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Abstract. Experimental data in many domains serves as a basis for predicting useful trends. If the data and analysis are
available over the Web this promotes E-Business by connecting clientele worldwide. This paper describes such a predictive
tool “QuenchMinerTM” in the domain “Materials Science”. Data mining, more specifically the “Apriori Algorithm”, is used
to derive association rules that represent relationships between input conditions and results of domain experiments. This
enables the tool to answer questions such as “Given cooling medium and agitation during material heat treatment, predict
cooling rate”. This allows users to perform case studies on the Web and use their results to optimize the involved processes,
thus increasing customer satisfaction. Another interesting aspect is predicting material microstructure during heat treatment.
Microstructure controls material properties such as hardness. Hence its prediction helps in making decisions about materials
selection. Microstructure prediction has similarities to an artificial intelligence process called “Game-of-Life”. Some challenges
in our work are incorporating domain expert judgement while mining association rules, simulating microstructure evolution under
different conditions, and dealing with uncertainty. These challenges and associated research issues are outlined here. To the best
of our knowledge, this is the first tool performing Web-based predictive analysis in Materials Science.

1. Introduction

Data in a domain is either fully deterministic and
hence is predictable, or consists of random variables
and is thus unpredictable, or is somewhere in be-
tween [8]. The data that we consider in this paper falls
into the in between range. It comes from the domain
of Materials Science, in particular the heat treatment of
materials. Heat treatment refers to the controlled heat-
ing and cooling of materials to acquire desired mechan-
ical and thermal properties [19]. These properties de-
termine the use of the materials in specific applications.
The data is primarily experimental and consists of input
conditions in heat treatment and the corresponding ob-
servations in terms of parameters such as cooling rates
and heat transfer coefficients. The heat transfer coeffi-
cients (hc) [26] represent the heat extraction capacity of
the process and hence characterize the experiment. Do-
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main users are interested in determining these param-
eters to make decisions about corresponding processes
in industry.

Selecting the most suitable materials and parameters
for specific processes optimizes the results, thereby
enhancing business.

Computational tools assist in making decisions by
analyzing the data, and discovering useful patterns for
predicting future trends. If the tool is Web-based, this
provides worldwide access to domain users. In the
Materials Science domain it is imperative to connect
materials suppliers, automobile companies, heat treat-
ment industries, universities, researchers, aerospace
agencies, manufacturing companies and other users [5,
7]. Exchange of knowledge among these users en-
ables them to make faster and more effective deci-
sions. For example, prior knowledge of the fact that
distortion is likely to occur in a part when it is heat
treated under certain conditions is useful in selecting
parameters so as to minimize distortion in an industrial
heat treatment process. This in turn helps to optimize
processes and make better products hence improving

ISSN 1327-2314/04/$17.00 2004 – IOS Press and the authors. All rights reserved



Galley Proof 24/09/2004; 11:33 File: kes27.tex; BOKCTP/wyy p. 2

2 A.S. Varde et al. / Apriori algorithm and game-of-life for predictive analysis in materials science

business by satisfying customers. Thus on the whole,
E-Business is promoted by facilitating worldwide ex-
change of knowledge useful in the domain for support-
ing various aspects of decision support. This paper
focuses on the techniques involved in building such a
tool called QuenchMinerTM [32,33] with the main goal
being predictive analysis. It has been rightly said that,
“the building of predictive tools is one of the basic sub-
jects in science” [20]. There are two important aspects
to prediction in Materials Science. One is estimating
parameters of interest such as cooling rates and heat
transfer coefficients [26] given the input conditions in
a process. This supports parameter selection to opti-
mize processes. The other is simulating the microstruc-
ture evolution [29] of a material during heat treatment.
Since microstructure controls the mechanical proper-
ties of a material, this helps in materials selection to
optimize products.

In order to assist decision making in Materials Sci-
ence, it is useful to discover knowledge from raw data,
i.e., to perform data mining [10] and build a Materi-
als Knowledge Base. It is imperative to assimilate the
knowledge of a domain expert in the mining process.
The Apriori Algorithm [2] is used in data mining to
perform Association Analysis, namely the discovery of
rules of the type “A=>B” where A and B are items
or conditions in the given data set [1,2]. This is use-
ful in developing a Materials Knowledge Base with as-
sociation rules representing relationships between in-
put conditions and experimental results. However, the
rules discovered by Apriori may not all be useful with
respect to the domain. Hence it is essential to prune the
rules guided by basic domain knowledge. Also, some
interesting rules may not be found from experimental
data, in our case, heat treatment experiments. Thus it
is advisable to extend the Association Analysis to other
sources such as the related literature in the domain,
to enhance the Materials Knowledge Base. The paper
addresses the potential research issues emerging from
this.

Experimental data in heat treatment is used to plot
graphs such as cooling curves [26] that serve as good
visual tools to represent results. A material has dif-
ferent microstructures [29] at different regions on a
cooling curve. In predicting these microstructures, an
important aspect is the visualization of experimental
data. Techniques provided by the packages such as the
Xmdv tool developed at WPI [34] are useful in data
visualization. Domain-specific aspects such as the su-
perimposing of cooling curves over Jominy end quench
results [23] are important. There are also rules pertain-

ing to microstructure evolution, i.e., the various phases
that a material could be in at a particular stage of heat
treatment and the microstructure of that phase. An
artificial intelligence process called Game-of-Life [9]
simulates the birth and death of cells in a society and is
useful for microstructure simulations. The main chal-
lenges in this task are predicting the actual evolution of
microstructure at several regions of interest on a graph.

