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ABSTRACT

In scientific domains, knowledge is often discovered from
experiments by grouping or clustering them based on the
similarity of their output. The causes of similarity are an-
alyzed based on the input conditions characterizing a given
type of output, i.e., a given cluster. This analysis helps in
applications such as decision support in industry. Cluster
representatives form at-a-glance depictions for such applica-
tions. Randomly selecting a set of conditions in a cluster
as its representative is not sufficient since distinct combi-
nations of inputs could lead to the same cluster. In this
paper, an approach called DesCond is proposed to design
semantics-preserving cluster representatives for scientific in-
put conditions. We define a notion of distance for conditions
to capture semantics based on the types of their attributes
and their relative importance. Using this distance, methods
of building candidate cluster representatives with different
levels of detail are proposed. Candidates are compared using
the DesCond Encoding proposed in this paper that assesses
their complexity and information loss, given user interests.
The candidate with the lowest encoding for each cluster is re-
turned as its designed representative. DesCond is evaluated
with real data from Materials Science. Evaluation with do-
main expert interviews and formal user surveys shows that
designed representatives consistently outperform randomly
selected ones and different candidates suit different users.
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1. INTRODUCTION

Clustering is often used to group data that involves a mix-
ture of different types of attributes such a numbers and plain
text. The data typically has semantics associated with it in
the context of a given domain. Examples of such data in-
clude information on handheld PDAs (Personal Digital As-
sistants) [7], documents on web pages [15] and association
rules derived from databases [11].

In this paper, we deal with such data coming from sci-
entific experiments [1]. More specifically, we deal with the
input conditions of experiments, where each condition gives
the name and value of a process parameter and a set of such
conditions forms the experimental input setup. These ex-
periments are typically clustered based on their output and
sets of input conditions leading to each cluster are identified
to aid comparison of the corresponding processes [1]. In-
ferences drawn from clustering help in various applications
such as parameter selection [14], computational estimation
[18], simulation tools [12] and decision support systems [19].

Cluster representatives form concise depictions of each
cluster in such applications. However, a randomly selected
representative may not incorporate the necessary informa-
tion in the cluster since distinct combinations of input con-
ditions could lead to a single cluster. Moreover, different ap-
plications may need different levels of detail in the cluster.
For example, presenting all the information in the cluster
causes inefficiency in certain applications such as simulation
tools [12] (elaborated in Section 2). In other applications
such as visual displays for parameter selection [14] avoiding
clutter is important. Hence it is advisable to design clus-
ter representatives that preserve domain semantics in the
context of specific applications.

In this paper, we propose an approach called DesCond to
design semantics-preserving cluster representatives for sci-
entific input conditions. A significant issue in the design is
the notion of distance for the input conditions. These con-
ditions have a mixture of different types of attributes such
as categorical, numeric and ordinal. Each of them conveys
a certain concept in the domain whose meaning needs to be
captured. Moreover, the relative importance of the condi-
tions in the domain also needs to be taken into account. In



this paper, we propose a distance function for input condi-
tions that incorporates all these factors.

Using the given distance, candidate representatives are
designed for each cluster showing increasing levels of detail.
Three candidates are considered for each cluster, namely, a
Single (set of) Conditions Representative closest to all other
sets of conditions in the cluster, a Multiple (set of) Condi-
tions Representative showing sub-clusters within the clus-
ter, and an All (set of) Conditions Representative showing
all information in the cluster abstracted suitably.

Candidate representatives are compared using an objec-
tive measure called the DesCond Encoding proposed in this
paper. This encoding takes into account the complexity of
each representative and the information loss due to it based
on the interests of targeted users. The winning candidate
based on the encoding is returned as the designed represen-
tative.

DesCond is evaluated using real data from the domain of
Heat Treating of Materials [6] that inspired this research.
Evaluations are conducted with domain expert interviews
and with formal user surveys. Domain experts provide in-
puts to the DesCond Encoding reflecting interests of tar-
geted users. The evaluation results show that the designed
representatives are consistently better than randomly se-
lected ones and that different candidates win in different
applications. This is confirmed by the evaluations through
user surveys where different categories of users prefer dif-
ferent designed representatives in applications such as pa-
rameter selection [14] decision support systems [19] and
simulation tools [12]. Hence the output of DesCond is use-
ful in designing the respective applications.

The rest of this paper is organized as follows. Section 2
gives a background of the Heat Treating domain with a mo-
tivating example for the given problem. Section 3 introduces
the DesCond approach for designing representatives of input
conditions while sections 4, 5 and 6 give its details. Section 7
summarizes the user evaluation. Section 8 overviews related
work. Section 9 states the conclusions.

