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ision Support forOptimization of Heat Treating Pro
esses ?Aparna S. Varde, Makiko Takahashi, Elke A. Rundensteiner, Matthew O.Ward, Mohammed Maniruzzaman and Ri
hard D. Sisson Jr.Wor
ester Polyte
hni
 Institute (WPI), Wor
ester, MA 01609(aparnajtmakikojrundenstjmattjmaniruzzjsisson)�wpi.eduAbstra
t. This paper des
ribes a De
ision Support System (DSS) forthe heat treating of materials built using arti�
ial intelligen
e. Heattreating en
ompasses the 
ontrolled heating and 
ooling of materialsto a
hieve desired properties. Data gathered during heat treating is asour
e of knowledge useful in making de
isions. This knowledge dis
ov-ered through data mining is used to build a DSS that helps materialss
ientists 
ondu
t studies to improve heat treating pro
esses. The data isalso used to draw graphs based on whi
h material mi
rostru
tures 
an bepredi
ted. A major 
hallenge here is a

urately estimating mi
rostru
-tures at di�erent points on a graph under varying 
onditions of interest.Another big 
hallenge is simulating expert judgment while mining oversimple and 
omplex data types, by in
orporating domain-spe
i�
 fa
tsin the mining pro
ess. Our work is one of the �rst to integrate knowledgedis
overy and data visualization into one system for supporting materialss
ien
e pro
esses.Keywords. Data Mining, Knowledge Dis
overy, Visualization, Heat Treating, De
ision Support.1 Introdu
tionAreas of arti�
ial intelligen
e have appli
ations in several domains, providingmotivation for further resear
h. The work des
ribed in this paper is an exam-ple of su
h an appli
ation. It is a De
ision Support System (DSS) [1℄ 
alledQuen
hMinerTM built with the goal of optimizing the pro
esses in heat treat-ing, using data mining [2℄ and data visualization [3℄ te
hniques.Appli
ation Domain. Heat Treating is a �eld in Materials S
ien
e [4℄.It involves the 
ontrolled heating and 
ooling of metals and other materialsto a
hieve spe
i�
 me
hani
al and thermal properties. Quen
hing, i.e., rapid
ooling, is an important step in the heat treating operations [5℄. The setup usedfor quen
hing [6℄ at the Center for Heat Treating Ex
ellen
e (CHTE), at WPIis shown in Figure 1. The material being quen
hed is 
alled the part, probe orworkpie
e. The 
ooling medium is 
alled the quen
hant.? This work is supported by the Center for Heat Treating Ex
ellen
e (CHTE) andits member 
ompanies, and by the Department of Energy - OÆ
e of IndustrialTe
hnology (DOE-OIT) Award Number DE-FC-07-01ID14197.
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hing SetupMotivation.Data obtained from quen
hing experiments is a sour
e of knowl-edge useful in making de
isions. For instan
e, if experimental observations indi-
ate that, "Ex
essive agitation of the quen
hant implies greater distortion of thepart", then this rule 
ould be used to 
omputationally estimate distortion whenagitation is known. This assists in making de
isions about sele
ting quen
hing
onditions for optimal performan
e. This is an example of rule-based data min-ing [2℄ for de
ision support [1℄. There are also de
isions based on graphs and
harts. For example, a material has di�erent mi
rostru
tural 
hara
teristi
s atdi�erent points on a 
ooling 
urve [5℄ 1. These in
uen
e its properties, whi
hin turn a�e
t de
isions about sele
tion of materials. The ability to visualize mi-
rostru
tures at various regions on a graph is thus important. The need to mineand visualize data and use this to support de
ision making serves as motivationfor Quen
hMinerTM .Challenges. The visualization of mi
rostru
ture under di�erent quen
hing
onditions is a 
hallenging task. This augments state-of-the-art te
hniques, and isbeing addressed in our resear
h. Another 
hallenge is predi
ting 
ooling 
urvesand related 
urves obtained from quen
hing experiments, in addition to esti-mating parameters su
h as distortion. This is being addressed in our ongoingresear
h on graph-based data mining.2 De
ision Support in Heat TreatingA De
ision Support System is de�ned as a system in whi
h one or more 
omput-ers and 
omputer programs assist in de
ision making by providing information[1℄. Quen
hMinerTM provides de
ision support in heat treating by a
hieving thefollowing goals.1 A 
ooling 
urve is the graph of temperature versus time plotted during a quen
hingexperiment, whose slopes at di�erent points give the 
ooling rates.