A significant issue in estimation is uncertainty. Re-
solving uncertainty [24,35] is an important aspect of
predictive analysis. Artificial intelligence techniques
such as conflict resolution strategies [17,28] are useful
here. These are included in our work.

This paper describes a research effort in building the
QuenchMinerTM tool with the following objectives.

– Domain-type-dependent data mining using Apri-
ori over relational and text sources, for estimating
experimental parameters.

– Data visualization guided by domain knowledge
and Game-of-Life, for simulating microstructure
evolution.

– Treatment of uncertainty in prediction by using
artificial intelligence approaches such as conflict
resolution.

The rest of this paper is organized as follows. Sec-
tion 2 describes building a Materials Knowledge Base
using Apriori. Section 3 outlines research issues in
knowledge discovery. Section 4 introduces microstruc-
ture prediction. Section 5 describes simulating mi-
crostructure evolution with Game-of-Life. Section 6
explains dealing with uncertainty. Section 7 summa-
rizes evaluation. Section 8 describes the application of
the tool to E-Business. Section 9 gives conclusions.

2. Apriori algorithm for the development of the
materials knowledge base

In order to perform predictive analysis, it is useful
to discover interesting patterns in the given data set
that serve as the basis for estimating future trends. As-
sociation Analysis or Association Rule Mining [1] is
helpful here. This refers to the discovery of attribute-
value associations that occur frequently together within
a given data set [11]. An association rule is defined as
follows [1,2].

Definition of Association Rule:LetI = {i1, i2, . . . .
im} be set of items,D be task relevant data of trans-
actions,T be each transaction, a set of items, such that
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TζI whereζ denotes proper subset and TID be the
Transaction Identifier. An Association Rule is defines
as an implication of typeA => B, whereAζI, BζI
andA ∩B = Φ. The Rule holds inD with confidence
C and supportS, whereC: Confidence(A => B) =
P (AUB), S: Support(A => B) = P (B|A whereP
is probability.

2.1. The apriori algorithm

The Apriori Algorithm [2] proposed by Agrawal et
al. in 1994, finds frequent items in a given data set using
the anti-monotone constraint [10,25]. This algorithm
embodies the following.

– Given a data set, the problem of association rule
mining is to generate all rules that have support and
confidence greater than a user-specified minimum
support and minimum confidence respectively.

– Candidate sets having k items can be generated by
joining large sets having k-1 items, and deleting
those that contain a subset that is not large (where
large refers to support above minimum support).

– Frequent sets of items with minimum support form
the basis for deriving association rules with mini-
mum confidence. ForA => B to hold with con-
fidenceC, C% of the transactions havingA must
also haveB.

2.2. Apriori over relational experimental data

Experimental data in the domain is integrated into a
database to serve as the basis for analysis. In our con-
text, the database is QuenchPADTM [32], the Quen-
chant Performance Analysis Database, developedat the
Center for Heat Treating Excellence, WPI. The Apriori
algorithm is used for discovering rules from this ex-
perimental data in Materials Science to represent the
knowledge of an expert. A partial snapshot of a data
sample presented for Association Analysis and some
rules derived are shown in the Figs 1 and 2 respec-
tively. In Fig. 2, the numbers on the left and right hand
sides of the rules indicate the support for those items
respectively.

2.3. Role of basic domain knowledge

Using the statistical measures of interestingness, i.e.,
confidence and support, some of the rules derived by
Apriori are obvious, e.g. “Oxidation= No => Agita-
tion= Moderate”. Since the part used to perform a heat
treating experiment often has no oxide formation and

the default level of agitation during the rapid cooling
step in heat treatment is “moderate” [26,32], this rule
has high support and confidence. However as per the
opinion of the domain experts, this rule does not rep-
resent knowledge useful for decision support. It only
represents obvious information. A potential solution to
the problem of obvious rules may be attribute selection
during mining [11], i.e., in this case removing the at-
tributes “Agitation” and “Oxidation”. However this is
not feasible since some rules involving these attributes
along with others may be interesting in the domain,
e.g., in this case, “Oxidation= No AND Agitation =
Moderate=> Subtype= Mineral Oil”. It is important
for the domain users to know that when a part does not
have oxide formation and when the agitation is mod-
erate, the cooling medium used is most likely to be a
mineral oil. This knowledge helps in cooling medium
selection in heat treatment.

Thus there is some intuition coming from the funda-
mental knowledge of the domain that is not captured by
purely statistical measures of interestingness. Altering
the levels of confidence and support, and using other
measures such as lift and conviction [11] has not helped
solve this problem. Hence it is proposed that in our
tool, the rules derived by Apriori are pruned by using
basic domain knowledge. This is summarized below.
Section 6 gives another type of pruning.

