
Semantic Extensions to Domain-Specific Markup Languages

Aparna Varde, Elke Rundensteiner, Murali Mani, Mohammed Maniruzzaman and Richard D. Sisson Jr.

Worcester Polytechnic Institute, Worcester, MA, USA.
(aparna | rundenst | mmani | maniruzz | sisson)@wpi.edu

ABSTRACT

A markup language serves as a medium of communication
for storing and publishing textual, numeric and other forms
of data seamlessly. XML, the eXtensible Markup Language
has become the lingua franca in web publishing. It is also a
widely accepted standard for databases and document
storage. There are many domain-specific markup languages
designed using special XML tag sets. Standardization bodies
and research communities may extend these to include
additional semantics of areas within and related to the
domain. This paper outlines the issues to be considered when
extending domain-specific markup languages, namely, the
motivation for extension, the semantic considerations, the
syntactic constraints and other relevant aspects. Illustrating
examples are given from the domains of Medicine, Finance
and Materials Science. Particular emphasis in these examples
is on the extension of the Materials Science Markup
Language MatML to include the semantics of one sub-area,
namely, the Heat Treating of Materials. The focus of this
paper however is not the design of one particular language
but rather the generic issues involved in extending domain-
specific markup languages.

Keywords: XML, Web Databases, Semantics,
Communication Standard, Ontology.

1. INTRODUCTION

XML and Domain-Specific Markup Languages
XML, the eXtensible Markup Language [1] is becoming a
widespread standard in web publishing. Developed by the
World Wide Web Consortium (W3C), XML is designed to
improve the functionality of the web by providing more
flexible and adaptable information interpretation. XML is
extensible in the sense that it is not a fixed format like
HTML [2] (a single predefined markup language). Rather,
XML is a meta-language that can be used for the design of
customized markup languages. There are many domain-
specific markup languages defined that follow the XML
syntax and encompass the semantics of the domain. The
inclusion of semantic tags in a document makes a document
self-describing. Thus this helps in document storage and
exchange. A domain-specific markup language becomes a

medium of communication for the potential users of the
given domain. Potential users include industries, universities,
standards bodies, publishers, research groups, domain
experts and others. It is important to facilitate storage,
retrieval and exchange of information among all these users.

MML: Medical Markup Language
A domain-specific markup language has a certain set of tags
that capture the semantics of the domain. An example is the
Medical Markup Language (MML) [3] that has been
developed in Japan in order to create a set of standards by
which medical data, within Japan and hopefully worldwide,
can be stored, accessed and exchanged. The following MML
module contents are defined at the present time: patient
information, health insurance information, diagnosis
information, lifestyle information, basic clinic information,
particular information at the time of first visit, progress
course information, surgery record information and clinical
summary information [3]. They are of use to primary care
physicians, general surgeons, their patients and related
entities. However, specific information, for example
opthalmological details such as eye-diseases, spectacle
prescriptions and blindness, cannot be stored using these
tags. Thus there is need for extension to include the
semantics of opthalmology within medicine.

Motivation for Extensions to Markup Languages
Analogous to the medical domain and opthalmology, there
are specializations in other domains. Hence, there is often
the need to provide a semantic extension to a domain-
specific markup language to allow the representation of
additional specialized information. An alternative approach
for capturing this additional semantics is to define a new
markup language for each aspect. For example, rather than
extending the general medical tag set with opthalmological
details, a new markup language could be defined for
opthalmology. However, there is typically basic information
about the patient in general medicine [3] that is cross-
referenced in opthalmology and vice versa. Also, some data
needs to be exchanged among the other specialized fields of
that domain. For instance, some opthalmological information
is of use to other medical areas such as anesthesia and
radiology. If the experts in each area of specialization define
their own independent markup language then the cross-
referencing of information common to the areas is not
facilitated. In order to solve this problem, if some common

tags are re-defined in the extension, then this is inefficient.
The common information is stored twice leading to
redundancy. It is thus more advisable to extend the existing
markup language to include additional semantics.