Parameter Estimation. The system estimates parameters of interest su
has 
ooling rate and distortion tenden
y [5℄ given the quen
hing input 
onditions,without performing the experiment. This supports de
isions about the sele
-tion of quen
hants, parts and quen
hing 
onditions in the industry to a
hieve adesired output.Mi
rostru
ture Predi
tion. It also predi
ts and visualizes mi
rostru
tureat di�erent points along a 
ooling 
urve [5℄. Sin
e the mi
rostru
ture determinesproperties su
h as hardness, its predi
tion assists in making de
isions aboutsele
ting materials for spe
i�
 pro
esses.2.1 Design of System
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Fig. 2. Quen
hMinerTM Ar
hite
tureThe DSS is designed using the ar
hite
ture shown in Figure 2. The quen
h-ing data su
h as experimental details, and related data su
h as literature, areintegrated into a quen
hing data mart [7℄. A Data Mart is a repository of datagathered from operational and other sour
es, designed to serve a parti
ular 
om-munity of knowledge workers [8℄. In this 
ase, the fo
us is on the heat treating
ommunity.The data mining 
omponent dis
overs knowledge using the data in the quen
h-ing data mart. The knowledge, mainly rules representing tenden
ies, populatesthe knowledge base, forming domain expertise in heat treating. The de
isionmaking unit has the logi
 of an inferen
e engine in an Expert System [9℄ 2. Inother words, this unit has the ability to reason using the rules in the knowledgebase.The data visualization 
omponent extra
ts quen
hing data and models it fore�e
tive presentation. This primarily fo
uses on estimating the mi
rostru
ture ofthe part during various stages of quen
hing, thereby helping users to understandthe behavior of the part.The users intera
t with the system through a web interfa
e. This enablesworldwide a

ess to the authorized users of Quen
hMinerTM .2 An Expert System is a 
omputer program that represents and reasons with knowl-edge of some spe
ialist subje
t with a view to solving problems or giving advi
e.



3 Data Mining and Knowledge Dis
overyData Mining [2℄ is the pro
ess of dis
overing interesting patterns and trendsin large data sets for guiding future de
isions. Data mining thus leads to thedis
overy of knowledge from raw data. Many people treat data mining as asynonym for a popularly used term Knowledge Dis
overy in Databases or KDD.After studying a variety of data mining te
hniques in detail, it was determinedthat the most relevant to mining numeri
 and 
hara
ter data from quen
hingexperiments is Asso
iation Analysis [10℄.3.1 Asso
iation AnalysisAsso
iation Analysis is the dis
overy of Asso
iation Rules [10℄ showing attribute-value 
onditions that o

ur frequently together in a given set of data. For ex-ample, the results of several experiments may indi
ate that if the quen
hant haslow vis
osity and if the agitation velo
ity in the setup is high, then the part 
oolsfaster. This is 
onverted into an asso
iation rule as follows.Low Vis
osity ^ Ex
essive Agitation-Velo
ity => Fast Cooling-RateRules su
h as this are useful for de
ision support in Quen
hMinerTM . TheApriori algorithm [10℄ has been used for asso
iation analysis of heat treatingdata. This is based on the Apriori property whi
h states that, "All nonemptysubsets of a frequent itemset must also be frequent" [10℄. This is used to pruneinfrequent itemsets by eliminating their infrequent subsets while mining overdata. Frequent itemsets are likely to lead to rules.Metri
s 
alled 
on�den
e and support are used to determine the signi�
an
eof the rules. These are de�ned based on probability of o

urren
e [2,10℄.Con�den
e(A=>B) = P(B j A) : probability of B given that A o

urs.Support(A=>B) = P(A U B) : probability of A and B a
ross all itemsets.These measures are used to de�ne priorities for rules. Priorities indi
ate therelative importan
e of rules in de
ision making.3.2 Challenges in Data MiningEstimating 
ooling 
urves and other related 
urves, in addition to predi
tingparameters su
h as 
ooling rate, is an issue of interest to users. This involvesmining over graphs and 
harts and is more 
hallenging than mining over numeri
and 
hara
ter data. This is part of our ongoing resear
h and is being addressedthrough domain-type-dependent data mining over 
omplex data types, in this
ase, graphs obtained from quen
hing experiments.
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ision Making Unit4 Analysis using Dis
overed KnowledgeThe system ar
hite
ture of the de
ision making unit is shown in Figure 3. Thisuses rule interpreters. A Rule Interpreter is a subsystem that is designed to applya given set of rules to perform analysis and make de
isions [9℄.Forward Chaining. The rule interpreter te
hnology used here is forward
haining. Forward Chaining is a method that �nds every 
on
lusion possiblebased on a given set of premises, [9,11℄. In this approa
h, inferen
e rules areapplied to knowledge, leading to new assertions. This pro
ess repeats foreveruntil some stopping 
riterion is met. The system stores the fa
ts in a memory
alled the working memory, in our 
ontext, the fa
ts being the quen
hing input
onditions. The rules are stored in a knowledge base. In ea
h 
y
le, the system
omputes the subset of rules whose left hand side is satis�ed by the 
urrent
ontents of the working memory. Certain left hand side 
onditions may be treatedas predi
ates 3. The system then de
ides whi
h of these rules should be exe
uted.The �nal step in ea
h 
y
le is to exe
ute the a
tions, represented in the a
tionfun
tions, on the 
hosen rules.Rete. A te
hnique 
alled Rete [11℄ is used to mat
h the rules to the fa
ts.The rete mat
h algorithm is an eÆ
ient method for 
omparing a large 
olle
tionof patterns to a large 
olle
tion of obje
ts. [11℄. Rete 
ompiles the memory intoa network that eliminates dupli
ation over time. It ensures that the same ruleis not exe
uted on the same arguments twi
e. It also ensures that in 
ase of
on
i
ts, it exe
utes the rule with the highest priority [9℄. Thus, rete improvesthe eÆ
ien
y and a