Pruning using Basic Domain Knowledge

1. Consider rules derived using the Apriori Algo-
rithm.

2. Use domain expert opinion to determine obvious
and uninteresting rules.

3. If a derived rule matches an obvious rule, then
prune the derived rule.

4. Store obvious rules in a rule base for future use.
These represent uninteresting information.

5. Repeat this process until all rules discovered are
considered interesting in the domain.

Another important aspect is the sufficiency of the
rules with respect to the problem they aim to solve.
Since the goal of the tool is predictive analysis, it is
important to determine how many of the likely ques-
tions posed by users can be answered by the discov-
ered rules. On analyzing the rules derived from the
experimental data stored in relational databases, it was
found that the rules were insufficient to answer ques-
tions such as, “Given experimental conditions, predict
the tendency for distortion in the part due to rapid cool-
ing”. Information about part distortion is not stored as
an experimental observation.
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Fig. 1. Partial Snapshot of Experimental Data.

Fig. 2. Sample Association Rules from Experimental Data.

However, information on distortion cases, namely
the potential causes and solutions, is found in the related
literature. For example, the study of several research
papers indicates that “Excessive agitation during heat
treatment leads to greater distortion in the part.” This
can be converted into a rule of the form “Agitation=
Excessive=> Distortion= High”. The confidence and
support of this rule depends on the number of instances
in the papers that satisfy this statement. In order to
discover rules such as this, Association Analysis using
Apriori is extended to text sources in the domain.

2.4. Apriori over text sources of related literature

In performing Association Rule Mining over text
sources, the first step in our tool is the extraction of
plain text into structured text. This is done by defining

a set of domain-specific tags representing the entities
in the domain and storing the properties or tendencies
of the entity as the contents of the tags. For exam-
ple, consider the entities “Distortion” and “Agitation”
and the tendencies “High” and “Excessive”. The sen-
tence, “Excessive agitation during heat treatment leads
to greater distortion in the part.” is extracted as one
instance of the process “Quenching”, quenching being
the rapid cooling step during heat treatment. This is
done in the following manner.

<Quenching>
<Distortion>high</Distortion>
<Agitation>excessive</Agitation>

</Quenching>
Thus the tags defined are <Quenching>, <Distor-

tion> and <Agitation>. Likewise facts are extracted
from several papers using the necessary tags. The re-
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sulting repository of structured text is analogous to the
integrated database of experimental data. Details on the
text extraction process and the issues emerging from it
are discussed in Section 3.

This structured text is then converted into the format
required by the Apriori algorithm software, namely the
Attribute Relation File Format (ARFF) [16]. Note that
this has also been done for the relational data in order
to preprocess it for data mining. Next, the formatted
files are used for Association Analysis, to discover rules
with user-specified minimum confidence and support
measures. Rule pruning is done using the same steps
as outlined earlier for experimental data, i.e., using ba-
sic domain knowledge. The resulting interesting as-
sociation rules are helpful in predictive analysis. On
mining over several instances of facts obtained from
many research papers, some of the rules discovered are
presented below.

Rules from Association Analysis

1. “Agitation = Excessive=> Distortion= High”
Confidence= 0.92, Support= 82.

2. “Cold Plastic Deformation= Yes => Residual
Stress= Likely” Confidence= 0.86, Support=
75

3. “Device= Impeller Stirrers=> Cooling Nature
= Uniform”, Confidence= 0.94, Support= 63

2.5. Methodology for association rule mining

The methodology for Association Rule Mining in
QuenchMinerTM is outlined in Fig. 3. Each component
is explained below.

– Experimental Data: This is the raw data in the
domain representing the input conditions and ob-
served results of experiments.

– Integrated Database: This is the common database
into which all the relevant data is extracted for
mining.

– Related Literature: This refers to research papers
and other relevant documents forming text sources
of domain knowledge.

– Structured Text Base: This refers to the integrated
repository of structured text extracted from the
related literature using the domain-specific tags for
relevant entities.

– Conversion: This refers to the preprocessing in-
volved in converting the information into the for-
mat required for data mining.

– Formatted Files: These are the files in the format
required for Apriori Analysis [16].

– Apriori Algorithm: This represents the actual step
of applying the Apriori algorithm in the Associa-
tion Rule Mining process.

– Rules: These are the output of the Apriori Analysis
over text and relational sources.

– Pruning using Domain Knowledge: This refers to
the pruning done using basic domain knowledge
as described earlier. It also refers to pruning us-
ing functional dependencies [11] as described in
Section 6.

– Interesting Association Rules: These are the rules
obtained that are useful for predictive analysis in
the given domain.

These interesting association rules are used to popu-
late a knowledge base. These represent the knowledge
that a domain expert discovers on learning from exper-
imental data and literature surveys. This can be used
for decision support.

2.6. Predictive analysis using knowledge discovered

The interesting association rules discovered us-
ing the methodology above representing advanced
domain knowledge form the basis for analysis in
QuenchMinerTM. This refers primarily to the estima-
tion of parameters given input conditions. The algo-
rithm used for predictive analysis for parameter esti-
mation in this tool is shown below.

