
1 

 

     

 

Early Identification of Implicit Requirements with the COTIR 

Approach using Common Sense, Ontology and Text Mining 

 

Onyeka Emebo and Aparna S. Varde  

 

MAY 2016 

 

TECHNICAL REPORT ON FULLBRIGHT SCHOLARSHIP VISIT 

Visiting Ph.D. Student: Mr. Onyeka Emebo 

Advisor: Dr. Aparna Varde  

DEPARTMENT OF COMPUTER SCIENCE 

MONTCLAIR STATE UNIVERSITY 

MONTCLAIR, NJ, USA 

 



2 

 

Abstract 

The ability of a system to meet its requirements is a strong determinant of success. Thus 

effective Software Requirements Specification (SRS) is crucial. Explicit Requirements are 

well-defined needs for a system to execute. IMplicit Requirements (IMRs) are assumed 

needs that a system is expected to fulfill though not elicited during requirements gathering. 

Studies have shown that a major factor in the failure of software systems is the presence of 

unhandled IMRs.  Since relevance of IMRs is important for efficient system functionality, 

there are methods developed to aid the identification and management of IMRs. In this 

research, we emphasize that commonsense knowledge, in the field of Knowledge 

Representation in AI, would be useful to automatically identify and manage IMRs. This 

research is aimed at identifying the sources of IMRs and also proposing an automated 

support tool for managing IMRs within an organizational context. Since this is found to be 

a present gap in practice, our work makes a contribution here. We propose a novel approach 

called COTIR (Commonsense, Ontology and Text mining for Implicit Requirements) to 

identify and manage IMRs. As the name implies, COTIR is based on an integrated 

framework of three core technologies: commonsense knowledge (CSK), text mining and 

ontology.  We claim that discovery and handling of unknown and non-elicited requirements 

would reduce risks and costs in software development.  

Keywords- Commonsense Knowledge, Implicit Requirements, Ontology, Requirements 

Engineering, Text Mining 



3 

 

1. Introduction  

The challenge of identifying and managing implicit requirements has developed to be a crucial subject 

in the field of Requirements Engineering. In [7] it was stated that “When critical knowledge, goals, 

expectations or assumptions of key stakeholders remain hidden or unshared then poor requirements and 

poor systems are a likely, and costly, consequence.” With the relevance of implicit requirements (IMRs) 

being identified and related to the efficient functionality of any developed system, there have been different 

proposals as well as practical methodologies developed to aid the identification and management of IMRs. 

Commonsense Knowledge (CSK) is an area that involves making a computer or another machine 

understand basic facts intuitively as a human would. It is an area in the realm of Knowledge Representation 

(KR) which involves paradigms for adequate depiction of knowledge in Artificial Intelligence (AI). The 

area of CSK is being researched for its use in identification and capturing of implicit requirements.  

 

Since AI is aimed at enabling machines solve problems like humans, there is a need for commonsense 

knowledge in AI systems to enhance problem-solving. This not only involves storing what most humans 

know but also the application of that knowledge [8].  In software engineering, the development of systems 

must meet the needs of the intended user.  However the very fact that CSK is common, not all knowledge 

and requirements that entail common sense, will be captured or expressed by the expected user. As Polanyi 

describes “We know more than we can tell”.  It is therefore the responsibility of the software developer to 

capture as well as manage the unexpressed requirements in the development of a suitable and satisfactory 

system. The application of commonsense knowledge can thus improve the identification as well as 

management of IMRs.  Commonsense knowledge (CSK) is defined in [3] as a collection of simple facts 

about people and everyday life, such as "Things fall down, not up", and "People eat breakfast in the 

morning". In [7], the authors describe CSK as a tremendous amount and variety of knowledge of default 



4 

 

assumptions about the world, which is shared by (possibly a group of) people and seems so fundamental 

and obvious that it usually does not explicitly appear in people's communications. Hence, CSK is mainly 

characterized by its implicitness. 

 

 From the literature, it is observed that a number of reasons have caused the emergence of implicit 

requirements some of which include: i) a software organization develops a product in a new domain and 

ii) there is a knowledge gap between developers and stakeholders due to the existence of implicit 

knowledge.   

