connection after forwarding

the response to the client. Our proposal utilizes a single TCP connection to effectively retrieve
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multiple objects while allowing the server to deterministically close the connection.

In addition to per-TCP connection overhead, Web servers also incur per HTTP request and per

HTTP response overheads. Each HTTP request must be parsed, possibly logged, each HTTP re-

sponse must be generated, including the HTTP response headers. Depending on the configuration

and load, a Web server might need to fork a new process to service an incoming request.

Consider a Web server serving a Web page with n embedded objects under three different

scenarios, as shown in Table 1. Under the connection-per-request model, used by HTTP/1.0 and

HTTP/1.1 without persistent connection support, the number of TCP connections, HTTP requests,

and HTTP responses directly depends on n. With the persistent connections, the number of HTTP

requests and responses is still proportional to n. Only when bundles are used the number of con-

nections and requests needed to retrieve a Web page is constant.

Table 1: TCP Connections and HTTP Requests/Responses Resulting From the Retrieval of a Web
Page with : Embedded Objects

Number of
Scenario Connections Requests/Responses
Connection-per-Request :<;>= :<;�=
Persistent Connection 1 :<;>=
Bundle Retrieved 1-2 2

Additional overhead is incurred at the servers because bundles must be created for appropriate

Web pages, which requires tracking changes to these Web pages. Storage to maintain bundles is

also required. Web servers can control these costs by grouping objects into bundles according

to object change characteristics. The set of rarely changing objects on a page would form one

group. Frequently changing objects contained within a Web page can either be grouped in their

own bundle or not grouped at all. In the latter case, clients retrieve these objects individually as is

currently done.

4 Performance Impact on Clients

We use two methods to evaluate the effectiveness of the use of bundles for a client. One method

is to implement the client- and server-side mechanisms required for the use of actual bundles, and
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to conduct experiments using these mechanisms in order to assess the practical implications of the

use of bundles. This method is discussed in Sections 5-7.

Our other evaluation method involves measuring the time required to retrieve simulated bundles—

existing objects that approximate as closely as possible the combined size of all of the objects

embedded on a particular Web site’s main page. This method allows us to measure and compare

the retrieval times of Web pages from a large number of existing Web sites using both bundles and

traditional retrieval mechanisms. An additional benefit of this method is that these measurements

may be made without any client or server modifications.

For these experiments we constructed a list of 500 existing Web sites, including sites from the

”.com”, ”.net”, ”.org”, ”.gov”, and ”.edu” domains. We used this list to perform a two-step process.

The two steps were performed independently. In the first step, we used an automated tool to gather

a list of existing objects of varying sizes at each Web site.

In the second step, we used other automated tools to retrieve the container page and embedded

objects for each of the 500 Web sites. Each container page and associated embedded objects

were retrieved using httperf [20] with four protocol options. Httperf is a publicly available tool

that retrieves a set of objects from a server and reports statistics about the performance of the

retrieval. Httperf provides the ability to retrieve objects using a variety of connection configuration

options, including variations of the HTTP/1.0 and HTTP/1.1 protocols. To facilitate comparison

of bundled retrieval times to retrieval times achieved by existing retrieval methods, in this study

we used httperf with the following protocol options:

1. burst-1.0—retrieve objects using up to four parallel HTTP/1.0 requests,

2. serial-1.1—retrieve objects using serialized requests over an HTTP/1.1 persistent connec-
tion, and

3. burst-1.1—retrieve objects using pipelined requests over a single HTTP/1.1 persistent con-
nection.

For each of the 500 Web sites, we also calculated the size of a hypothetical bundle for the page

and retrieved (when possible) existing static objects with sizes that were the next smaller and the

next larger from the set of objects found in the first step of our study.

The study with simulated bundles was done in April 2001 and October 2001 from a high-speed

Internet client at Worcester Polytechnic Institute (WPI). The study was also conducted from a
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low-speed dialup client in October 2001.

Table 2 shows the averaged results for all of the sites for which we were able to identify both a

smaller and a larger object to serve as simulated bundles, and thus were able to calculate expected

bundle retrieval times based on interpolation between the retrieval times for the two objects. The

Extrapolated Bundle column shows the expected bundle retrieval times calculated by extrapolating

from the time to retrieve the smaller objects. The retrieval time values are in seconds. The value

in parentheses following each retrieval time indicates the ratio of the retrieval time to the burst-1.0

retrieval time. The retrieval times shown for unbundled retrievals indicate the time required to

retrieve all of the embedded objects, and do not include the time required to retrieve the container

page.