Algorithm1: Predictive Analysis of Parameters

FORy = 1 to m /* number of input variables */
Iy.value= user-entry /* list of input variables */

FORx = 1 to n /* number of output parameters */
Ox.name= user-select /* list of output parameters
*/

FORx = 1 to n /* iterate through each output parameter
*/

v1 = 0, v2 = 0 /* initialize variables for tenden-
cies */
FORy = 1 to m /* identify tendencies */

IF Ox := Iy THEN /* if output parameter de-
pends on input variable */

IF Iy.value=> v1 /* v1 represents one ex-
treme tendency */
THEN v1 = v1 + wgt1 /* wgt1 is extent of
impact */
ELSE IF Iy.value=> v2 /* v2 represents
other extreme tendency */
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Fig. 3. Association Rule Mining in QuenchMinerTM .

THENv2 = v2+wgt2 /* update variable
by weight. */

IF v1 > v2 /* check which tendency is greater */
THEN final-tendency∼ v1 /* overall tendency

corr-
esponds to the v1 extreme */
ELSE IF v1 < v2

THEN final-tendency∼ v2 /* overall tendency
corresponds to the v2 extreme */
ELSE final-tendency∼ avg (v1, v2) /* overall
tendency corresponds to average of extremes */

Ox.value= final-tendency /* predict overall ten-
dency */

FORx = 1 to n /* for each output parameter */
OUTPUT Ox.value /* convey predicted decision
to user */

The rule confidence and support derived by Apriori
help to determine the impact of the input conditions
such as part surface on the output parameters such as
cooling rate. The extent of the impact is represented
by weights in the algorithm.

3. Issues in knowledge discovery

One of the steps in the methodology for Association
Analysis is the extraction of plain text into structured
text capturing the domain-specific aspects significant in
data mining. This is proposed using Natural Language
Processing [12] as follows.

Automating Text Extraction for Data Mining

– Define a domain-specific markup language with
tags and nesting representing domain entities and
relationships.

– Use Natural Language Processing to parse each
plain text document.

– Fill tags of domain-specific markup language by
mapping natural language to domain semantics.

– Address issues such as synonyms and homographs
through an ontology.

– Use basic domain knowledge to refine contents of
tags, analogous to “Pruning using Basic Domain
Knowledge”.

There are several challenges involved in this, espe-
cially in dealing with ambiguity. This effort is a sub-
ject of ongoing research at the Center for Heat Treat-
ing Excellence, WPI. A domain-specific markup lan-
guage [31] has been defined for the heat treating of
materials and is proposed to be included as a semantic
extension to “MatML, the XML for Materials Prop-
erty Data [7]” developed by the National Institute of
Standards and technology (NIST) [22]. This markup
language, in addition to facilitating data storage and
exchange worldwide, would also set the stage for ex-
traction of plain text into structured text in the domain.
Figure 4 shows an overview of the proposed tags for
this markup language. Using this markup language, it
is proposed that plain text be converted to structured
text.

The issue of synonyms and homographs [12] is also
being addressed. Consider the following segments of
structured text.

<Shape> geared </Shape>
<Shape> corrugated </Shape>

It is important to know that the terms “geared” and
“corrugated” mean the same in the domain [5]. Other-
wise, facts related to “geared” and “corrugated” would
be extracted as referring to different shapes. This would
later pose a problem in Apriori analysis, since the count
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Fig. 4. Overview of Proposed Markup Language.

of items pertaining to “geared” would not get updated
if the term in another item is “corrugated”, although
these two imply the same shape. Issues such as this are
solved through ontological developments. In addition
to a schema for the markup language, an ontology has
been defined that takes into account the synonyms and
homographs [12] in a domain-specific manner. Details
on this are in [31]. Using this markup language, facts
pertaining to “geared” and “corrugated” would be ex-
tracted as instances of the same shape, thus solving the
above problem.

4. Microstructure prediction using visualization
techniques and domain knowledge

The second aspect of predictive analysis in Quench
MinerTM is the prediction of material microstructure
during various stages of heat treatment of a given ma-
terial. A microstructure is what one sees when an alloy
specimen is cut, its surface is polished and etched to
expose phases, and it is put under a microscope [5,29].
Predicting microstructures of the alloy interests mate-
rials scientists and engineers because microstructures
dictate mechanical properties such as hardness, tough-
ness and ductility, and hence enable materials selection
for specific processes based on these properties. Data
visualization is useful in microstructure prediction.

4.1. Data visualization

Data visualization is a technique to present a set of
data in the form of graphical depictions [15,27]. Vi-

sualization is applied extensively in the various disci-
plines of science [27,34]. In the process of scientific
visualization the collected raw data should to be filtered
and smoothed as necessary since measurements taken
from experiments often contain noise. Then the data
is mapped to geometric primitives that effectively rep-
resent the meaning of the data. The images generated
from the visualization tool should reduce the users’
cognitive loads.

Time-temperature curves, cooling rate curves, and
heat transfer coefficient curves [26] are conventional
methods for data representation in the Materials Sci-
ence domain. While they are effective to represent the
quality of a single quenching process, they may not be
best suited to represent multiple processes or the whole
database content at the same time. A multivariate data
visualization tool, called the Xmdv Tool [34] provides
an alternative to determine trends, similarities, and dis-
similarities among a group of quenching processes and
view a large number of data sets at a glance. There are
various techniques such as [34] scatter-plots, parallel
coordinates plots, glyphs, line graphs and pie charts,
found in this tool.