Extending the Materials Science Markup Language
At the Center for Heat Treating Excellence (CHTE) at
Worcester Polytechnic Institute (WPI), an extension is being
proposed to a domain-specific markup language MatML.
MatML is the Materials Science Markup Language
developed by NIST (National Institute of Standards and
Technology). It serves as the XML for materials property
data [4]. The original MatML elements are bulk details,
component details, metadata, graphs and glossary of terms.
They have their own sub-elements and attributes. These
provide for the storage of information related to the
properties of materials such as metals, ceramics and plastics.
For example, the chemical composition of a particular alloy
would be stored under component details. However the
MatML tags are insufficient to capture the semantics of
specific sub-areas in Materials Science. The proposed
extension [5] introduces into MatML the semantics of one
sub-area, namely, the Heat Treating of Materials. Heat
Treating [6] involves the controlled heating and cooling of
materials to achieve desired mechanical and thermal
properties. Quenching [6] is the rapid cooling of the material
in a liquid or gas medium. It forms an important step of the
Heat Treating operations and is the focus of the proposed
extension. There are entities in the Quenching process such
as the quenchant or cooling medium. These have properties,
e.g., viscosity (the capacity to flow) is a property of the
quenchant. The proposed extension to MatML is a
“Quenching Element” that provides the XML tags to store
these details. The schema and ontology of the actual MatML
extension are beyond the scope of this paper. These are
explained in [5].

The general issues in extending domain-specific markup
languages are discussed in this paper. Several considerations
have to be taken into account when extending markup
languages. These pertain to the steps in developing the
language, the features of the language and the use of XQuery
[7] to retrieve information stored using the markup language.
These are summarized in the following sections.

Section 2 of this paper includes the outline of the steps in
extending a markup language. The languages features are
described in Section 3. The use of XML schema constraints
in defining a markup language is discussed in Section 4. The
considerations involved in the retrieval of information using
XQuery are explained in Section 5. The conclusions are
stated in Section 6. The acknowledgments are given in
Section 7. The references are listed in Section 8.

2. STEPS IN EXTENDING A MARKUP LANGUAGE

Markup language design has several steps analogous to the
design of software systems as listed below.

1. Understanding domain semantics: It is important
to study the domain thoroughly and know the
terminology. This helps to determine the tags that
are essential to store the data in the domain. Also, it
is necessary to be well-acquainted with the existing
markup language in the domain [3, 4] to find out
where it needs extension.

2. Modeling the data: A data model is a generalized,

user-defined view of the data related to applications
that describes how the data is to be represented for
manipulation by humans or computer programs [8].
Techniques such as Entity Relationship (E-R)
diagrams [8] are useful in building data models. An
E-R diagram is a formal method for arranging data
to mimic the behavior of the real world entities
represented [8]. This helps to create a picture of the
entities in the domain, view their attributes and
understand their relationships with each other. Data
models set the stage for providing the basis for the
markup language extension. Figure 1 shows a
subset of an E-R diagram for Heat Treating [5, 6]
with reference to terms described in Section 2.

 Figure 1: Subset of E-R Diagram for Heat Treating

3. Conducting interviews: The needs of the potential

users of the markup language must be identified.
Hence it is necessary to conduct detailed interviews
with them. This helps to identify what entities and
attributes need to be included in the extension.
Potential users as stated earlier include industries,
universities, standards bodies, publishers, research
groups, domain experts and others. Often the needs
of the potential users are adequately identified by
the domain experts. Hence it is generally considered
sufficient to interview domain experts.

4. Defining the ontology: Ontology is the study of

what there is, i.e., an inventory of what exists [1, 8].

An ontological commitment is a commitment to an
existence claim [1, 8]. Ontology thus serves as the
established lingo for the members of the domain.
Hence, after understanding the domain and
conducting interviews with experts, defining the
ontology is imperative in order to proceed with the
design. Issues such as synonyms (two or more
words having the same meaning) and homographs
(one word having multiple meanings) with respect
to the domain are crucial here. For example in the
financial domain [9], the terms “salary” and
“income” mean the same and are synonyms.
However, the term “share” can have two
connotations in this domain. It could mean “assets
belonging to or due to or contributed by an
individual person or group”, or “any of the equal
portions into which the capital stock of a
corporation is divided and ownership of which is
evidenced by a stock certificate” [9]. Thus “share”
is a homograph in the financial domain. In Heat
Treating, the terms “part”, “probe” and “work-
piece” are synonyms, i.e., they refer to the same
entity [6]. Terms such as this need to be clarified
with reference to the context. This is done through
the ontology. Figure 2 is an example of the
ontology for our proposed “Quenching Element”
extension to MatML [4, 5]. It is a high-level
ontology describing the Quenching entities. This is
the outcome of discussions with domain experts.

