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Abstract. This paper describes a Decision Support System (DSS) for
the heat treating of materials built using artificial intelligence. Heat
treating encompasses the controlled heating and cooling of materials
to achieve desired properties. Data gathered during heat treating is a
source of knowledge useful in making decisions. This knowledge discov-
ered through data mining is used to build a DSS that helps materials
scientists conduct studies to improve heat treating processes. The data is
also used to draw graphs based on which material microstructures can be
predicted. A major challenge here is accurately estimating microstruc-
tures at different points on a graph under varying conditions of interest.
Another big challenge is simulating expert judgment while mining over
simple and complex data types, by incorporating domain-specific facts
in the mining process. Our work is one of the first to integrate knowledge
discovery and data visualization into one system for supporting materials
science processes.
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1 Introduction

Areas of artificial intelligence have applications in several domains, providing
motivation for further research. The work described in this paper is an exam-
ple of such an application. It is a Decision Support System (DSS) [1] called
QuenchMiner”™ built with the goal of optimizing the processes in heat treat-
ing, using data mining [2] and data visualization [3] techniques.

Application Domain. Heat Treating is a field in Materials Science [4].
It involves the controlled heating and cooling of metals and other materials
to achieve specific mechanical and thermal properties. Quenching, i.e., rapid
cooling, is an important step in the heat treating operations [5]. The setup used
for quenching [6] at the Center for Heat Treating Excellence (CHTE), at WPI
is shown in Figure 1. The material being quenched is called the part, probe or
workpiece. The cooling medium is called the quenchant.

* This work is supported by the Center for Heat Treating Excellence (CHTE) and
its member companies, and by the Department of Energy - Office of Industrial
Technology (DOE-OIT) Award Number DE-FC-07-011D14197.
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Motivation. Data obtained from quenching experiments is a source of knowl-
edge useful in making decisions. For instance, if experimental observations indi-
cate that, ”FEzcessive agitation of the quenchant implies greater distortion of the
part”, then this rule could be used to computationally estimate distortion when
agitation is known. This assists in making decisions about selecting quenching
conditions for optimal performance. This is an example of rule-based data min-
ing [2] for decision support [1]. There are also decisions based on graphs and
charts. For example, a material has different microstructural characteristics at
different points on a cooling curve [5] !. These influence its properties, which
in turn affect decisions about selection of materials. The ability to visualize mi-
crostructures at various regions on a graph is thus important. The need to mine
and visualize data and use this to support decision making serves as motivation
for QuenchMiner™™

Challenges. The visualization of microstructure under different quenching
conditions is a challenging task. This augments state-of-the-art techniques, and is
being addressed in our research. Another challenge is predicting cooling curves
and related curves obtained from quenching experiments, in addition to esti-
mating parameters such as distortion. This is being addressed in our ongoing
research on graph-based data mining.

2 Decision Support in Heat Treating

A Decision Support System is defined as a system in which one or more comput-
ers and computer programs assist in decision making by providing information
[1]. QuenchMiner”™ provides decision support in heat treating by achieving the
following goals.

LA cooling curve is the graph of temperature versus time plotted during a quenching
experiment, whose slopes at different points give the cooling rates.



Parameter Estimation. The system estimates parameters of interest such
as cooling rate and distortion tendency [5] given the quenching input conditions,
without performing the experiment. This supports decisions about the selec-
tion of quenchants, parts and quenching conditions in the industry to achieve a
desired output.

Microstructure Prediction. It also predicts and visualizes microstructure
at different points along a cooling curve [5]. Since the microstructure determines
properties such as hardness, its prediction assists in making decisions about
selecting materials for specific processes.

2.1 Design of System
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Fig. 2. QuenchMiner™ Architecture

The DSS is designed using the architecture shown in Figure 2. The quench-
ing data such as experimental details, and related data such as literature, are
integrated into a quenching data mart [7]. A Data Mart is a repository of data
gathered from operational and other sources, designed to serve a particular com-
munity of knowledge workers [8]. In this case, the focus is on the heat treating
community.

The data mining component discovers knowledge using the data in the quench-
ing data mart. The knowledge, mainly rules representing tendencies, populates
the knowledge base, forming domain expertise in heat treating. The decision
making unit has the logic of an inference engine in an Ezpert System [9] 2. In
other words, this unit has the ability to reason using the rules in the knowledge
base.

The data visualization component extracts quenching data and models it for
effective presentation. This primarily focuses on estimating the microstructure of
the part during various stages of quenching, thereby helping users to understand
the behavior of the part.

The users interact with the system through a web interface. This enables
worldwide access to the authorized users of QuenchMiner”™ .

2 An Expert System is a computer program that represents and reasons with knowl-
edge of some specialist subject with a view to solving problems or giving advice.