Table 2: Overall Averages for Retrieval Time Compared to Burst-1.0

?A@�BDC�EFBHGJI2BDK @�LFMONPK QRBTS2UAB�VWC XSYEFL�GJK Z\[]K G_^a`Hb�Idc�G$eOfHC g�X
NhB�c�GDEib�j U
BDI2@�BDIk ZDb�jlG ?A@�BDCUmK noB ?A@�BDClpq `lr B�V�G$c ?A@�BDCEFNsN t b�Idc�Guevf�C g w j.GuBDIyx�Ct b�j.zDM B {}| GJI2LDxHCt b�jozDM B

~�� w ?mxHIYCl� gDf flgH� �����H�H� fl�DC � gDC ����� �DC$fl��Syf�C gHX�gDC �H��SdgDC �HX�f�C g���SdgDC ��X
~�� w q V�G�C.� gDf flg�� �����H�H� fl�DC � gDC$flg�g f�C �H��Syf�C gHX�gDC �FfhSdgDC �HX�gDC ����SdgDC ��X
�iK LFM b�x q V�GJCl� gFf ��� ��g������ fl�DC � gDC ���H� f�fHC ����Syf�C g�X��FC ���PS2gFC ��X��DC �H��SdgDC ��X

The results show that bundling embedded objects can provide significantly shorter elapsed em-

bedded object retrieval times than the burst-1.0 protocol option. Due to bandwidth limitations, the

reduction in retrieval times achieved using bundles is relatively less significant for dialup connec-

tions than for the faster connection type.

Table 3 compares the retrieval time for simulated bundles to the retrieval times using the burst-

1.1 protocol option. The retrieval times for other protocol options are shown for comparison.

This table includes the averaged results for all of the sites for which we were able to successfully

retrieve all of the embedded objects in a single TCP connection using the burst-1.1 protocol option.

In order to increase the number of samples shown, the table excludes results from sites for which

we were unable to identify a larger object to serve as a simulated bundle. Consequently, Table 3

does not show interpolated results. The extrapolated bundle retrieval column shows the expected

bundle retrieval time calculated by extrapolating from the time to retrieve the smaller object. The
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value in parentheses following each retrieval time indicates the ratio of the retrieval time to the

burst-1.1 retrieval time.

Table 3: Overall Averages for Retrieval Time Compared to Burst-1.1

�A���D���F�����y� �H�o���O��� �R�T�d A��¡}� ¢£�y�F����� ¤\¥¦� ��§\¨A©��dª��$«O¬H�$¬.¢
�h��ª��D�i©�­  A�F�2���D�® ¤F©�­l� �A���D� m� ¯�� �A���D�l°±³².´ �H¡��$ª �A���D��F�s� ¨A©��dª��$«O¬H� µ  A�D�Y� �D� «v¬��¶¬ ¨A©��dª��$«O¬H�u¬ ·}¸ �J�2�F¹��¨A©�­oºD� �

»�¼�½l�m¹��y�l¾ µF¬ ¬lµHµ ¿�À�Á�Â�Á ¬lÃD� µ µD�u¬.ÁHÄ ¬�� Å�ÃÆ�y¬�� À�¢�ÇD� ÀHÂ��y¬�� ÃH¢ ¬�� Â�µ��y¬�� µ�¢ ¬H� Ç�ÂP�2µF� Ã�¢
»�¼�½ ± ¡��J�l¾ µF¬ ¬�¬.µ ¿�¿�Ä�Ç�Â ¬lÃD� Å µD� µHÅHÃ ¬�� Å�µÆ�y¬�� Ç�¢ ¬�� ÄHÁ��y¬�� ÀH¢ ¬�� ¿�¿��y¬�� µ�¢ µF� Ä�ÄP�2µF� ¿�¢
Èi� �F� ©�¹ ± ¡��J�l¾ µD¬É¬lÀD¬Ê¿D¬lÂ�¿�Ç ¬l¿D� µ µD� ¿�µ�ÁË¬lÀD� ÁH¿Æ�y¬�� µH¢Ì¬l¿F� ÇHÀP�Y¬H�u¬l¢Í¬.ÀD� Â�Á��y¬�� µH¢Î¬�¬�� ¿HÇ��dµD� Å�¢

The improvement for bundles relative to the burst-1.1 option is not as significant as for burst-

1.0. This result is expected because if the server is able to continue to send content in response

to pipelined requests with the burst-1.1 option then performance should be comparable to that of

bundles. Although not shown, we did break down the results in Tables 2 and 3 according to the

number of embedded objects, number of embedded bytes, and round trip time (RTT). We found

that bundling has more relative effect for pages with more objects. We found it has less relative

effect based on differences in the number of bytes or RTT [27]. The overall results from this study

confirm results found in a preliminary study based on older measurements [32].