2. BACKGROUND AND MOTIVATION

We present a brief overview of the Heat Treating domain,
since we will use examples from this domain throughout to
explain the concepts in this paper. In Heat Treating, an
important process is quenching, namely, the rapid cooling
of a material in a liquid or gas medium to achieve desired
mechanical and thermal properties [6]. Quenching is con-
ducted with the following sets of input conditions.

e Quenchant Name: This refers to the cooling medium
in the process, e.g., TTA, DurixolHR88A. Each cooling
medium has properties such as viscosity and age that
are characterized by the quenchant name.

e Part Material: This is the material of which the part
being quenched is made e.g., ST4140, Inconel600. Each
material has properties such as alloy content.

e Probe Type: A sample of the part called the probe is
used for quenching. The probe has certain properties
such as shape and dimension that are characterized by
the probe type, e.g., CHTE probe, IVF probe.

e Oxide Layer: This states the presence and thickness
of the oxide layer, whether absent, thin or thick.

e Agitation Level: This gives the extent to which the
cooling medium is agitated during quenching, i.e., ab-
sent, low or high.

e Quenchant Temperature: This is the temperature at
which the cooling medium is maintained during the
quenching process. It is recorded in degrees Celsius.

Given this background, we present a motivating example.
Consider the sets of conditions S; through Sy in Example 1
showing a given cluster of experiments.

Example 1

e Si: Quenchant Name = DurixolW72, Part Material =
SS304, Agitation Level = High, Oxide Layer = None,
Quenchant Temperature = (70-80), Probe Type = CHTE

e S: Quenchant Name = DurixolW72, Part Material =
SS304, Agitation Level = High, Oxide Layer = None,
Quenchant Temperature = (80-90), Probe Type = CHTE

e S3: Quenchant Name = DurixolV35, Part Material
= ST4140, Agitation Level = High, Oxide Layer =
Any, Quenchant Temperature = (50-60), Probe Type
= CHTE

e S4: Quenchant Name = DurixolV35, Part Material
= ST4140, Agitation Level = Low, Oxide Layer =
None, Quenchant Temperature = (60-70), Probe Type
= CHTE

e S5: Quenchant Name = MarTemp355, Part Mate-
rial = SS304, Agitation Level = High, Oxide Layer =
None, Quenchant Temperature = (20-30), Probe Type
= CHTE

e Ss: Quenchant Name = DurixolV35, Part Material
= ST4140, Agitation Level = Any, Oxide Layer =
Thin, Quenchant Temperature = (60-70), Probe Type
= CHTE

e S7: Quenchant Name = DurixolW72, Part Material =
SS304, Agitation Level = High, Oxide Layer = None,
Quenchant Temperature = (60-70), Probe Type = CHTE

e Sg: Quenchant Name = MarTemp355, Part Mate-
rial = SS304, Agitation Level = High, Oxide Layer =
None, Quenchant Temperature = (30-40), Probe Type
= CHTE

e Sg: Quenchant Name = DurixolW72, Part Material =
SS304, Agitation Level = High, Oxide Layer = None,
Quenchant Temperature = (90-100), Probe Type =
CHTE

All these sets of conditions in Example 1 lead to a similar
experimental output, hence they have been assigned to the
same cluster.

We now consider the application of simulation tools [12].
Users often run simulations of real experiments with a given
set of input conditions. These simulations are typically as
time-consuming as a real experiment (about 6 hours). They
are preferred over a real experiment mainly because they
save resources. Imagine that a randomly selected set of
input conditions is displayed to the user as the output of



estimation. If the user runs a simulation using this repre-
sentative, then ranges of information in the cluster are not
captured, thus reducing the sample space of simulations.
On the other hand if the user runs a simulation using a rep-
resentative that conveys all the information in the cluster,
it would take very long to run. Since each simulation takes
approximately 6 hours with one set of input conditions, run-
ning it with 9 sets of conditions would take 54 hours, which
is often not practical. Thus there is a need for a trade-off
between the two extremes in such applications.

However, there are other applications where information
loss is more critical while efficiency is not an issue, and vice
versa. Thus there is a need to cater to various types of users.
Hence it is necessary to design semantics-preserving cluster
representatives in the context of targeted applications.

3. PROPOSED APPROACH: DESCOND

We propose an approach called DesCond to design a rep-
resentative set of input conditions for each cluster. We first
define the following terminology.

e Input Condition: This refers to an individual process
parameter input to an experiment. Each condition is
defined by an attribute value pair, e.g., Part Material
= ST4140.

e Attribute: This gives name of each condition, e.g.,
Part Material.

e Value: This gives the content of each condition, e.g.,

ST4140.

e Set of Conditions: This refers to all the input condi-
tions in a given experiment, e.g., Quenchant Name =
Durizol V85, Part Material = ST4140, Agitation Level
= low, Ozxide Layer = none, Quenchant Temperature
= (60-70).

The input to DesCond is clusters of experiments with all
the sets of conditions characterizing each cluster. In our
work [18], decision trees [16] are used to identify the com-
binations of conditions that characterize the clusters. All
the decision tree paths leading to a given cluster of experi-
ments are referred to as a cluster of conditions. Given this,
the process of design is as follows.