 

Given this background, we claim that CSK will aid in the identification of IMRs useful for domain-

specific knowledge bases. This will be useful for storing domain concepts, relations and instances for 

onward use in domain related processing, knowledge reuse and discovery. Thus we build an automated 

IMR support tool based on our proposed framework for managing IMRs using common sense knowledge, 

ontology and text mining. 

 

2. Background of Relevant Technologies 

In this section, an overview of the core technologies and concepts relevant to CSK, ontology and text 

mining / natural language processing is presented. This is useful in order to understand our proposed 

framework later.  

2.1  Commonsense Knowledge 

Commonsense Knowledge (CSK) according to [17] is a tremendous amount and variety of knowledge of 

default assumptions about the world, which is shared by people and seems so obvious that it usually does 



5 

 

not explicitly appear in communications. Some characteristics of CSK as identified in the literature are as 

follows: 

 Share: A group of people possess and share CSK. 

 Fundamentality: People have a good understanding of CSK that they tend to take CSK for granted. 

 Implicitness: People more often don’t mention or document CSK explicitly since others also know 

it. 

 Large-Scale: CSK is highly diversified and in large quantity. 

 Open-Domain: CSK is broad in nature covering all aspects of our daily life rather than a specific 

domain. 

 Default: CSK are default assumptions about typical cases in everyday life, so most of them might 

not always be correct. 

 

Previous work on common sense knowledge includes the seminal projects Cyc [9] and WordNet [5], 

ConceptNet [20], Webchild [31] and the work by [14] and [24]. Cyc has compiled complex assertions such 

as every human has exactly one father and exactly one mother. WordNet has manually organized nouns 

and adjectives into lexical classes, with careful distinction between words and word senses. ConceptNet is 

probably the largest repository of common sense assertions about the world, covering relations such as 

hasProperty, usedFor, madeOf, motivatedByGoal, etc. Tandon et al. [14] automatically compiled millions 

of triples of the form <noun relation adjective> by mining n-gram corpora. Lebani & Pianta [24] proposed 

encoding additional lexical relations for commonsense knowledge into WordNet. 

WebChild contains triples that connect nouns with adjectives via fine-grained relations like hasShape, 

hasTaste, evokesEmotion, etc. This can be further used to extract common sense concepts for building 

domain specific knowledge bases [37]. Such knowledge is useful to capture subtle human reasoning.  



6 

 

 

2.2  Ontology 

According to [12], ontology is a “formal explicit specification of shared conceptualization” and involves 

“classifications of the existing concepts”. Ontologies provide a formal representation of knowledge and the 

relationships between concepts of a domain [18].  They are used in Requirements Specification to guide 

unambiguous and formal specification of requirements, particularly in expressing concepts, relations and 

business rules of domain models with varying degrees of formalization and precision [26]. Formally an 

Ontology structure O can be defined as: 

   O = {𝑪, 𝑹, 𝑨𝒐} 

 Where: 

1. C is a set whose elements are called concepts. 

2. R ⊆ 𝑪 𝑿 𝑪 is a set whose elements are called relations. For r = (c1, c2) ϵ R,               it is written 

r(c1) = c2. 

3. Ao is a set of axioms on O. 

 

In Requirements Engineering (RE), ontology can be used for: 1) describing requirements specification 

documents and 2) to formally represent requirements knowledge [10]. Moreover, ontologies can be used 

to support requirements management and traceability, which help software engineers understand the 

relations and dependencies among various software artifacts. Ontology can also be used as resources of 

domain knowledge, especially in a specific application domain. By using such ontology, several kinds of 

semantic processing can be achieved in requirements analysis [31]. In this work, ontology is considered a 

valid solution approach, because it has the potential to facilitate formalized semantic description of 

relevant domain knowledge for identification and management of IMRs.  



7 

 

 

2.3  Text Mining and Natural Language Processing 

Text mining is the process of analyzing text to extract information that is useful for particular purposes 

[32]. Natural Language Processing (NLP) generally refers to a range of theoretically motivated 

computational techniques for analyzing and representing naturally occurring texts [7]. The core purpose of 

NLP techniques is to realize human-like language processing for a range of tasks or applications [8]. The 

core NLP models used in this research are part-of-speech (POS) tagging and sentence parsers [7]. POS 

tagging involves marking up the words in a text as corresponding to a particular part of speech, based on 

both its definition, as well as its context. In addition, sentence parsers transform text into a data structure 

(called a parse tree), which provides insight into the grammatical structure and implied hierarchy of the 

input text [7]. 