5 Implementation

Our implementation consists of two parts: a bundle-capable Web server, and a thin client-side

Web proxy that is used in conjunction with a Web browser such as Netscape Navigator or Internet

Explorer. This architecture is illustrated in Figure 2. The Web proxy and the Web browser are

co-resident on the client machine and work in tandem to handle the retrievals of individual and

bundled objects. The Web server is located on a server machine and serves both bundled and

unbundled pages. The remainder of this section details the implementation.

5.1 Bundle Construction

In our implementation, a bundle is a file containing object-specific headers, a URL string for the

object, and object contents for each of the bundled objects. Figure 3 shows an example of a
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Figure 2: Implementation Architecture

bundle. For each object in the bundle, we first list any headers that are specific to the object, such

as Content-Type, Content-Length, and Last-Modified.

Following the object-specific headers are a URL string for the object and a line containing

only a carriage-return line-feed character sequence. The URL string and the carriage-return line-

feed character sequence are used by the proxy during the bundle extraction process. The objects

contents are copied into the bundle file starting on the line immediately following the carriage-

return line-feed sequence. Data for any additional objects immediately follows.

Our implementation is capable of handling compressed bundles. A compressed bundle is

formed by creating a bundle using the above-mentioned technique, then compressing the resulting

bundle file using the gzip compression utility. The Web server handles compressed bundles in ex-

actly the same manner as uncompressed bundles. The proxy uses zlib compression library calls to

detect compressed bundles and uncompress them on the fly.

5.2 Bundle-Aware Web Server

The Web server in our implementation is a simple server written in Java. Because we wanted to

eliminate the effect of server-side caching during our retrieval measurements, our Web server does

not perform any caching of recently served objects.
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Figure 3: Bundle Construction

The Web server accepts a command-line argument that indicates the name of a ”bundle map”

text file. Each line is this file contains two items: the fully qualified pathname of a file or object that

may be requested by a client, and the URL of a corresponding bundle object. The Web server reads

this file at startup, and stores its contents in a structure in memory. Upon receiving a request from

a client, the Web server first checks the bundle map to determine whether the request matches any

of the entries in the bundle map. If a match is found, the Web server adds the Bundles header to

the response, thus notifying the client of the availability of a bundle object that is associated with

the requested page. The Bundles header includes the URL of the bundle object associated with the

request. If the Web server receives a request for a bundle object, the object is returned to the client

exactly as any other object would be.

5.3 Client-Side Web Proxy

Ideally, the client side implementation of the bundle mechanism would consist of an industry-

standard Web browser modified to handle bundles. For this study, we chose to implement our

client-side mechanism in a way which would approximate as closely as possible the use of a

standard browser while keeping the implementation manageable.

Our implementation approximates a modified standard Web browser by placing a small Web
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proxy in front of an unmodified Web browser. The browser and proxy processes run simultaneously

on the client machine. All incoming and outgoing Web traffic passes through the proxy, enabling

the proxy to intercept bundle-related traffic and perform bundle-handling operations on behalf

of the browser. The combined browser and thin proxy provide a reasonable approximation of a

browser modified to handle bundles.

Our client-side Web proxy is written in Perl. The proxy communicates with the Web browser

via a TCP connection. The proxy implementation includes a file system-based cache in which

recently retrieved objects may be stored. The proxy is designed to handle both uncompressed and

compressed bundles. Compressed bundles are uncompressed on the fly as the bundle stream is

received via the TCP connection to the server. Similar to proxies such as Squid [29], our proxy

supports only non-persistent connections for straight-forward and less error-prone implementation.

Figure 4 illustrates the interaction between the Web browser, proxy, and Web server during

retrieval of a container page and associated bundle. The process begins when the browser issues

a request for the container page. The request passes through the proxy and is forwarded on to the

Web server. When the Web server receives the request, it checks the bundle map to see if a bundle

exists for this request. If a match is found, the Web server advertises the availability of a bundle by

attaching the Bundles header to the container page as it is returned to the client.

The container page passes first through the proxy on the way back to the Web browser. As it

forwards the container page response on to the browser, the proxy scans the headers on the con-

tainer page to check for the presence of the Bundles header. If the Bundles header is present,

the proxy issues a request to the Web server for the bundle object indicated in the Bundles header.

The Web server responds to the proxy’s request for the bundle object by returning the bundle

object as it would any other object. As the proxy receives the bundle object back from the Web

server, the proxy extracts the individual objects from the bundle and places them into the proxy

cache. If the bundle is in a compressed form, the proxy uncompresses the bundle as it is being

received via the TCP connection with the server.

As each object is read from the bundle during the extraction process, the proxy stores the object

in the proxy cache using the provided URL string as a key. When the proxy subsequently receives

a request from the Web browser for an object, the proxy first queries the cache using the URL

requested by the browser. If a key matching the requested URL is found, the associated object is
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Figure 4: Implementation Transaction Diagram

retrieved from the proxy cache instead of being retrieved from the server.