The semantics of the domain is captured by defining a
suitable a distance function for the set of conditions. Us-
ing this notion of distance, candidate representatives are
designed for each cluster showing gradually increasing levels
of detail. In the first level, the representative is selected from
the original cluster as a single object (set of conditions) such
that it forms the nearest neighbor for all other objects in the
cluster. This candidate is called the Single Conditions Rep-
resentative (SCR) . In the second level, a candidate known
as the Multiple Conditions Representative (MCR) is con-
structed by forming sub-clusters within each original cluster
using domain knowledge and the given notion of distance.
In the third level, the candidate is constructed by combining
all information in the cluster and abstracting it in a suitable
form. This candidate is called the All Conditions Represen-
tative (ACR).

The candidates are compared using a measure called the
DesCond Encoding analogous to the Minimum Description
Length principle [17]. This encoding takes into account the

complexity of each representative measured as the number
of data points stored for it and the information loss due to
it measured as its distance from other objects in the clus-
ter. The interests of targeted users based on the relative
importance attached to the complexity and information loss
are also taken into account in the encoding. The candidate
giving the lowest value in the encoding is the winner and
is returned as the designed representative. Note that there
could be multiple winners based on the encoding, reflecting
the corresponding user interests.

Thus, in our framework, the three main tasks in the design
of domain-specific cluster representatives for conditions are
as follows:

1. Defining a notion of distance for the set of conditions.

2. Obtaining candidate cluster representatives showing
different levels of detail each capturing domain seman-
tics.

3. Proposing an encoding to compare the candidates in
order to find a suitable winner meeting specific appli-
cation requirements.

These tasks are discussed in the following three sections.

4. NOTION OF DISTANCE

We consider three criteria in defining distance. The first
one is the data type of each attribute as applicable to the
domain. The second criterion is the distance between the in-
dividual attribute values defined in a domain-specific man-
ner. The third one is the weight of each attribute based on
its relative importance in the domain. These are explained
as follows.

4.1 Data Typesof the Attributes

The attributes describing the input conditions are of dif-
ferent types such as numeric, categorical and ordinal [10].
Categorical attributes are of the character or string type and
store descriptive information. Numeric attributes represent
data that is of the integer or real number type. Ordinal
attributes are those whose values are also of the string and
character type but store information where the order mat-
ters.

The types of attributes applicable to the Heat Treating
datasets in our problem are listed below. For ordinal at-
tributes, their possible values are also stated. Each attribute
represents an individual input condition in Heat Treating.

e Quenchant Name (QN): categorical

Part Material (PM): categorical

Probe Type (PT): categorical

e Oxide Layer (OL): ordinal — none, thin, thick

Agitation Level (AL): ordinal — absent, low, high
e Quenchant Temperature (QT): numeric

4.2 Distance between the Attribute Values

We use the sets of conditions shown in Example 1 in or-
der to explain the calculation of distance for each type of
attribute.



4.2.1 Categorical Attributes

For categorical attributes, the distance is defined as 0 if
the attribute values are identical and 1 if they are not iden-
tical. Hence the distance is calculated as:

Dcategorical(siy S]) =0if Vi = Uy and Dcategorical(si7 S]) =
1 if v; <> v; where S; and S; are the respective sets of con-
ditions, while v; and v; are the respective values of the given
categorical attribute.

Thus, considering the categorical attribute Part Mate-
rial and referring to Example 1, we calculate distance be-
tween the Part Material values as Dpy(S1,S53) = 1, and
Dpar(S1,S2) = 0, since Part Material values are not equal
in the sets of conditions S; and S3, while they are equal in
Sl and Sg.

4.2.2 Numeric Attributes

For numeric attributes, distance is calculated as the abso-
lute difference of their attribute values. If the values are
grouped into ranges as a data pre-processing step, then
we consider the difference between the mean values of the
respective ranges. Suitable scaling factors are applied if
needed to maintain parity with other attributes. Thus, dis-
tance for numeric attributes is calculated as:

Dyumeric(Si, S;) = SF x |v; — vj| where S; and S; are
the respective sets of conditions, v; and v; are the values (or
mean value of ranges) of the respective numeric attributes,
and SF is a scaling factor based on domain knowledge.

Thus in Example 1, for the numeric attribute Quenchant
Temperature with scaling factor SF = 1/10 (given in the
domain) we get distances between Quenchant Temperature
values as Dgr(S1,S52) =1 and Dgor (S, S3) = 2.

4.2.3 Ordinal Attributes

For ordinal attributes, the distance is calculated as the
absolute difference between their values after the values are
mapped to numeric based on their order. For example, Agi-
tation values of high, low and absent are mapped to 3, 2 and
1 respectively. The mapping is a data preprocessing step.
Distance for ordinal attributes is then given as:

Dordinal((Ss, S5) = |v; — v;| where S; and S; are the re-
spective sets of conditions, while U; and v; are numeric val-
ues to which the respective ordinal values are mapped.