Figure 2: High-Level Ontology for “Quenching”

5. Reiterating the ontology: Once the ontology has

been established, it is useful to have additional
discussions with domain experts to make the
required changes if any. For example, it may seem
necessary to create new entities for clarification or
remove existing entities to avoid ambiguity. The
design of the ontology is reiterated accordingly.

6. Outlining the initial schema: The schema provides

the structure, i.e., defines the grammar for the
language. Once the data model and ontology are

formally approved by a team of experts, the first
draft of the schema is outlined. This should adhere
to the syntax of the original markup language in
order to be accommodated as an extension. Features
provided by XML, such as constraints should be
exploited for a good schema design [1]. Figure 3
shows an example of an initial schema [5]. This is a
partial snapshot of the proposed XML schema for
the “Quenching Element” [5] as an extension to
MatML [4]. The arrow in this figure points to the
tag set for the “Results Sub-element” of the
“Quenching Element”.

Figure 3: Partial Snapshot of MatML Extension

7. Revising the schema based on critical reviews:
The initial schema serves as the medium of
communication between the designers and the
potential users of the markup language. This is
subject to further changes until the domain experts
are satisfied that this adequately represents their
needs. Schema revision may involve several
iterations, some of which are the outcome of
discussions with standards bodies such as NIST for
MatML [4]. Thus this stage goes beyond
communication with domain experts. In order for
the proposed extension to be accepted as a standard
for communication worldwide and be incorporated
into the existing markup language, it is important to
have it thoroughly reviewed by standards bodies.

3. LANGUAGE FEATURES

The markup language extension needs to be powerful
enough to incorporate the following features.

1. Avoid redundancy: Data stored using the original
markup language should not be duplicated in the

extension. For example, material properties such as
thermal conductivity [6] are already stored using
the original MatML [4] and should not be stored
again using the Quenching extension [5].

2. Make information non-ambiguous: This refers,

for example, to the concepts of synonyms and
homographs described earlier. The markup
language needs to be clear and precise to avoid
confusion while reading the stored information.

3. Provide easy interpretability of data: The markup

language should be such that readers are able to
understand and interpret stored information without
much reference to related documentation. For
example, in science and engineering domains [3, 6],
the details of the input conditions of a performed
experiment should be stored close to its results in
order to enhance readability.

4. Capture domain constraints in the schema:

There may be certain requirements imposed by the
domain that need to be captured in the schema
using XML constraints [1, 10]. A simple example is
the primary key constraint. A primary key serves to
uniquely identify an entity [1, 7]. In addition, XML
provides a choice constraint [10] that allows the
declaration of mutually exclusive elements. For
example, in the financial domain [9] a person could
be either an “insolvent” (bankrupt) or an “asset-
holder”, but not both. Thus these two terms are
mutually exclusive. Other XML constraints are
sequence constraints to declare a list of elements in
order, and occurrence constraints that define the
minimum and maximum occurrences of an element
[10]. The markup language extension needs to make
use of these as needed in order to adequately
represent the domain semantics. Constraints are
discussed in detail in the next section.

4. XML SCHEMA CONSTRAINTS

Constraints are mechanisms in XML that enable the storage
of information adhering to specific rules such as enforcing
order and declaring mutually exclusive elements [10]. Some
of these constraints relevant to extending domain-specific
markup languages are described below with examples from
the extension of the Materials Science Markup Language,
MatML [4] to include Heat Treating semantics [5].

1. Sequence Constraint: This constraint is used
to declare a list of elements (or sub-elements)
to occur in a particular order. Enclosing the
concerned elements within <xsd: sequence>
tags provides this constraint [10]. Figure 4
shows an example of a sequence constraint as
applicable to the MatML schema extension [5].