The contents of an object within a bundle starts after a line containing only the carriage-return

line-feed character sequence. The corresponding end of the object’s contents is identified using the

value of the Content-Length header.

The proxy returns the container page to the browser and immediately issues the request for

the bundle object. Consequently, while the proxy is waiting for and receiving the bundle object

from the Web server, the browser receives the container page, parses the container page, and issues

requests for any embedded objects.

During this period bundle processing occurs in the proxy. The proxy is receiving and processing

a bundle that may contain the embedded objects for the associated container page. Therefore,

the proxy must carefully handle any requests received from the Web browser while the bundle

extraction process is proceeding.

If the proxy receives a request for an object during the bundle reception and extraction process,

the proxy first checks to see whether the requested object is in the proxy cache, since the requested
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object may have already been extracted from the incoming bundle. If the requested object is in the

cache, the object is returned immediately to the browser. If the object is not in the proxy cache,

the proxy does not immediately forward the request on to the server. Instead, the proxy adds

the request to a list of outstanding requests. After each object is extracted from the bundle, the

proxy checks to see whether any outstanding requests exist for the just extracted object. If there

are any outstanding requests for the object, the proxy immediately returns the object to the Web

browser. After the proxy has finished processing the bundle, any requests still outstanding are then

forwarded on to the appropriate server(s). This logic ensures that requests for embedded objects

that are contained in the bundle are fulfilled by the bundled objects, and requests for embedded

objects that are not contained in the bundle are also satisfied.

6 Implementation Experiments

We performed experiments using our bundle implementation in order to assess the impact of bun-

dle use on Web page retrieval performance. In order to compare the performance of a working

bundle implementation to existing retrieval techniques, we retrieved pages containing a varying

numbers of embedded objects of varying sizes using three different network connection types.

The embedded objects were retrieved in both unbundled and bundled form. Retrieval times were

measured and recorded.

Our test sample consisted of three Web pages representing a small, medium and large Web page

in terms of number and collective size of embedded objects. The pages were selected from existing

pages on the WPI site. The container pages and associated embedded objects were copied to our

test Web server. The characteristics of the three pages and the bundles formed by their embedded

objects were as follows:

1. Small page: 10 embedded objects, 26.4k bytes uncompressed bundle size, and 23.4k bytes
compressed bundle size.

2. Medium page: 28 embedded objects, 69.1k bytes uncompressed bundle size, and 59.9k bytes
compressed bundle size.

3. Large page: 47 embedded objects, 113.6k bytes uncompressed bundle size, and 99.0k bytes
compressed bundle size.
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The embedded objects on these pages included images, style sheets, and JavaScript. However,

since most of the embedded objects were images little reduction in size was achieved by com-

pressing the bundles composed of these objects. The specific object counts and sizes that we chose

correlate well with the findings of a study done in April, 2002 by Krishnamurthy et al., in which

they divided the number of embedded objects and bytes for frequently requested pages into 33%

and 67% percentiles, producing three ranges for each of the two metrics [12]. The three ranges for

embedded object counts were less than 7, between 8 and 22, and greater than 22. The three ranges

for embedded object bytes were less than 20K, between 20K and 55K, and more than 55K. The

small, medium, and large pages that we chose respectively fall into the lower portion of the middle

percentiles, the lower portion of the upper percentiles, and well into the upper percentiles in the

data gathered by Krishnamurthy et al.

The Web server was located at WPI for all tests. The same client machine was used for all tests,

but the client machine was moved to three different geographical locations in order to perform tests

using dialup, cable modem, and T1 connection types.

For each of the three client connection types, each of the three pages and associated embedded

objects were retrieved using the following methods:
Z unbundled, using up to four concurrent HTTP/1.0 connections,

Z uncompressed bundle, and

Z compressed bundle.

Ten retrievals were performed for each page for each method using each of the network con-

nection types. The retrievals were performed by a set of automated test tools developed for this

experiment. All of the retrievals for each connection type were performed during a single contin-

uous run in order to minimize the effect of network or server load on the results. For the same

reason, within each test run, retrievals were performed using the three retrieval methods in cyclical

order. The Web server was lightly loaded during testing.

The tests used Netscape Communicator as the Web browser in conjunction with the thin Web

proxy and Web server developed for our bundle implementation. We used a script to launch

Netscape and initiate each retrieval. Netscape was stopped and restarted between each retrieval

to eliminate the effect of browser caching and ensure consistency of the environment between

retrievals.
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7 Implementation Experiment Results

In analyzing the results of experiments performed using our bundle implementation, we examined

the effect of the use of compressed and uncompressed bundles on the retrieval characteristics:

elapsed time for retrieval of the container page and all embedded objects, time of availability of

individual embedded objects during Web page retrieval, and average delay per embedded object.