In Example 1 therefore, for the ordinal attribute Agitation
Level, distance is calculated as Dar(S1,52) =3—3 =0 and
Dar(S3,S4)=3-2=1.

4.2.4 Distance for Set of Conditions

Given these distances for the attribute types, the distance
function D.onq for the set of conditions is then defined in
terms of the distances between individual attribute values
and the weights of the respective attributes as follows:

Deondg = zfilwi x D; where each D; is a distance function
for the individual attributes, each W, is a weight giving the
relative importance of the corresponding attribute and A is
the total number of attributes. The weights are obtained as
explained in the next subsection.

4.3 Weightsof the Attributes

As stated earlier, in our problem decision trees [16] are
used to learn the relative importance of the conditions char-
acterizing each cluster with respect to the domain. Hence
the decision tree paths are used to derive the weights of the

attributes depicting these conditions. The reasoning behind
the method for deriving the weights is as follows.

1. An attribute is considered to have a higher weight than
other attributes if it is at a higher level in the decision
tree. This is because the root of the tree represents the
most significant input condition while the lower levels
represent less significant conditions. Also, attributes
not identified in the decision tree represent insignifi-
cant conditions for the given data sample.

2. The shorter the path in which an attribute appears,
the higher is the significance of that attribute. This is
because a shorter path with fewer attributes is more
definite in classifying the data than a longer path. An
extreme of this would be one particular value of the
root leading directly to a given cluster. For exam-
ple, if all data pertaining to QuenchantName = TTA
belongs to Cluster C, irrespective of other attributes,
then in this path Quenchant Name should get a higher
weight than in a path having other attributes such as
Part Material and Agitation Level.

3. The greater the number of experiments in the cluster
corresponding to a path, the more important is that
path and hence an attribute appearing in that path.
This is because the given path then classifies a greater
amount of data.

We draw an analogy with the decision tree induction algo-
rithms such as ID3 and J4.8 [16] in this reasoning. It is not
feasible to directly use the weights from these algorithms,
because the weights are different in each epoch and we need
one uniform set of weights for the attributes. Moreover, if
we were to use their weights we would need to define a con-
stant of proportionality which is not known apriori. Also,
running the ID3/J4.8 epochs again on the same dataset is
likely to be inefficient, given that the tree has already been
constructed. Thus, we use the analogy behind the induction
of decision trees.

Given these considerations and applying the reasoning
above, a heuristic for the weights of the attributes in the
decision tree is defined as below.

Decision Tree Weight Heuristic

Wi =358, 0 x Gy

where, W; = weight of each attribute,

P = total number of paths in the decision tree,

G; = number of graphs in the cluster of path 7,

H; ; = height of node for attribute ¢ in path j and

H,; = height of path j

such that, "height” H is defined number of nodes away
from the leaf.

Thus, in a given path the leaf has a height of 0, the node
immediately above the leaf has a height of 1 and so forth.
The height of a path is basically the height of its root node.

The use of the decision tree heuristic in calculating weights
is explained in Example 2 using the partial decision tree
shown in Figure 1.
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Figure 1: Partial Decision Tree

Example 2

For the given partial decision tree, assume that Cluster B
has 10 experiments and Cluster H has 5 experiments. Then
we get the following weights.

Quenchant Name: Won = (5 x10+32 x5+4 x10) = 8.33

Part Material: Wpa = 3(2 x 1042 x5+ 2 x 10) = 5.44

Agitation Level: Waz = 2(2 x 10+ 0+ 2 x 10) = 3.33

Oxide Layer: Wor = (0 + 3 x 5+ 7 x 10) = 1.39

Quenchant Temperature: Wor = %(i x1040+40) = 0.83

Probe Type: Wor = 3(0+0+0) =0

We will use the weights derived from the corresponding
complete decision tree in this example in order to illustrate
the design of the candidate cluster representatives. The
weights of the attributes inferred from the complete tree
(whose partial snapshot is shown in Figure 1) are as follows.

e Quenchant Name (QN): weight Wony = 8.12
): weight Wpy = 5.97

Part Material (PM
Agitation Level (AL) : weight War = 3.05
Oxide Layer (OL): weight Wor = 2.08

e Quenchant Temperature (QT): weight Wor = 0.81
e Probe Type (PT): weight Wpr =0

Thus the distance function derived from the complete tree
is: Deong = 8.12 X DQN +5.97x Wppr+3.05 X Dar, +2.08 x
Dor +0.81 X Dgr

where the individual distances Dgn, Dpy and so forth
are calculated based on the values and types of the individ-
ual attributes. Given the manner in which it is derived, this
distance function incorporates domain semantics and can be
used for the design of candidate cluster representatives.

5. LEVELSOF DETAIL

We consider the following levels of detail in designing the
candidate representatives.

e Level 1: SCR - Single Conditions Representative, i.e.,
one set of conditions closest to all others in the cluster
using the giving notion of distance

e Level 2: MCR - Multiple Conditions Representative,
i.e., multiple sets of conditions summarizing cluster
information with respect to the domain.