3 Data Mining and Knowledge Discovery

Data Mining [2] is the process of discovering interesting patterns and trends
in large data sets for guiding future decisions. Data mining thus leads to the
discovery of knowledge from raw data. Many people treat data mining as a
synonym for a popularly used term Knowledge Discovery in Databases or KDD.
After studying a variety of data mining techniques in detail, it was determined
that the most relevant to mining numeric and character data from quenching
experiments is Association Analysis [10].

3.1 Association Analysis

Association Analysis is the discovery of Association Rules [10] showing attribute-
value conditions that occur frequently together in a given set of data. For ex-
ample, the results of several experiments may indicate that if the quenchant has
low viscosity and if the agitation velocity in the setup is high, then the part cools
faster. This is converted into an association rule as follows.

Low Viscosity ” Excessive Agitation-Velocity => Fast Cooling-Rate

Rules such as this are useful for decision support in QuenchMiner” ™. The
Apriori algorithm [10] has been used for association analysis of heat treating
data. This is based on the Apriori property which states that, "All nonempty
subsets of a frequent itemset must also be frequent” [10]. This is used to prune
infrequent itemsets by eliminating their infrequent subsets while mining over
data. Frequent itemsets are likely to lead to rules.

Metrics called confidence and support are used to determine the significance
of the rules. These are defined based on probability of occurrence [2,10].

Confidence(A=>B) = P(B | A) : probability of B given that A occurs.
Support(A=>B) = P(A U B) : probability of A and B across all itemsets.

These measures are used to define priorities for rules. Priorities indicate the
relative importance of rules in decision making.

3.2 Challenges in Data Mining

Estimating cooling curves and other related curves, in addition to predicting
parameters such as cooling rate, is an issue of interest to users. This involves
mining over graphs and charts and is more challenging than mining over numeric
and character data. This is part of our ongoing research and is being addressed
through domain-type-dependent data mining over complex data types, in this
case, graphs obtained from quenching experiments.
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4 Analysis using Discovered Knowledge

The system architecture of the decision making unit is shown in Figure 3. This
uses rule interpreters. A Rule Interpreter is a subsystem that is designed to apply
a given set of rules to perform analysis and make decisions [9].

Forward Chaining. The rule interpreter technology used here is forward
chaining. Forward Chaining is a method that finds every conclusion possible
based on a given set of premises, [9,11]. In this approach, inference rules are
applied to knowledge, leading to new assertions. This process repeats forever
until some stopping criterion is met. The system stores the facts in a memory
called the working memory, in our context, the facts being the quenching input
conditions. The rules are stored in a knowledge base. In each cycle, the system
computes the subset of rules whose left hand side is satisfied by the current
contents of the working memory. Certain left hand side conditions may be treated
as predicates . The system then decides which of these rules should be executed.
The final step in each cycle is to execute the actions, represented in the action
functions, on the chosen rules.

Rete. A technique called Rete [11] is used to match the rules to the facts.
The rete match algorithm is an efficient method for comparing a large collection
of patterns to a large collection of objects. [11]. Rete compiles the memory into
a network that eliminates duplication over time. It ensures that the same rule
is not executed on the same arguments twice. It also ensures that in case of
conflicts, it executes the rule with the highest priority [9]. Thus, rete improves
the efficiency and accuracy of the decision making process.

The logic of the decision making unit in QuenchMiner”
algorithm and example below.

M s outlined in the

FOR y =1tom STEP 1
Iy.value = user-entry /* list of input variables */
FOR x =1 ton STEP 1
Ox.name = user-select /* list of output parameters */
FOR x =1 to n STEP 1 /* iterate through each o/p param. */
vl = 0, v2 = 0 /* initialize variables for tendencies */
FOR y =1 tom STEP 1
IF Ox := Iy THEN /* if o/p param. depends on i/p var. */
IF Iy.value => v1 /* v1 is one extreme of tendency */
THEN vl = vl 4+ wgtl /* wgtl is extent of impact */

3 Predicates are properties of objects or relations between objects that can be used as
logical representations of conditions, e.g. ”viscosity-low” is a predicate.



ELSE IF Iy.value => v2 /* other extreme */
THEN v2 = v2 + wgt2 /* update var. by weight */
NEXT y
IF v1 > v2 /* check which tendency is greater */
THEN final-tendency = vl
ELSE IF vl < v2
THEN final-tendency = v2
ELSE final-tendency = avg(v1l, v2) /* balance of extremes */
Ox.value = final-tendency /* determine final tendency */
NEXT x
FOR x =1 ton STEP 1 /* for each o/p param. */
OUTPUT Ox.value /* convey tendency to user */