We present the results of our experiments and analysis in this section.

7.1 Elapsed Time

Figures 5, 6, and 7 show the average elapsed retrieval times of the three sample pages using the

dialup connection, cable modem connection, and T1 connection, respectively. The elapsed times

indicate the time required to retrieve the container page and all of the embedded objects. The results

in these figures are grouped by sample Web page. Each figure shows the average elapsed time to

retrieve each of the three sample Web pages using each of the three configurations - unbundled,

bundled/uncompressed, and bundled/compressed. The error bars in each figure show the 95%

confidence interval above and below the average value.
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Figure 5: Average Elapsed Time for Page—Dialup Connection
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As Figure 5 shows, the average elapsed times for both uncompressed and compressed bundles

were significantly shorter than the average retrieval times for unbundled retrievals using multiple

concurrent HTTP/1.0 connections over a dialup connection. Since the compressed bundle sizes

were similar to the uncompressed bundle sizes, the average elapsed times for compressed bundle

retrievals were not significantly shorter than for uncompressed bundle retrievals.

Figures 6 and 7 show the average elapsed times for the cable modem and T1 connection tests,

respectively. For both connection types, uncompressed and compressed bundle retrieval times were

significantly shorter than unbundled retrieval times.
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Figure 6: Average Elapsed Time for Page—Cable Modem Connection

In Figure 7 the average elapsed time and confidence interval for the unbundled retrieval of the

Large page are influenced by a single outlying retrieval time value of 16.3 seconds. If this outlier

were excluded, the average elapsed time would be 6.0 seconds with a 95% confidence interval of

0.2 seconds.

Figures 5, 6, and 7 show that bundled retrievals achieve more significant relative reductions in

retrieval times for faster connection types than for dialup connections. As previously mentioned,

this difference may be attributed to the fact that bandwidth limitations are a greater factor in re-

trieval time performance for dialup connections as compared to faster connection types.
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Figure 7: Average Elapsed Time for Page—T1 Connection

7.2 Time of Availability of Individual Objects

In addition to comparing the overall elapsed times of bundled and unbundled retrievals, we also

examined the effect of bundle use on time of availability of individual embedded objects during

retrieval of a Web page. During retrievals using HTTP/1.0 and HTTP/1.1, embedded objects are

requested individually and become available to the Web browser throughout the retrieval time

period. Although the retrieval times are affected by the relative sizes of the embedded objects and

network and server load, in most cases we would expect the times of availability to be distributed

fairly evenly throughout the retrieval period when using existing retrieval methods.

A naive bundle implementation might provide for a shorter overall retrieval time while clus-

tering the times of availability of the embedded objects at the end of the retrieval period. From

the user’s perspective, a retrieval in which the objects on the page appear in an evenly distributed

manner throughout the retrieval period might be preferable to having to wait until the end of the

retrieval period for any of the objects to be available, even if the latter case produced a shorter

overall retrieval time.

The first two sets of points in Figure 8 show the time of availability of individual embedded
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objects for a typical unbundled retrieval of our small sample Web page using a dialup connection.

The data in the chart were recorded using our implementation components. For each embedded

object, the figure shows the time when the request for the object was received at the proxy, and the

time when the proxy had finished returning the object to the browser.
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Figure 8: Object Availability Comparison, Dialup Connection, Small Page

After retrieving the container page, the browser issues four concurrent requests for the first

four embedded objects, indicated in the figure as objects ’A’, ’B’, ’C’, and ’D’. After each object

is received, the browser issues a requests for another object, thereby maintaining four outstanding

concurrent requests at all times. This figure illustrates the relatively even distribution of times

of availability of individual embedded objects throughout the retrieval period using traditional
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retrieval techniques.

The other two set of points in Figure 8 show the time of availability of individual embedded

objects for a typical bundled/uncompressed retrieval of the same small sample Web page using

a dialup connection. Immediately after retrieving the container page, the proxy begins retrieving

the bundle on behalf of the browser (bundle request “triangle” is obscured in the figure). The

figure also shows that our bundle implementation allows individual objects to be extracted from

the bundle and returned to the browser while the bundle stream is being received from the Web

server. By using this capability we avoid the problem of delaying the availability of embedded

objects until the end of the bundle retrieval period.

As the figure shows, the browser requested most of the objects before the proxy had extracted

them from the bundle. The extremely short timing interval for object ’I’ shows an example of

the case of an object being extracted from the bundle and placed in the proxy cache before being

requested by the Web browser. When a request for the object is subsequently received at the proxy,

the object is immediately returned to the browser.