ura
y of the de
ision making pro
ess.The logi
 of the de
ision making unit in Quen
hMinerTM is outlined in thealgorithm and example below.FOR y = 1 to m STEP 1Iy.value = user-entry /* list of input variables */FOR x = 1 to n STEP 1Ox.name = user-sele
t /* list of output parameters */FOR x = 1 to n STEP 1 /* iterate through ea
h o/p param. */v1 = 0, v2 = 0 /* initialize variables for tenden
ies */FOR y = 1 to m STEP 1IF Ox := Iy THEN /* if o/p param. depends on i/p var. */IF Iy.value => v1 /* v1 is one extreme of tenden
y */THEN v1 = v1 + wgt1 /* wgt1 is extent of impa
t */3 Predi
ates are properties of obje
ts or relations between obje
ts that 
an be used aslogi
al representations of 
onditions, e.g. "vis
osity-low" is a predi
ate.



ELSE IF Iy.value => v2 /* other extreme */THEN v2 = v2 + wgt2 /* update var. by weight */NEXT yIF v1 > v2 /* 
he
k whi
h tenden
y is greater */THEN �nal-tenden
y = v1ELSE IF v1 < v2THEN �nal-tenden
y = v2ELSE �nal-tenden
y = avg(v1, v2) /* balan
e of extremes */Ox.value = �nal-tenden
y /* determine �nal tenden
y */NEXT xFOR x = 1 to n STEP 1 /* for ea
h o/p param. */OUTPUT Ox.value /* 
onvey tenden
y to user */Algorithm: Quen
hMinerTM De
ision Making UnitFOR y = 1 to 3 STEP 1 /* list of input variables */quen
hantCategory = water, partGeometry = 
ylinder, partSurfa
e = smoothFOR x = 1 to 1 STEP 1 /* list of output parameters */
oolingUniformity = yes /* parameter of interest */FOR x=1 /* 
oolingUniformity */v1(uniform) = 0, v2(nonUniform) = 0 /* initialize tenden
y variables */
oolingUniformity depends on quen
hantCategory, partGeometry, partSurfa
e.quen
hantCategory = water => v2 = 0 + 4 = 4 /* update nonUniform */partGeometry = 
ylinder => v1 = 0 + 4 = 4 /* update uniform */partSurfa
e = smooth => v1 = 4 + 2 = 6 /* update uniform */v1 > v2 /* sin
e v1 = 6 and v2 = 4 */�nal-tenden
y = v1 /* represents uniform 
ooling */NEXT parameter /* no more parameters */OUTPUT 
oolingUniformity = uniform /* 
onvey this to user */Example: Estimation of Cooling Uniformity5 Visualization of Mi
rostru
tureData Visualization is a te
hnique to present a set of data in the form of graphi
aldepi
tions [12,13℄. The goals of visualization in
lude 
omparing sets of data,indi
ating dire
tions and the lo
ations of a
tions or phenomena, relating valuesand 
on
epts, and revealing the features of the data.A mi
rostru
ture is what one sees when an alloy spe
imen is 
ut, its surfa
epolished and et
hed to expose phases, and put under a mi
ros
ope [4℄. Predi
tingmi
rostru
tures of the alloys interests materials s
ientists and engineers be
ausemi
rostru
tures di
tate me
hani
al properties su
h as hardness, toughness, anddu
tility.5.1 Methodology for VisualizationThe ar
hite
ture of the visualization 
omponent is illustrated in Figure 4. Javaservlets and JSP provide the API between the database server and the webinterfa
e, and the mapping of the data to the visualization primitives. Commu-ni
ation with users o