An example of star glyphs is shown in Fig. 5. The
example shows the plot of heat transfer coefficients ob-
tained from heat treatment experiment using various
quenchants (cooling media) and experimental condi-
tions. Each vertex represents a parameter and the dis-
tance from the center of the star represents its value.
The number of the parameters and their combinations
can be customized according to the user preferences.
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Fig. 5. Star Glyphs Plot.

Clusters and similarities can be identified by comparing
their shapes and sizes. In the given example plot, all the
small stars are results from gas quenchants. The results
from water quenchants show relatively large stars.

4.2. Role of domain knowledge

In addition to visualization techniques, the role of
domain knowledge is critical in microstructure predic-
tion. The basic information is provided by a time-
temperature curve [3] which is a plot of temperature
versus time during the rapid cooling of a material being
heat treated. The volume fractions of the phases present
in the resulting microstructure can be determined by
tracing the regions of the time-temperature curve and
their duration [3,23]. As the cooling progresses, new
phases start to form when the cooling curve reaches
different regions and grains grow at the same time. The
changes in volume fractions during the cooling process
are commonly represented using a line graph of vol-
ume fraction versus time. The following equation [23]
is the theoretical explanation behind the mechanism of
the visualization model.

f(θ) =
∫

1 − e−B(T )θN(T)

Heref(θ) is the fraction of pearlite or bainite after
some timeθ, and B (T) and N (T) are constants that
depend on the properties of each material [23]. Marten-
site has slightly different transformation kinetics and
the volume fraction of martensite, fm at temperatureT
can be obtained by the following equation [5,23,27].

fm = (1 − e−α(Tms−T )(1 −
∑

i

Fi)

α in the equation is a coefficient taken from the litera-
ture [23]Fi is the volume fraction of pearlite or bainite.
Thus, domain knowledge and visualization techniques
both are helpful in microstructure prediction. A few
domain-specific visual tools are explained.

4.3. Domain specific visual tools

Tools such as continous cooling transformation
(CCT) diagrams and Jominy end quench graphs [3]
embody domain-specific aspects in Materials Science.
A continuous cooling transformation diagram shows
which phase starts developing at what time and what
temperature. It is a plot of temperature versus the loga-
rithm of time. It depends on the chemical composition
of the materials, thus different materials have differ-
ent CCT diagrams. These carry phase transformation
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Fig. 6. CCT diagram (Source: Ref. No. [3]).

Fig. 7. Jominy end quench graph (Source [3]).

information. Figure 6 shows a CCT diagram [3]. A
Jominy end quench graph is the plot of hardness ver-
sus distance, showing cooling phenomena at different
locations of a material. It is based on the Jominy end
quench test, which is performed by the rapid cooling
(quenching) of a part from one end. The test results in-
dicate how fast cooling occurred at different locations
of the part. Therefore, this test supplies interesting
information about the cooling phenomenon during the
quenching of a large part. Figure 7 shows a Jominy end
quench graph [3].

4.4. Methodology for microstructure prediction

Based on this domain knowledge and visualization
techniques, the methodology for microstructure predic-

tion is as shown in Fig. 8. The superimposing of the
Jominy End Quench Test results over the CCT diagram
of the material of interest enables the prediction of the
microstructure development through the given quench-
ing process. This enables the visualization of the final
microstructure at each point, namely at different loca-
tions for different specimens. Even more challenging
is simulating the actual evolutions of microstructure
during the process of rapid cooling of a material in heat
treatment. This is discussed in the next section.

5. Game-of-life for simulating microstructure
evolution at different locations

The Game-of-Life,originally created by Jon Conway
in 1970, simulates the birth and death of cells in a
society. A cell is born or dies according to a set of four
rules [9].

1. A cell is born or dies if exactly 3 of its neighbors
are alive.

2. An existing cell stays alive if there were either 2
or 3 neighbors alive.

3. A cell will die from isolation if there are fewer
than 2 neighbors alive at any given time.

4. A cell will die from overcrowding if there are
more than 3 neighbors at any given time.

This is a classical computer science problem and
can be solved with relatively little effort using two-
dimensional arrays. The Game-of-Life is often used
in the studies of cellular automata and artificial intelli-
gence [9]. The simulation of microstructure evolution
is based on this Game-of-Life process, which operates
in the domain-specific sets of rules. The rules relevant
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Fig. 8. Microstructure Prediction in QuenchMinerTM .

to the Materials Science domain are listed below [23,
29] and their application in the tool is explained in
Example1.

– Each pixel in the image field stores the likelihood
for being transformed into different phases, i.e,
whether it is still available (can be transformed),
and which phase it belongs to, if it is already a part
of a phase.

– In each iteration the pixels with the highest likeli-
hood to become a particular phase are picked and
get transformed to be parts of the phase.