Algorithm: QuenchMiner”" Decision Making Unit

FOR y = 1 to 3 STEP 1 /* list of input variables */
quenchantCategory = water, partGeometry = cylinder, partSurface = smooth
FOR x = 1 to 1 STEP 1 /* list of output parameters */
coolingUniformity = yes /* parameter of interest */
FOR x=1 /* coolingUniformity */
v1(uniform) = 0, v2(nonUniform) = 0 /* initialize tendency variables */
coolingUniformity depends on quenchantCategory, partGeometry, partSurface.
quenchantCategory = water => v2 = 0 + 4 = 4 /* update nonUniform */
partGeometry = cylinder => vl = 0 4+ 4 = 4 /* update uniform */
partSurface = smooth => vl = 4 4+ 2 = 6 /* update uniform */
vl > v2 /* since vl = 6 and v2 = 4 */
final-tendency = v1 /* represents uniform cooling */
NEXT parameter /* no more parameters */
OUTPUT coolingUniformity = uniform /* convey this to user */

Example: Estimation of Cooling Uniformity

5 Visualization of Microstructure

Data Visualization is a technique to present a set of data in the form of graphical
depictions [12,13]. The goals of visualization include comparing sets of data,
indicating directions and the locations of actions or phenomena, relating values
and concepts, and revealing the features of the data.

A microstructure is what one sees when an alloy specimen is cut, its surface
polished and etched to expose phases, and put under a microscope [4]. Predicting
microstructures of the alloys interests materials scientists and engineers because
microstructures dictate mechanical properties such as hardness, toughness, and
ductility.

5.1 Methodology for Visualization

The architecture of the visualization component is illustrated in Figure 4. Java
servlets and JSP provide the API between the database server and the web
interface, and the mapping of the data to the visualization primitives. Commu-
nication with users occurs through a web interface, with Java applets to provide
data sharing at minimum cost and maximum ease of use.

The volume fractions of what phases are present in the resulting microstruc-
ture can be determined by tracing what regions the time-temperature curve goes
through and for how long. As the cooling progresses, new phases start to form
along different regions of the curve, and grains grow at the same time. The
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changes in volume fractions in the material during the cooling process can be
represented in two ways, a line graph and a pie chart, as shown in Figures 5 and
6 respectively. Here A and B represent the fractions.
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5.2 CCT Diagrams and Time-Temperature Data

Continuous cooling transformation diagrams and time-temperature curves are
the two elements used in microstructure predictions. The Continuous Cooling
Transformation or CCT diagram of an alloy shows when and at what temper-
ature the phase transitions start and end [5]. The chemical composition of the
alloy is the major deciding factor here. An example of a CCT diagram for a
0.4%C, 1.5%Mn, 0.5%Mo steel is shown in Figure 7 [14]. The labels austen-
ite, ferrite, bainite, and pearlite are the names of steel phases. The evolution of
the microstructures resulting from quenching can be modeled by superimposing
these time-temperature curves from the experiment over the CCT diagram for
the alloy as shown.

5.3 Challenges in Visualization:

Time-temperature data taken at various locations of quenched specimens from
several experiments are available from the database. This separates this project
from existing tools, as we aim to predict microstructures under different quench-
ing conditions of interest, as opposed to existing techniques.
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6 Performance Evaluation

DSS Experiments. An example from the evaluation of QuenchMiner™ is

presented here. In this example, the DSS is asked to estimate the average heat
transfer coefficient [15] *, given the quenching conditions. Figure 8 shows the
user input for this case and Figure 9 shows the output estimated by the DSS.
The system estimates that under the given conditions, the average heat transfer
coefficient is likely to be on the higher side. The time taken by the system for
processing is approximately 1 second.

Comparison with Quenching Experiments. The same input conditions
as in the above example are used to run a quenching experiment, and curves are
plotted from its results, as shown in Figures 10 and 11. On studying these, a heat
treating expert would infer that, in this experiment, the average heat transfer
coefficient is on the higher side. The time taken for all this is totally about 1
hour. The resulting estimation is similar to the DSS estimation.

Hence, QuenchMiner”™™ provides a quick and reasonably accurate estimate
of the parameters of interest. Similar experiments have been performed on the
visualization component. From the experiments, the users have inferred that
QuenchMiner™ serves as an effective DSS in the heat treating domain, achiev-
ing an acceptable level of efficiency and accuracy. Further improvements are in
progress.

* The heat transfer coefficient represents the heat extraction capacity in quenching as
determined by part density, quenchant temperature and other factors.
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7 Related Work

Our earlier work in this area includes QuenchPAD”™ [6], the Quenchant Per-
formance Analysis Database, developed for storage and querying of quenching
data. QuenchMiner”™ | in addition to storage and retrieval, provides decision
support. Materials databases such as EQUIST [16], data mining systems such as
WEKA [17] and data visualization systems such as XMDYV [3] have been devel-
oped. However, to the best of our knowledge, QuenchMiner”™ is novel, being an
integration of Knowledge Discovery and Data Visualization for Decision Support
in the Heat Treating of Materials.

8 Conclusions

Data mining and visualization techniques have been applied to the heat treating
domain to build a Decision Support System called QuenchMiner”™ . This assists
heat treating users, enabling them to retrieve data at a glance and use it to assist



decision making for optimizing processes. It sets the stage for further research in
data mining and visualization as needed to address certain challenges. Rigorous
evaluation of the system is in progress for further enhancement.
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