Comparing the unbundled versus bundled results in Figure 8 shows the time of availability for

objects ’A’ through ’G’ is nearly identical for the bundled and unbundled retrievals. For objects

’H’ through ’J’, which were requested by the browser near the end of the bundle retrieval period,

the time of availability is earlier for the bundled retrieval than for the unbundled retrieval. These

results indicate that the time of availability of individual objects in bundled retrievals is as good as

or better than that of unbundled retrievals.

7.3 Average Delay Per Embedded Object

We also compared the average delay per embedded object for bundled and unbundled retrievals as

measured during our elapsed time tests. For each embedded object, the delay was calculated as

the difference between the time when the object was available to the browser and the time when

the last byte of the container page was received. The time measurements were made at the proxy

in our implementation architecture. For each Web page retrieval, the average delay per object was

calculated by averaging the delay values for all of the embedded objects in the page.

Figures 9, 10, and 11 show the average delays per embedded object in our tests using a dialup
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connection, cable modem connection, and T1 connection, respectively. Each bar in these figures

represents the average of the average delay per object calculated for the 10 retrievals performed for

that particular configuration. The error bars in each figure show the 95% confidence interval above

and below the average value.
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Figure 9: Average Delay Per Embedded Object—Dialup Connection

As Figure 9 shows, the average delay per embedded object for both compressed and uncom-

pressed bundled retrievals was the same as or shorter than that measured for unbundled retrievals

using a dialup connection. Figures 10 and 11 show the results for cable modem connection and

T1 connection, respectively. These figures show that for cable modem and T1 connections, the

average delay per embedded object was significantly shorter for the bundled retrievals than for the

unbundled retrieval for every page type.

In Figure 11 the average delay and confidence interval for the unbundled retrieval of the

”Large” page are influenced by a single outlying delay value of 12.8 seconds. If this outlier were

excluded, the average delay would be 2.9 seconds with a 95% confidence interval of 0.1 seconds.
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Figure 10: Average Delay Per Embedded Object—Cable Modem Connection
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Figure 11: Average Delay Per Embedded Object—T1 Connection
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7.4 Implementation Results Summary

In summary, tests performed using our bundle implementation indicate that use of bundles signif-

icantly reduces the elapsed time required to retrieve the container page and embedded objects for

pages of varying sizes and containing varying numbers of objects using dialup, cable modem, and

T1 connections. In addition, a properly designed bundle implementation appears to result in times

of availability of individual embedded objects that are equivalent to or better than those achieved

with traditional unbundled retrievals. The average delays per embedded object achieved when

using both compressed and uncompressed bundles are equivalent to or shorter than the average

delays incurred by unbundled retrievals.

8 Interaction with Caching and Content Distribution

The interaction of bundling with caching and content distribution are two issues that we did not

specifically address in our implementation, but have examined in some depth. A passive Web

cache, whether it is a browser cache or a proxy cache, can only serve objects which have been

previously retrieved, subject to per-object restrictions. The first retrievals of a Web page and its

associated objects would result in cache misses and hence the availability of a bundle containing all

embedded objects for the page would be of value to the client as shown in our results. As the client

subsequently retrieves the same or other bundles from the server, they might contain objects that

the client already has in its cache. We see three approaches addressing this negative interaction

between bundles and caching: validating individual objects, validating entire bundles, and delta

encoding of bundles.

8.1 Validating Individual Objects within a Bundle

The HTTP response header, rather than simply advertising the bundle, as

“Bundles: index.bndl,” could also include a list of objects encapsulated in the bundle and

their sizes, as

Bundles: index.bndl (main.css size=sz1, img1.gif size=sz2,
img2.gif size=sz3);
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This list allows a client cache to decide whether the new bundle contains enough new objects

to warrant its retrieval. If not, the client should ignore the bundle and retrieve individual objects as

needed. Servers could also include other validators, such as Last-Modified or ETag, to aid

clients in determining if new object retrievals are needed.

8.2 Validating Entire Bundles

In the second approach, a client cache retrieves a bundle object, extracts and stores its encapsulated

objects, discards the bundle itself, but retains its HTTP headers, especially the ones used for cache

validation. For example, if the Last-Modified or ETag headers are present, the cache could

subsequently use them in a GET If-Modified-Since (IMS) or a GET If-None-Match

request to the server to verify the freshness of the bundle. If the bundle has not changed, the

server will indicate so with the HTTP response status code 304 Not Modified. In this case,

the client cache would have automatically validated multiple objects by issuing a single aggre-

gate IMS request. If the bundle has changed, the server will reply with the HTTP status code

200 OK followed by the body of the new bundle. If the bundle has changed due to only a subset

of its encapsulated objects changing, its retrieval wastes resources. This problem leads to the third

approach.

8.3 Delta Encoding of Bundles

The third approach uses delta encoding. The idea of the technique, first published by Williams et al. [30],

is for the origin server (or proxy) to compute a difference (delta) between an old and a new copy

of an object and communicate that difference to the client, provided that the client has that old

copy of the object. The client can construct the new object by applying the delta to the old object.