Example1: Microstructure evolution in Steel: At
time 0, the only phase present is Austenite [3,19].
Therefore, all he pixels are marked as Austenite crys-
tal or Austenite crystal boundary. Since crystalliza-
tion of any phase always starts from Austenite crystal
boundaries, a pixel adjacent to a pixel that is marked
as boundary has higher likelihood to be transformed
into other phases. At the implementation level, this
pixel gets 1 point each for the likelihood to be Ferrite,
Pearlite, Bainite, or Martensite [3,23]. If the pixel is ad-
jacent to multiple pixels that were marked as boundary,
the points accumulate. The pixel that is adjacent to 3
boundary pixels has 3 points. This pixel will be picked
before the pixels with fewer points. If this pixel gets
picked and gets transformed into Ferrite, it is marked as
Ferrite and “not available” (only Austenite crystals can
be transformed into some other crystals during quench-
ing). Pixels that are adjacent to the Ferrite pixel now
get 1 point each for the likelihood to become another
Ferrite pixel. Since different types of crystals have dif-
ferent rules for their growth, different sets of rules ap-
ply for different phases in keeping with the points [3,
19,23]. For the case of ST4140, the process starts from
100% Austenite [3,23,29]. As the cooling progress,
Austenite phase transforms into other phases, such as

Ferrite, Pearlite, Bainite and Martensite. The phases
present in the quenched specimen vary depending on
the cooling rate. The changes in volume fractions dur-
ing microstructure evolution can be represented in two
ways, a line graph or a pie-chart [29,34]. These repre-
sent how the fractions evolve.

Figure 9 shows the microstructure evolution for
ST4140 at the location of 2 inches from one end of the
specimen. It represents three snapshots at early, middle
and late stages of evolution respectively. The Xmdv
tool [34] provides some of the techniques needed to
generate these pictures. These snapshots are screen-
dumps taken during a demo. The evolution is seen
more clearly in a live demo, which is available on the
Web for the authorized users of this tool.

6. Dealing with uncertainty

Uncertainty in prediction occurs because the system
may not have access to the whole truth about the envi-
ronment, or because there may be incompleteness and
incorrectness in understanding the properties of the en-
vironment [28,30]. Treatment of uncertainty has long
been studied in artificial intelligence [30] following dif-
ferent perspectives. It has been argued by Zadeh that
probability theory is not adequate for the treatment of
uncertainty [35]. There are various aspects of uncer-
tainty as follows.

6.1. Occurrence of conflicts

This refers to two or more input conditions leading to
opposing results. For example, in our context, one rule
may indicate that the nature of the cooling is uniform,
while another may indicate that it is non-uniform. This
problem is solved through the use of good conflict reso-
lution strategies [17,28]. The various means of conflict
resolution as incorporated in QuenchMinerTM are:
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Fig. 9. Visualizing Microstructure Evolution.

– No duplication: Do not execute the same rule on
the same arguments twice.

– Recency: Prefer rules that refer to recently created
working memory elements.

– Specificity: Prefer rules that are more specific.
For example, in case of conflicts, prefer “X and
Y => Z” over “X => Z”.

– Weights: Attach weights to each rule based on
the extent of impact and estimate the overall ten-
dency for each parameter, after considering all the
weights.

The forward chaining [6] principle that finds every
conclusion possible based on a given set of premises
is used here. This ensures that once a rule fires, it is
removed from the rule list, and rule application stops
only if no more rules can be fired. This also helps to
address uncertainty due to conflicts. No matter where
a rule occurs in the list its effect is considered and no
variable gets updated more than once due to the same
rule.

6.2. Semantic deficiency

Consider the following scenario [24] that could arise
in any domain even after probability theory is used.

– Rule i: IF Ai THEN B for i = 1 to k.
– As more Ai’s are confirmed,B becomes more

credible.
– What if all the Ai’s are correlated.

In our domain such a situation could arise. For ex-
ample, “Cooling Rate= Fast=> Heat Transfer Coeffi-
cient= High”. However, fast cooling itself is correlated
with excessive agitation, i.e., excessive agitation is one
of the causes of fast cooling. Since the Ai’s of Rule
i are correlated, the variable for “High Heat Transfer
Coefficient” would get updated twice, thus leading to

a higher prediction of “Heat Transfer Coefficient” than
expected. This is a semantic deficiency. This issue is
related to correlations and hence functional dependen-
cies between variables. The solution proposed to such
problems is pruning using functional dependencies. It
is important to note the difference between a functional
dependency and an association rule [11]. A functional
dependency is a statement of certainty, while an asso-
ciation rule represents a probability. For example, the
fact that heat transfer coefficient depends on cooling
rate is a definite statement. This can be represented as
“CR –> hc” or “hc := CR”, where “CR” is “Cooling
Rate” and “hc” is “Heat Transfer Coefficient.” This is
true in all cases, i.e., there is no issue of confidence and
support. A dependency is thus a more solid relationship
than an association rule. Pruning rules using functional
dependencies shown below overcomes the problem of
semantics deficiencies.

Pruning Rules using Functional Dependencies

1. Identify functional dependencies [5,11] between
variables using cause-effect analysis [21].

2. If C depends on B and B depends on A, then C
depends on A. Hence prune the rule(s) with lower
confidence. (If A=>C has lower confidence than
the two individual rules, prune it.)

3. Test the remaining rules on a validation set [28].
4. If semantic deficiencies arise, then continue prun-

ing, else stop.
5. Output the set of rules as rules without semantic

deficiencies.