This indicates that the sub-element
“QuenchConditions” must appear before the
sub-element “Results”. This is required by the
domain to enhance readability. The whole
extension captures one instance of a Quenching
process. The sub-element “QuenchConditions”
denotes the input conditions of the process,
while “Results” denotes the observations. The
input conditions of the Quenching process
affect the observations. It is thus necessary for
a user to read the input conditions first in order
to understand how they have an impact on the
corresponding observations. Thus the sub-
element “QuenchConditions” is stored before
“Results”.

 Figure 4: Sequence Constraint Example

2. Disjunction Constraint: This is used to

declare mutually exclusive elements, i.e., the
elements that are such that only one of them
can exist. It is declared using <xsd:choice> in
the schema [5, 10]. For example, in Materials
Science, a part can be manufactured by either
Casting or Powder Metallurgy but not both [6].
Thus the corresponding sub-elements
“Casting” and PowderMetallurgy” are mutually
exclusive and are enclosed within <xsd:choice>
tags as shown. This is illustrated in Figure 5.

 Figure 5: Disjunction Constraint Example

3. Key Constraint: A key constraint is analogous

to a primary key in relational databases [8]. It
is used to declare an attribute to be a primary

key. This implies that the attribute must have
unique values and cannot have empty or null
values. This is indicated in the schema by
declaring the corresponding attribute as type
“xsd:ID” and declaring its use as “required”
[10]. An example of this is shown in Figure 6.
This denotes that for the element “Quenchant”
which refers to the cooling medium used in a
Quenching process, its “id” is crucial since it
serves to uniquely identify the medium [5]. In
other words, in storing the details of the
Quenching process, it is required that the id or
name of the cooling medium be stored [6]. This
is because the purpose of conducting these
experiments is to characterize the quenchants.
Thus this is enforced as a constraint.

Figure 6: Key Constraint Example

4. Occurrence Constraint: This constraint is

used to declare the minimum and maximum
permissible occurrences of an element. It is
written as “minOccurs = x” and “maxOccurs =
y” where “x” and “y” denote the minimum and
maximum occurrences respectively [10]. A
“maxOccurs” value of “unbounded” implies
that there is no limit on the number of times
this element can occur within a schema. A
“minOccurs” value greater than “0” implies
that it is necessary to include this element
within the schema at least once. Figure 7 shows
an example of this constraint [5]. With
reference to this example, it is clear that the
“Cooling Rate” element must occur at least 8
times and that there is no upper bound on the
number of times it can occur. This is because in
the domain, the value of cooling rate must be
stored at least at 8 points in order to adequately
capture the details of the Quenching process.
However cooling rate values may be recorded
at hundreds or even thousands of points and
thus there is no upper limit on the number of
values that can be stored for cooling rate [6]. In
the case of graphs, however, it is not necessary
that at least one graph be stored. It is essential
though to keep the number of graphs stored
less than three per instance of the process [5].
This is required as per the domain. Generally
the two graphs stored in Quenching are the
cooling rate curve and heat transfer coefficient

curve. In addition, a cooling curve may be
stored [6]. A cooling curve is a plot of
temperature (T) versus time (t) during
Quenching or rapid cooling. A cooling rate
curve is a plot of cooling rate (dT/dt) versus
time (t). A heat transfer coefficient curve is a
plot of heat transfer coefficient (hc) versus
temperature (T), where a heat transfer
coefficient characterizes a Quenching process.

 Figure 7: Occurrence Constraint Example

5. RETRIEVAL USING XQUERY

XQuery is a query language for XML [7] developed by the
World Wide Web Consortium (W3C). XQuery can be used
to retrieve XML data. Hence it can query information stored
using a domain-specific markup language that has been
designed with XML tags. It is thus advisable to design the
extension to the markup language to facilitate retrieval using
XQuery. A few suggestions for doing this are as follows.

1. Encourage users to store data in a case-sensitive

manner: XQuery is case-sensitive [7]. Hence it is
useful to place emphasis on case when storing the
data using the domain-specific markup language
and its extension. This helps to obtain correct
retrieval of information.