Quenchant Name Part Material Agitation Level Oxide Layer Quenchant Temp Probe Type
DurixolV'3 ST4140 High Any (50-60) CHTE

Figure 2: SCR for Example 1

e Level 3: ACR - All Conditions Representative, i.e.,
all possible sets of conditions in the cluster abstracted
using domain knowledge.

The process of designing each of these is explained below.
In order to illustrate the concepts, we consider Example 1
showing all the sets of conditions, i.e., decision tree paths
leading to a given cluster. These paths are obtained from
the complete decision tree over the given data set. Using
the distance function derived from the complete decision
tree, candidate representatives are designed as follows.

5.1 Single Conditions Representative

The Single Conditions Representative, SCR, is one of the
original set of conditions in the given cluster. Using the
distance function for conditions that incorporates domain
semantics, SCR is selected as the set of conditions closest
to all others in the cluster. It other words SCR is such that
the sum of its distances from all other sets of conditions in
the cluster is the least. The SCR for the cluster in Example
1 is shown in Figure 2.

The Single Conditions Representative is designed in order
to show the most important cluster information in a concise
form. It is useful in applications where the user is interested
in finding out the best possible set of input conditions that
would give a desired nature of output.

5.2 Multiple Conditions Representative

This Multiple Conditions Representative, MCR, summa-
rizes the information in the cluster and is constructed as
follows. The set of conditions in each cluster are grouped
into sub-clusters based on the similarity of the conditions.
The notion of similarity for sub-clustering the conditions is
the distance function D.,,q defined earlier.

The number of sub-clusters for each cluster is determined
based on domain knowledge. For example, in Heat Treating
we have the following information.

e Quenchant Name is the root of the tree and gets a
higher weight than other attributes in the distance
function.

e One important purpose of conducting the quenching
experiments in Heat Treating is to categorize the quen-
chants.

e Quenchant Name has more distinct values than the
other attributes closer to the root.

Based on this knowledge, the number of sub-clusters is set
equal to the number of distinct values of Quenchant Name.
In other words, the sets of conditions in each cluster are
grouped into sub-clusters based on the similarity of their
Quenchant Names.

Sub-clustering is then done using any suitable clustering
algorithm using Dcona as the notion of distance [10]. For
each sub-cluster, a representative is selected as the set of
conditions closest to all the others in the sub-cluster. Like-
wise, representatives are obtained for each sub-cluster. The



Quenchant Name  Part Material Agitation Level Oxide Layer Quenchant Temp Probe Type

DurixalV35 ST4140 High Any (50:60) CHTE
DurxalW72 33904 High Hone (60-100) CHTE
MaTampdis 53304 High None (2040) CHTE

Figure 3: MCR for Example 1

Quenchant Name | Part Material Agitation Level Oxide Layer Quenchant Temp Probe Type

DurixalV35 ST4140 High Any (50-60) CHTE
DuixalV3 | STA140 Low  Mome | (6070) | CHTE
DurixolV35 ST4140 Any Thin (60-70) CHTE
DurixalW72 553 High Nane {60-100) CHTE
MarTemp355 85304 High None (20-40) CHTE

Figure 4: ACR for Example 1

Multiple Conditions Representative is an aggregation of all
sub-cluster representatives displayed in a tabular form. The
MCR for Example 1 is shown in Figure 3.

The Multiple Conditions Representative is designed be-
cause it depicts a trade-off between the amount of detail
displayed to the user and the amount of information cap-
tured within the cluster. It is useful in applications where
the user wishes to find out, for example, distinct combi-
nations of the most significant condition that would give a
desired nature of output.

5.3 All Conditions Representative

The All Conditions Representative, ACR, is designed to
capture all the data in the cluster with no information loss.
It is built by retaining all the original sets of conditions and
displaying them sorted in ascending order of the most sig-
nificant attribute, followed by the next significant one and
so forth. The significance of the attributes is determined
based on the distance function D.onq. The values of each set
of conditions are abstracted using domain knowledge wher-
ever possible. For example, in Heat Treating, if three sets
of conditions are identical except that the value of Agita-
tion Level is absent for one, low for another and high for
the third, then this is abstracted as Agitation = any, where
any refers to any possible value of agitation applicable to
the domain. Likewise, if two sets of conditions are identi-
cal except that Quenchant Temperature has two consecutive
ranges (110—120) and (120—130), then these are abstracted
into a single set of conditions with Quenchant Temperature
= (110 —130). This is in order to avoid visual clutter, while
still displaying all information in the cluster.

The All Conditions Representative is an aggregation of
all the sets of conditions sorted in ascending order from the
most to the least significant. The ACR for Example 1 is
shown in Figure 4.