6.3. Degrees of uncertainty

For each parameter that is being estimated by the
tool, the default levels are high and low. For exam-
ple, consider the parameter “distortion”. This repre-
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sents the tendency of a part to undergo deformation
in shape and/or size due to mechanical processes [5].
The distortion either occurs or does not. An extreme
case of distortion is “cracking”, where a part actually
breaks during a process [5]. The presence or absence
of cracking is an important aspect of estimation. How-
ever, in many situations, it is not possible to provide
a categorical estimate, i.e., a “yes-no” answer. Hence,
we define multiple levels of abstractions to represent
degrees of uncertainty in order to account for the gray
areas. These are:

– Level 1: High, Low (Most Certain)
– Level 2: On higher side, On lower side (Less

Certain)
– Level 3: Medium (Uncertain)

Note that level 3 could be inferred, if all the in-
put conditions are such that the high and low tenden-
cies of a parameter are equally likely. For instance,
QuenchMinerTM could conclude in a distortion case,
that the tendency for distortion is “medium or cannot
be determined using given conditions”. The user could
then continue with the analysis of the case by altering
input conditions if desired.

7. Experimental evaluation

QuenchMinerTM has been subject to rigorous eval-
uation to determine its effectiveness. Several experi-
ments have been carried out using this tool and the cor-
responding results have been compared with real ex-
periments in the domain. The evaluation criteria are:

– Accuracy: This is measured in terms of the de-
viation of predicted results from real domain re-
sults. If the error is less than 5%, the accuracy is
acceptable.

– Efficiency: This is measured as the response time
taken by the predictive tool to estimate the results.
If it is less than 5 minutes, the efficiency is accept-
able.

The process of conducting the experiments is demon-
strated in Example2. This refers to a case submitted by
domain users.

Example2:Estimate the average heat transfer coeffi-
cient (heat extraction capacity) in this quenching (rapid
cooling) process, given the following inputs.

1. Temperature of Quenchant (cooling medium) :
Low

2. Agitation Velocity: Moderate

3. Quenchant Viscosity: High
4. Part Density: High
5. Oxide Layer: Thin

Processing in Example2 using Algorithm1 and Lev-
els of Abstraction

m = 5 /* 5 input variables */
FORy = 1 to 5 / * read values of input variables */

I1.value=“Low”, I2.value=“Moderate”, I3.value
=“High”, I4.value= “High”, I5.value= “Thin”

n = 1 /* 1 output parameter */
Forx = 1

Ox.name= “Heat TransferCoefficient” /* read
the output parameter(s) selected by user */

Forx = 1 /* the only output parameter is heat trans-
fer coefficient */

v1= 0, v2= 0 /* initialize variables for tendencies,
v1 = high, v2= low */
Fory = 1 to 5 /* identify tendencies */

Ox := I1 /* heat transfer coefficient depends on
quenchant temperature */
I1.value= “Low” => v1 /* low quen-
chant temperature implies heat transfer co-
efficient on higher side */
v1 = 0 + 1 /* weight is 1 for impact of
low quenchant temperature on high heat
transfer coefficient */

Ox := I2 /* heat transfer coefficient depends on ag-
itation velocity */
I2.value= “Moderate”=> v1 /* moder-
ate agitation implies heat transfer coeffi-
cient on higher side */
v1 = 1 + 1 /* weight is 1 for impact of
moderate agitation on high heat transfer
coefficient */

Ox := I3 /* heat transfer coefficient depends on
quenchant viscosity */
I3.value= “High” => v2 /* quenchant
with high viscosity implies low heat trans-
fer coefficient */
v2= 0 + 4 /* weight is 4 for impact of high
viscosity on low heat transfer coefficient
*/

Ox := I4 /* heat transfer coefficient depends on part
density */
I4.value= “High” => v1 /* high part den-
sity implies high heat transfer coefficient
*/
v1 = 2 + 3 /* weight is 3 for impact of
high part density on high heat transfer co-
efficient */
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Fig. 10. Predicted Output for Example 2.

Ox := I5 /* heat transfer coefficient depends on ox-
ide layer */
I5.value= “Thin” => v1 /* thin oxide
layer implies heat transfer coefficient on
the higher side */
v1 = 5 + 2 /* weight is 2 for impact of
thin oxide layer on high heat transfer co-
efficient */

v1= 7; v2= 4; v1 > v2 /* variable for high ten-
dency has greater weight than variable for low
tendency */
final-tendency∼ v1 /* overall tendency corres-
ponds to high heat transfer coefficient */

Forx = 1 /* only output parameter is heat transfer
coefficient

Ox.value= “high” /* heat transfer coefficient is
on higher side considering abstraction levels and
the difference (v1- v2) */
Output Ox.value /* Convey decision to user “Ave-
rage Heat Transfer Coefficient: On the higher
side” */

Following the above steps QuenchMinerTM returns
the predicted output for Example 2, as shown in Fig. 10.
On using the same inputs to conduct a real domain
experiment, and using its results to plot heat transfer

Fig. 11. Actual Heat Transfer Coefficient Graph.

coefficients versus temperature, a graph is obtained as
shown in Fig. 11. On analyzing this graph, a domain
expert would infer that the average heat transfer coef-
ficient is on the higher side, which is identical to the
estimation of the tool. Thus, in this case the error is
zero. The time taken to compute this response is ap-
proximately 1 second. Thus response time and error
are both within acceptable limits, as verified by domain
experts.
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Fig. 12. At-a-glance information for decision support.