Mogul et al. [19] quantified the benefits of end-to-end delta encoding and compression and pro-

posed extensions to the HTTP protocol to support the technique. These extensions are detailed in

a published Internet Draft [17].

Since bundles are regular objects, the delta encoding technique can be uniformly applied to

bundles just like it can be applied to any other object. Example delta encodings include those

produced by UNIX diff -e or by vcdiff [9]. Delta encoding of bundles could also be implemented
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as a modified rsync mechanism [26]. This mechanism efficiently computes differences between

two instances of the same file and is commonly used to update software packages produced with

tools such as tar.

Upon receiving the delta encoded response, the client first reconstructs the older version of the

bundle, based on the preserved meta data and individual cached objects, and then applies the delta

to the result to produce the new version of the bundle. Problems arise when one or more of the

objects from the old bundle are evicted from the client’s cache, making the reconstruction of the

old version of the bundle impossible. To address this problem, clients could cache bundle contents

instead of discarding them or use a bundle-aware differencing algorithm.

The output of a bundle-aware differencing algorithm, given a new and an old versions of a bun-

dle, encapsulates all objects in the new version that are not part of the old version. It also includes

all modified objects in the new version. In addition, the output includes a list of objects that were

part of the old version, but are not in the new version, to help clients differentiate between removed

and unchanged objects. Given that bundles are likely to contain mostly images, computing differ-

ences on an object-by-object basis makes sense. When the client receives such a bundle-aware

delta, all it needs to have in its cache is the unchanged objects from the old bundle. If some of

them were evicted from the cache, the client can retrieve them individually.

We now illustrate how bundle-aware deltas can be specified within HTTP. Suppose a client

obtained a bundle index.bndl from www.wpi.edu, cached all the objects encapsulated in it,

discarded the bundle itself, and kept meta data for the bundle. If at a later time this client wants to

obtain the current value of the bundle it can send the following request to the server (this example

is adopted from [17]):

GET /index.bndl HTTP/1.1
Host: www.wpi.edu
If-None-Match: Bundle-ETag1
A-IM: diffe, vcdiff, bsync, gzip

In this example, the client indicates that it has a cached copy of the bundle, identified by ETag

with the value Bundle-ETag1. Delta encoding is considered to be an instance manipulation,

and the A-IM HTTP request header, short for Accept-Instance-Manipulation, indicates

which delta encodings the client supports. The client can accept delta updates produced by UNIX
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diff -e and vcdiff. The bsync specification, short for “bundle sync,” represents the previously de-

scribed bundle-aware encoding algorithm. To our knowledge, there is no existing tool that does

the proposed bundle differencing, although similar distribution synchronization tools exist. The

client also indicates that it can accept compressed responses using gzip, whether or not they were

delta-encoded.

If the entity tag for index.bndl has changed (say, to Bundle-ETag2), the server, if it

supports delta encoding, will compute the difference between the current version of the bundle

and the older one, whose ETag value is Bundle-ETag1, and send the response to the client, as

shown below:

HTTP/1.1 226 IM Used
Server: Delta-Aware Server/1.0
ETag: Bundle-ETag2
IM: bsync
Date: Wed, 29 May 2002 10:00:00 GMT

......body of the new bundle......

A new HTTP response code 226 IM Used is required to force HTTP/1.0 proxies to forward

all instance-manipulated responses without storing them (other options are discussed in [17]). If

the server does not support delta encoding or does not implement any of the algorithms supported

by the client then it replies with the HTTP response code 200 OK and the body of the entire new

bundle.

8.4 Interaction with Intermediate Caches

We also considered the issue of bundle content handling by intermediate caches between a client

and server. A common example would be a proxy cache through which all client requests are

directed. In the case that the proxy cache is not aware of bundles, but the client is, then the bundle

object is simply treated as an object that the proxy may or may not cache according to its own

policies. In the case that the proxy cache is aware of bundles, then the proxy could interrogate

server replies and retrieve bundle objects in parallel with sending responses back to the client.

This approach is similar to that taken by the proxy cache in our implementation.
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8.5 Interaction with Content Distribution

The other potential negative interaction is the use of bundles with the distribution of Web content

across multiple servers. Results obtained in November, 1999 by Krishnamurthy and Wills showed

a relatively small fraction (15%) of 700 popular Web sites using more than one server to serve

content for their home pages [14]. However, in April, 2002 we did a follow-up study of the home

pages for 147 popular sites [15] (not a strict subset of the previous set) and found that 86% of these

sites used more than one server to serve the objects on the home page. We address the apparent

disconnect between this trend to distribute content and our proposal of consolidating it in two ways.