urs through a web interfa
e, with Java applets to providedata sharing at minimum 
ost and maximum ease of use.The volume fra
tions of what phases are present in the resulting mi
rostru
-ture 
an be determined by tra
ing what regions the time-temperature 
urve goesthrough and for how long. As the 
ooling progresses, new phases start to formalong di�erent regions of the 
urve, and grains grow at the same time. The
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Fig. 4. Visualization Component
hanges in volume fra
tions in the material during the 
ooling pro
ess 
an berepresented in two ways, a line graph and a pie 
hart, as shown in Figures 5 and6 respe
tively. Here A and B represent the fra
tions.

Fig. 5. Line Graph of Volume Fra
tions Fig. 6. Pie Chart of Vol-ume Fra
tions5.2 CCT Diagrams and Time-Temperature DataContinuous 
ooling transformation diagrams and time-temperature 
urves arethe two elements used in mi
rostru
ture predi
tions. The Continuous CoolingTransformation or CCT diagram of an alloy shows when and at what temper-ature the phase transitions start and end [5℄. The 
hemi
al 
omposition of thealloy is the major de
iding fa
tor here. An example of a CCT diagram for a0:4%C, 1:5%Mn, 0:5%Mo steel is shown in Figure 7 [14℄. The labels austen-ite, ferrite, bainite, and pearlite are the names of steel phases. The evolution ofthe mi
rostru
tures resulting from quen
hing 
an be modeled by superimposingthese time-temperature 
urves from the experiment over the CCT diagram forthe alloy as shown.5.3 Challenges in Visualization:Time-temperature data taken at various lo
ations of quen
hed spe
imens fromseveral experiments are available from the database. This separates this proje
tfrom existing tools, as we aim to predi
t mi
rostru
tures under di�erent quen
h-ing 
onditions of interest, as opposed to existing te
hniques.



Fig. 7. CCT Diagram and Predi
ted Mi
rostru
tures6 Performan
e EvaluationDSS Experiments. An example from the evaluation of Quen
hMinerTM ispresented here. In this example, the DSS is asked to estimate the average heattransfer 
oeÆ
ient [15℄ 4, given the quen
hing 
onditions. Figure 8 shows theuser input for this 
ase and Figure 9 shows the output estimated by the DSS.The system estimates that under the given 
onditions, the average heat transfer
oeÆ
ient is likely to be on the higher side. The time taken by the system forpro
essing is approximately 1 se
ond.Comparison with Quen
hing Experiments. The same input 
onditionsas in the above example are used to run a quen
hing experiment, and 
urves areplotted from its results, as shown in Figures 10 and 11. On studying these, a heattreating expert would infer that, in this experiment, the average heat transfer
oeÆ
ient is on the higher side. The time taken for all this is totally about 1hour. The resulting estimation is similar to the DSS estimation.Hen
e, Quen
hMinerTM provides a qui
k and reasonably a

urate estimateof the parameters of interest. Similar experiments have been performed on thevisualization 
omponent. From the experiments, the users have inferred thatQuen
hMinerTM serves as an e�e
tive DSS in the heat treating domain, a
hiev-ing an a

eptable level of eÆ
ien
y and a

ura
y. Further improvements are inprogress.4 The heat transfer 
oeÆ
ient represents the heat extra
tion 
apa
ity in quen
hing asdetermined by part density, quen
hant temperature and other fa
tors.



Fig. 8. User Input Fig. 9. DSS Output

Fig. 10. Cooling Rate Curve Fig. 11. Heat Transfer Curve7 Related WorkOur earlier work in this area in
ludes Quen
hPADTM [6℄, the Quen
hant Per-forman
e Analysis Database, developed for storage and querying of quen
hingdata. Quen
hMinerTM , in addition to storage and retrieval, provides de
isionsupport. Materials databases su
h as EQUIST [16℄, data mining systems su
h asWEKA [17℄ and data visualization systems su
h as XMDV [3℄ have been devel-oped. However, to the best of our knowledge, Quen
hMinerTM is novel, being anintegration of Knowledge Dis
overy and Data Visualization for De
ision Supportin the Heat Treating of Materials.8 Con
lusionsData mining and visualization te
hniques have been applied to the heat treatingdomain to build a De
ision Support System 
alled Quen
hMinerTM . This assistsheat treating users, enabling them to retrieve data at a glan
e and use it to assist



de
ision making for optimizing pro
esses. It sets the stage for further resear
h indata mining and visualization as needed to address 
ertain 
hallenges. Rigorousevaluation of the system is in progress for further enhan
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