Likewise, several experiments were conducted using
QuenchMinerTM for other cases of parameter estima-
tion and for microstructure prediction. The results of
these experiments are summarized below.

– Parameter Estimation Experiments:

∗ Number of Tool Experiments: 200
∗ Number of Inputs (conditions): 12
∗ Number of Outputs (parameters): 8
∗ Range of Error in Tool: Between 1 and 3%
∗ Average Response Time of Tool: 1 second
∗ Domain Experiment Time: 4 hours

– Microstructure Simulation Experiments:

∗ Number of Tool Experiments: 100
∗ Number of Inputs (location, material): 15
∗ Number of Outputs (evolution stages): 10
∗ Range of Error in Tool: Between 2 and 4%
∗ Average Response Time of Tool: 1 minute
∗ Domain Experiment Time: 6 hours

The general observations from all the experiments
are as follows.

1 As the number of inputs and outputs increase, the
time for parameter estimation increases only by a
fraction of a second.

2 Increasing the number of input conditions sup-
plied by the user increases the accuracy of the
parameter estimation.

3 Increasing the number of output parameters to be
estimated does not reduce the accuracy of the es-
timation.

4 Taking snapshots of microstructure evolutions at
later stages of evolution needs more time.

5 Accuracy in microstructure prediction is almost
identical for all locations in all materials.

On considering various experimental criteria and
comparing he predicted results with the real results, the
QuenchMinerTM tool is found to be satisfactory for
predictive analysis in Materials Science as verified by
domain experts.

8. Application to e-business

E- Business (Electronic Business) is, in its simplest
form, the conducting of business on the Internet. It is a
more generic term than E-Commerce because it refers
to not only buying and selling but also servicing cus-
tomers and collaborating with business partners [14].
Today, many corporations are reorganizing their busi-
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nesses in terms of the Internet and its capabilities. Many
organizations are considering computer automation as
a means of better serving their customers, improving
efficiency, reducing costs, and providing a positive im-
pact for their company [18]. Some interesting elements
of E-Business are summary tables, aggregated infor-
mation, query mechanisms, graphs and pictures [10,14,
25,34]. These are provided in our tool for retrieval and
analysis of data with the goal of decision support for
a particular community of knowledge workers, in our
case Materials Scientists.

The main aim in the development of the Quench
MinerTM tool is to provide at-a-glance information to
Materials Science users worldwide. These include ma-
terials suppliers, automobile companies, heat treatment
industries, universities, researchers, aerospace agen-
cies, manufacturing companies and others [5,7]. The
information helps to connect these different categories
of users, assisting them in several aspects of knowledge
exchange and business decision support.

Figure 12 is an example of at-a-glance information
for decision support. This refers to a basic search en-
gine functionality of QuenchMinerTM [32]. It pulls out
the experimental input conditions and results from an
underlying integrated database, QuenchPADTM [32],
in response to a user query. In Fig. 12, the tool returns
a response to the query “retrieve all experiments con-
ducted using the CHTE probe and with the mineral oil
DHR88A as a cooling medium”. The user interaction
occurs through the Web. This provides Web-based in-
formation retrieval. This was one of the earliest ac-
complishments of QuenchMinerTM that motivated the
development of more advanced features such as pre-
diction of experimental parameters and material mi-
crostructure to achieve decision support for optimiza-
tion of the involved processes [33]. Predicting pa-
rameters such as cooling rates and heat transfer coef-
ficients given experimental input conditions is helpful
because these parameters characterize the experiments
and hence help in the optimization of the corresponding
real processes in the industry. Predicting microstruc-
tures of the alloy interests materials scientists and engi-
neers because microstructures control the mechanical
properties of materials such as their hardness, tough-
ness and ductility. Hence this enables materials selec-
tion for specific processes based on these properties,
in turn helping to optimize products. Optimization of
products and processes increases customer satisfaction,
thus enhancing business.

A computational tool that provides predictive analy-
sis helps in making faster,easier and more sophisticated

decisions. For example, a materials supplier may want
to know what quenchants (cooling media) a particular
heat treating company requires in a fiscal quarter. The
company users could run case studies with this predic-
tive tool, to estimate the types of quenchants needed to
achieve a desired output, as per their targeted goal for
that quarter. The materials supplier could be informed
accordingly. Since the response time of the tool is fast,
this enables a quick and accurate estimate, resulting in
more effective buying and selling decisions.

9. Conclusions

The Apriori algorithm and the Game-of-Life process
have been used as the basis for predictive analysis to
build a tool called QuenchMinerTM for decision sup-
port in Materials Science. This provides parameter es-
timation and microstructure simulation for heat treating
processes. To the best of our knowledge, this tool is
the first of its kind integrating domain-type-dependent
data mining and data visualization for decision sup-
port of mechanical engineering processes. Since it is
a Web-based tool, it connects clientele worldwide and
allows them to exchange useful knowledge for business
decision support. This promotes E-Business in Materi-
als Science. Several aspects of predictive analysis are
topics of our ongoing research at WPI.
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