The All Conditions Representative is designed so as to
convey all the information in the cluster in an organized
manner. It is useful in applications where the user is inter-
ested in studying in detail all the possible inputs that would
lead to a given nature of output.

Thus, three types of candidate representatives are de-
signed for each cluster.

6. COMPARISON OF CANDIDATES

The candidate representatives are compared using an anal-

ogy with the Minimum Description Length (MDL) principle.
The MDL principle proposed by Rissanen [17] aims to mini-
mize the sum of encoding the theory and the examples using
the theory. In the literature, when MDL is used to encode
cluster information, it is essential to be able to recover the
original cluster from the encoding. However, in the context
of our problem, we do not need to retrieve the cluster. In-
stead, we need to compare the cluster representatives with
each other in order to evaluate them. Hence we propose a
measure for comparison that is analogous to the Minimum
Description Length of the cluster.

Our proposed measure is called the DesCond FEncoding.
In our context, the theory (with respect to MDL) refers to
the cluster representatives while the examples refer to all the
other objects in the cluster. We take into account the com-
plexity of each representative and the information loss due
to it. Complexity refers to the ease of interpretation which
is measured as the amount of data stored for the represen-
tative. Information loss refers to the capacity of the repre-
sentative in capturing information within the cluster and is
measured as the distance of the representative from all the
objects in the cluster. The relative importance attached to
the two terms of complexity and distance (information loss)
is also taken into account in the encoding, based on the in-
terests of targeted users. Given this, the DesCond Encoding
is described below.

The DesCond Encoding

En. =UBC X log2(AV)+UBD x loggéZleD(R, Si)

where, En. = encoding for conditions,

A = number of attributes in the representative,

V' = number of values for each attribute in the represen-
tative,

R = cluster representative,

S; = each set of conditions in cluster,

D(R, S;) = distance between representative and every set

of conditions using the given distance function,

s = total number of sets of conditions in cluster,

U BC' = percentage weight giving user bias for complexity,

UBD = percentage weight giving user bias for distance.

The first term in this encoding log2(AV') denotes the com-
plexity of the representative. This is calculated as the num-
ber of attributes and values that need to be stored for that
representative. The second term, i.e., the distance term
log223;_1D(R, Si) denotes the information loss due to the
representative. It is calculated as the average distance of
the representative from all the other sets of conditions in
the cluster. The terms UBC and UBD are the percentage
weights assigned to the complexity and distance terms re-
spectively in order to give the user bias for those two terms.
Unless otherwise specified, equal weights are assigned to
complexity and distance, i.e., 50% each.

Candidate cluster representatives are evaluated using the
DesCond Encoding. The representative with the lowest value
of the encoding for the given cluster is considered the best
and is returned as its designed representative.

7. USER EVALUATION

DesCond is implemented in Java and evaluated using real
data from the Heat Treating domain [6]. Evaluation is
conducted with domain expert interviews and with formal
user surveys. Each of these is described below.
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Figure 6: Results for Medium Data Set

7.1 Evaluationwith Domain Expert Interviews
7.1.1 Method of Evaluation

In this evaluation, domain experts provide different user
bias weights in the DesCond Encoding based on their no-
tions of targeted user interests. Using these weights candi-
date representatives are evaluated. Different datasets con-
sisting of Heat Treating experiments placed into clusters are
sent as input to DesCond. Parameters altered in DesCond
besides the user bias weights are dataset size and number
of clusters. Any suitable algorithm such as k-means [13]
is used to generate the clusters over the datasets. In addi-
tion to altering the values of k, i.e., number of clusters, the
clustering seeds are also altered to provide randomization.
Given these clusters as input, the output of DesCond is the
winning candidate for each cluster.

For comparison, a random representative is considered per
cluster in the evaluation process. Scores are then assigned
to each representative as the number of clusters in the given
dataset in which it is the winner. For example, in a dataset
of 25 experiments placed in 5 clusters with (50/50) weights,
if the winner is SCR for one cluster and ACR for four, then
the scores are, SCR:1, MCR:0, ACR:4 and Random:0. The
results are reported accordingly.

We show the evaluation results with a small dataset of 25
Heat Treating experiments placed in 5 clusters, a medium
dataset of 150 experiments in 10 clusters and a large dataset
of 400 experiments in 20 clusters. We consider 7 different
user bias weights in the DesCond Encoding spreading over
various possible applications as identified by experts. Re-
sults are reported as scores for representatives in Figures 5,
6 and 7 respectively.