2. Use tags to enhance querying efficiency: In many

domains, it is possible to anticipate a typical user
query. For example, in Heat Treating, a user is very
likely to retrieve the details of a quenchant in terms
of its name, type and manufacturer without
requesting information about the quenchant
properties. Thus it is advisable to add a level of
abstraction around the name-related tags and the
property-related tags. This is done using additional
tags such as <NameDetails> and <PropertyDetails>
[5]. The XQuery expression to retrieve information
for a name-related query can then be constructed
such that it gets the name details in a single
traversal of the path, namely, <NameDetails>
</NameDetails>. In the absence of this abstraction,
the XQuery expression to get these details would
have contained a greater number of tags, with
additional levels of nesting. Thus introducing
abstraction by anticipating typical user queries

enhances the efficiency of querying. An example of
this abstraction is shown in Figure 8.

 Figure 8: Abstraction for Readability

6. CONCLUSIONS

Several aspects of extending domain-specific markup
languages have been discussed in this paper. These include
the motivation for extension, the steps involved in the
process of extension, the features of the language and the
retrieval considerations with a query language such as
XQuery. An extension to a domain-specific markup
language MatML has been proposed at CHTE, WPI. This
extension captures the semantics of Heat Treating, a sub-area
in Materials Science. Discussions with NIST, that developed
MatML, are ongoing to incorporate the proposed extension
as a standard. Most of the examples in this paper are from
the proposed MatML extension. A few other examples are
from the medical and financial domains. The focus of this
paper has thus been the issues in extending domain-specific
markup languages.

7. ACKNOWLEDGMENTS

The authors thank the members of the Database Systems
Research Group (DSRG) in the Department of Computer
Science at WPI for their feedback regarding this work. We
also thank the Quenching Research Team in the Department
of Materials Science for their co-operation in designing the
Heat Treating extension to MatML. The support and
encouragement of the Center for Heat Treating Excellence
(CHTE) and its member companies for our work is
gratefully acknowledged.

8. REFERENCES

[1] K. Yokota, T. Kunishima and B. Liu “Semantic
Extensions of XML for Advanced Applications”, IEEE
Australian Computer Science Communications
Proceedings of Workshop on Information Technology for
Virtual Enterprises, Vol. 23, No. 6, January 2001, pp. 49 –
57.

[2] D.J. Bouvier, “Versions and Standards of HTML”, ACM
SIGAPP Applied Computing Review, Vol. 3, No. 2,
October 1995, pp. 9 – 15.

[3] J. Guo, K. Araki, K. Tanaka, J. Sato, M. Suzuki, A.
Takada, T. Suzuki, Y. Nakashima and H. Yoshihara, “The
Latest MML (Medical Markup Language) Version 2.3 ---
XML based Standard for Medical Data Exchange/ Storage”,
Journal of Medical Systems, Vol. 27, No. 4, August 2003,
pp. 357 – 366.

[4] E.F. Begley, “MatML Version 3.0 Schema”, NIST 6939,
National Institute of Standards and Technology Report,
USA, January 2003.

[5] A. Varde, E. Rundensteiner, M. Mani, M. Maniruzzaman
and R. Sisson Jr., “Augmenting MatML with Heat Treating
Semantics”, ASM International’s Symposium on Web-
Based Materials Property Databases, October 2004, To
Appear.

[6] G. Totten, C. Bates and N. Clinton, Handbook of
Quench Technology and Quenchants, ASM International,
1993.

 [7] S. Boag, M. Fernández, D. Florescu, J. Robie and J.
Simeon, “XQuery 1.0: An XML Query Language” W3C
Working Draft, November 2003.

[8] R. Ramakrishnan and J. Gehrke, Database Management
Systems, McGraw Hill Companies. 2000.

[9] J. Seward and D. Logue, “Handbook of Modern
Finance”, WG&L Financial, 2004.

[10] S. Davidson, W. Fan, C. Hara, J. Qin, “Propagating
XML Constraints to Relations”, International Conference
on Data Engineering, March 2003, pp. 543 – 552.