First, the distribution of relatively small number of objects to different servers does not appear

to be a good idea in terms of performance, regardless of whether bundles are available or not. Each

new server requires a new DNS lookup on the part of the client as well as opening a new TCP

connection.

Second, if many objects are served by auxiliary servers, for instance by a special “image server”

at a site or by a CDN server, then these objects are good candidates to be packaged together into a

single object. A bundle can be retrieved from a CDN server just as it can be from an origin server.

A bundle could also contain objects assigned to multiple servers if these objects were all under the

control of a single content provider.

9 Related Work

We are aware of one existing commercial product which is similar in some regards to the bundle

concept. Like the bundle concept, the wwWhoosh WebFlight Content Accelerator developed by

wwWhoosh, Inc. aims to reduce the number of TCP connections and amount of data transferred

across the Internet during Web page downloads by repackaging Web page content and transmitting

multiple objects in a single response [33].

The wwWhoosh product differs from the bundle concept in two key ways. First, their product

uses a separate proprietary server in between the origin server and the client. This proprietary

server retrieves objects from the origin server, repackages and compresses the objects, and serves

the repackaged data to wwWhoosh clients. In contrast, the bundle concept proposes serving bun-

dles directly from the origin server and transmitting bundles as standard HTTP response objects.
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The second and perhaps more important difference between the wwWhoosh product and the

bundle concept is the way in which the availability of a multi-object unit is indicated to the client.

In the bundle concept, a server advertises the availability of a bundle via an HTTP header. The

wwWhoosh product uses a dynamically updated list of available repackaged objects. This list

must be retrieved by the client from the proprietary intermediate server as part of the Web page

download process. The list is retrieved in a separate transaction, thereby necessitating an additional

request/response exchange. Once retrieved, the list is used to index into a database of repackaged

objects stored on the intermediate server.

10 Summary and Future Work

In this paper we have examined a new approach to retrieving multiple Web objects. In our ap-

proach, servers package related objects at a site into a bundle object, which can be obtained by

clients using a single HTTP request/response exchange. This approach lessens the need for clients

to use parallel requests or try and maintain persistent connections with the server because fewer

objects need to be retrieved.

We have found that the use of bundles for Web page retrievals generally results in shorter

overall elapsed embedded object retrieval times as compared to both the burst-1.0 and burst-1.1

protocol options. Our implementation experiments have shown that a working bundle mechanism

can provide significantly shorted elapsed retrieval times than burst-1.0 retrievals for pages con-

taining varying sizes and numbers of embedded objects. Shorter elapsed retrieval times have been

shown to be achievable using dialup, cable modem, and T1 client-side connections. Since many of

the embedded objects in typical Web pages are image files, compressing bundles generally appears

to provide no significant additional reduction in retrieval times. Our tests have also revealed that

the time of availability of individual embedded objects and average delay per embedded object

with bundle usage are equivalent to or better than those of burst-1.0 retrievals.

A key contribution of our work is a mechanism that gives Web servers control over the number

and duration of TCP connections they support. We feel that our approach brings together the

simplicity and determinism of the request-per-connection model and performance advantages of

persistent connections. Our technique should be particularly useful for serving the most frequently
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accessed content at a site. The use of bundles allows small, relatively static, objects to be grouped

to reduce requests and more efficiently use a single TCP connection. Its implementation requires

no changes to the HTTP protocol. While its implementation does require changes to servers,

proxies, and clients that wish to use it, these changes do not disrupt current practice. Bundle-aware

clients will be able to use the mechanism as more servers support it without issues of selective

feature support by clients and servers as occurs with HTTP/1.1.

Many directions for future work are possible. In our work we have conducted experiments

to evaluate the bundle concept in its simplest form: combining all of the embedded objects in a

container page into a single aggregate object that is served by the same machine as the container

page. There are many other possible bundle creation and usage strategies that could be evaluated,

such as bundling only the popular objects at a Web site, or serving a bundle from a content server

rather than from the machine on which the container page is located.

We also need to conduct more work on the interaction between bundle usage and client-side

caching. The first time a client retrieves a Web page and its embedded objects, retrieval of a bundle

containing all of the embedded objects seems to be clearly advantageous. If the client caches these

objects, retrieves other pages, and then later accesses the first page again, the client cache may

contain some but not all of the objects in the original bundle. We have proposed solutions to this

problem, but need to test them in the context of our prototype implementation.

Finally, we need to explore different compression and delta encoding algorithms for reduc-

ing the amount of content needed to be sent by a server to a client. We need to implement the

bsync bundle-aware delta encoding mechanism. The idea of bundles could also be combined with

prefetching as servers identify groups of objects that are most likely to be used. Finally we need to

work on standardizing how bundles are computed along with how their existence is known to Web

servers.
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