7.1.2 Observations and Discussion

e For (20/80) weights, the All Conditions Representa-
tives generally win. Such weights are likely to occur in
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Figure 7: Results for Large Data Set

applications such as intelligent tutoring systems [4].
In such systems it is important to study all informa-
tion in the cluster to analyze process behavior in de-
tail. Complexity of the representative does not matter
as much. Thus ACRs would be useful here.

e For (50/50) weights, the Multiple Conditions Repre-
sentatives win for most data sets. These would prob-
ably be useful in simulation applications [12] where
a trade-off between complexity and information loss is
needed.

e For (80/20) weights, the Single Conditions Represen-
tatives are often winners. These would most likely be
useful in applications such as parameter selection [14].
Here a representative is used to analyze the behavior
of a cluster to compare processes for selecting process
parameters in industry. Thus a simple representative
is good and hence SCRs are useful especially for large
data sets.

e For the (40/60) and (60/40) weights, All Conditions
Representatives win for the small dataset while Mul-
tiple Conditions Representatives win with or without
a tie for the medium and large datasets. These would
likely also be useful in various simulation applications
where the user bias could tilt more or less in favor of
complexity and distance, still requiring a trade-off.

e Random representatives lose in most cases. This in-
dicates that designed representatives consistently out-
perform random ones in our targeted applications.

7.2 Evaluation with Formal User Surveys

DesCond is developed in the context of our larger project,
the AutoDomainMine system [18] that performs computa-
tional estimation. In this system the designed representa-
tives are used to estimate the results of experiments given
their input conditions and to estimate the input conditions
that would obtain a given result

Hence the effectiveness of the designed representatives in
estimation is assessed through formal surveys conducted by
the prospective users of this system. Users execute tests
comparing the estimation of AutoDomainMine with real lab-
oratory data not used for training. For every test, if the
estimation provided by AutoDomainMine matches the real
data, then the users report the test as accurate, else inac-
curate. Accuracy of the system is then computed as the
percentage of accurate tests over all the tests conducted.

In each test executed by users, the designed representa-
tives are compared with each other in terms of how effec-
tive they are in displaying information in the applications
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of AutoDomainMine. The applications are parameter selec-
tion [14], simulation tools [12], intelligent tutoring systems
[4] and decision support systems [19]. In order to perform
this evaluation, the estimated output of AutoDomainMine
is displayed to the users in three different levels of detail,
as the Single Conditions Representative, the Multiple Con-
ditions Representative and the All Conditions Representa-
tive respectively. Different categories of users are asked to
choose which display (designed representative) best meets
their needs with respect to the given application. We sum-
marize the results of the surveys with respect to different
applications.

7.2.1 Computational Estimation

The survey results in this category are for the AutoDomain-
Mine system as a whole indicating the effectiveness of the
designed representatives in computational estimation [18].
The users conducted 100 tests in this category. Figure 8
shows a pie chart giving the distribution of winners among
the candidate representatives. In this pie chart the region
corresponding to None Wins shows the inaccurate estima-
tions. The estimation accuracy is observed to be 94%.

From Figure 8, it is seen that for computational estima-
tion, All Conditions Representatives and Multiple Condi-
tions Representatives are winners in most tests executed
by users, with Single Conditions Representatives trailing
closely behind. Since computational estimation has a broad
range of users, different types of representatives are found
to win.

7.2.2 Parameter Selection

In these applications, the output of DesCond is used to
select process parameters in industry [14]. The users con-
ducted 53 tests in this category. The winners in these ap-
plications are shown in the pie chart in Figure 9. The None
Wins region in this chart (and charts in the following ap-
plications) indicates the tests where none of the candidate
representatives were found suitable by the users.

As observed in Figure 9, Single Conditions Representa-
tives are the winners for most tests. The reason for this
likely would be that in process parameter selection, typi-
cally most users want one right answer.
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7.2.3 Smulation Tools

In simulation tools, the users need the cluster representa-
tives to run computer simulations of a real laboratory exper-
iment [12]. The simulation users conducted 62 tests with
DesCond. Figure 10 shows the winning candidates in these
applications.

From Figure 10, it is seen that Multiple Conditions Rep-
resentatives are the winners in most tests. This is probably
because simulation tool users generally want to use ranges
of information in order to increase the sample space of the
simulations, but they also care about complexity since simu-
lations are time-consuming. Hence, we find that they prefer
the MCRs.

7.2.4 Intelligent Tutoring Systems

Intelligent tutoring systems are used to study in detail the
behavior of processes analogous to classroom study on the
given topic [4]. Totally 37 tests were conducted by users in
this category. Figure 11 shows what type of representatives
suited the users of these applications.

From Figure 11, it is clear that in most cases All Condi-
tions Representatives are the winners. This is most likely
due to the fact that in most intelligent tutoring applications,
users are interested in learning more details about the sys-
tem and do not care much about complexity. Hence, more
detail is appreciated.

7.2.5 Decision Support Systems

Decision support systems [19] are used for various pur-
poses. In high level business decision support, at-a-glance
retrieval of information is important without much empha-
sis on detail. Some decision support users however, focus
on process optimization and need to scrutinize information
in more detail. We had 44 tests conducted by decision sup-
port system users. The distribution of winning candidates
in decision support systems in shown in Figure 12.

From Figure 12, it is found that there is a fairly good
mix of winners in these applications. This is because differ-
ent decision support users are interested in different levels
of detail. Hence it would be desirable to retain all the rep-
resentatives in designing such applications, and to display
information in increasing levels of detail.
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7.2.6 Discussion on User Surveys

The following conclusions can be drawn from the results
of the user surveys.

e The use of the designed representatives enhance the es-
timation accuracy to 94% in AutoDomainMine [18].
This is higher than the earlier version of the system
that used randomly selected representatives for esti-
mation giving an accuracy of 87%.

e The results of the formal user surveys agree with the
results of the evaluation conducted with domain expert
interviews using the DesCond Encoding. For example,
Multiple Conditions Representatives win with (50/50)
weights in the encoding. These representatives are also
the winners in simulation applications [12] which re-
quire a trade-off between complexity and information
loss.

e All the designed representatives are useful (more or
less) in computational estimation [18] and decision
support applications [19]. Hence in designing these
applications all of them would be retained, displaying
the information in three different levels of detail.

e Single Conditions Representatives are most useful in
parameter selection [14], Multiple Conditions Rep-
resentatives in simulation tools [12] and All Condi-
tions Representatives in intelligent tutoring systems
[4]. Hence in designing the systems for the correspond-
ing applications these representatives would be used
respectively.

8. RELATED WORK

In recent years there has been much interest in abstracting
information that involves plain text, semi-structured text
and so forth. Personal Digital Assistants (PDAs) often have
displays in levels of detail. In [7] an approach is described
for building representatives consisting of Semantic Textual
Units (STUs) with paragraphs, sentences etc. Each STU is
revealed gradually in terms of keywords, a single sentence,
the first paragraph and the whole STU. In [15] An approach
for text summarization over the web is proposed based on
constructing representatives by exploiting diversity concepts
in text. They take into account probability of occurrence
of words, the type of grammatical constructs (nouns, verbs
etc.) and the number of documents. However, neither [7]
nor [15] propose objective evaluation measures to compare
representatives based on user interests.

There is also work on similarity measures over character
data. In [8] they consider similarity between categorical at-
tributes not only based on the values of the given attributes
but also based on the values of other attributes that are

inter-dependent. In [9] they present the Iterated Contex-
tual Distances algorithm which learns distances between at-
tributes taking into account such inter-dependencies. How-
ever, the kind of inter-dependencies that they define do not
exist in our datasets. Learnable similarity measures for
strings are presented in [5] based on support vector ma-
chines and expectation maximization and applied for dupli-
cate detection. However, they deal with natural language
text strings and the involved semantics, while our data is
different. We work with domain-specific input conditions
that involve a mixture of attributes such as numeric, cat-
egorical and ordinal. We do not deal with strings of text
whose meaning has to be interpreted in a broader natural
language context. Moreover, in our context domain knowl-
edge has already been derived from decision trees and can
directly be applied to define a distance function for the con-
ditions without further learning.

The Minimum Description Length (MDL) principle has
been used in the context of clustering. In our earlier work
[20] we propose an MDL-based effectiveness measure for
cluster representatives of graphs. However, those graphs
are images storing two-dimensional plots of numbers while
in this paper we focus on input conditions involving different
types of attributes. Hence the semantic issues are different.
In the literature, clustering of association rules has been
proposed in [11] and an MDL encoding is proposed to eval-
uate the clusters. In [3] they propose an MDL encoding
as an objective evaluation criterion for clustering. However,
these encodings are not used to evaluate different types of
cluster representatives. Also, in their work they need to re-
trieve the original cluster from the encoding which is not a
requirement in our context.

In [2] they discover knowledge from simulators. They
identify regions in the input space that lead to a certain type
of output behavior. Since the cost of simulations is high,
they develop automated methods for for efficient knowledge
discovery. They focus on which simulations to run next
by using Support Vector Machines. However, their data
is numeric while ours has different types of attributes such
as categorical, numeric and ordinal. Also, they do not build
and evaluate different types of representatives. Their focus
is on knoweledge discovery while we focus on the display of
information as well. Hence we develop methods to suit our
problem.

9. CONCLUSIONS

In this paper an approach called DesCond is proposed
to design semantics-preserving cluster representatives over
input conditions of scientific experiments. Using a domain-
specific notion of distance for conditions, candidate repre-
sentatives are designed for each cluster showing increasing
levels of detail. Candidates are compared using the DesCond
Encoding analogous to the Minimum Description Length
principle. The winning candidate for each cluster is returned
as its designed representative. DesCond is evaluated with
real data from Heat Treating. In evaluations conducted with
domain expert interviews using the DesCond Encoding, de-
signed representatives are observed to be consistently bet-
ter than random ones and different designed representatives
win in different applications. In the formal user evaluation
surveys, it is found that different categories of users like dif-
ferent designed representatives. The output of DesCond is
useful in developing the corresponding applications. User



surveys also indicate that DesCond improves the estimation
accuracy of the AutoDomainMine computational estimation
system that motivated its development.
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