 

NLP is used for our purpose in analysis of requirements statements to gain an understanding of 

similarities that exist between requirements and/or identify a potential basis for analogy. NLP in 

combination with ontology enables the extraction of useful knowledge from natural language requirements 

documents for the early identification and management of potential IMRs. 

 

 

3. Literature Survey with Related Work 

Different researchers have proposed various ways for identification of IMRs.  In [23], the authors present 

a  methodology which builds on modularizing variable feature requirements with aspects, using explicit 

join relationships for their integration semantics, modeling the commonality and the variability of the 

product line in a single aspectual model, describing details of the variability including variability constraints 



8 

 

in tabular form, and visualizing variability constraints graphically. This methodology also shows that 

previously product line requirement knowledge was identified and handled as implicit by relying on the 

expertise of involved stakeholders. However this model only emphasizes on the documentation of implicit 

knowledge and not its extraction or management.  In [22], the researchers present a descriptive view to 

provide the technical analyst with the relevance of implicit knowledge. This also aids in improving quality 

of requirements and their management. This study highlights evolving tools and techniques to improve the 

management of requirements information through automatic trace recovery. It also discovers the presence 

of tacit knowledge from tracking of presuppositions and non-provenance requirements. Further, it detects 

nocuous ambiguity in requirements documents that imply the potential for misinterpretation. This study 

however, lays primary emphasis on implicit knowledge and does not highlight other sources of implicitness 

such as ambiguity.  

 

Using requirements reuse for discovery and management of IMRs has been covered by a few studies. A 

study that draws on an analogy-making approach in managing IMRs is presented in [21]. This study 

proposes a system that uses semantic case-based reasoning for managing IMR. The model of a tool that 

facilitates the management of IMRs through analogy-based requirements reuse of previously known IMRs 

is presented. The system comprises two major components: semantic matching for requirements similarity 

and analogy-based reasoning for fine-grained cross domain reuse. This approach ensures the discovery, 

structured documentation, proper prioritization, and evolution of IMR, which is expected to improve the 

overall success of software development processes. However, as of now, this has not been adopted in a 

practical form.  The work in [25] presents a model for computing similarities between requirements 

specifications to promote their analogical reuse. Hence, requirement reuse is based on the detection on 

analogies in specifications. This model is based on the assumption of semantic modeling abstractions 



9 

 

including classification generalization and attribution. The semantics of these abstractions enable the 

employment of general criteria for detecting analogies between specifications without relying on other 

special knowledge. Different specification models are supported simultaneously.  The similarity model 

which is relatively tolerant to incompleteness of specifications improves as the semantic content is enriched 

and copes well with large scale problems. Although the identification of analogies in requirements is 

essential, this study does not discuss the subject for the management of requirements. The research in [15] 

presents the application of rules derived for the elicitation of implicitly expressed requirements in IT 

ecosystems. By introducing rules into the infrastructure of the ecosystem which is being observed for 

adherence by agents interacting in the system, deviations from these rules can be harnessed for finding 

potential candidates for new or changed requirements. These deviations are then processed using 

techniques like data mining and pattern recognition and then forwarded to requirements engineers for 

review. These implicitly expressed requirements are then leveraged to identify actual changes in the needs 

of the users of the systems, thereby enabling further advancements.  

 

A method to highlight requirements potentially based on implicit or implicit-like knowledge is proposed 

in [2]. The identification is made possible by examining the origin of each requirement, effectively showing 

the source material that contributes to it. It is demonstrated that a semantic-level comparison enabling 

technique is appropriate for this purpose. The work helps to identify the source of explicit requirements 

based on tacit-like knowledge but it does not specifically categorize tacit requirement and its management. 

Also, in MaTREx [22], a brief review and interpretation of the literature on implicit knowledge useful for 

requirement engineering is presented. The authors describe a number of techniques that offer analysts the 

means to reason the effect of implicit knowledge and improve quality of requirements and their 

management. The focus of their work is on evolving tools and techniques to improve the management of 



10 

 

requirements information through automatic trace recovery, discovering presence of tacit knowledge from 

tracking of presuppositions, non-provenance requirements etc. However, MaTREx still deals more with 

handling implicit knowledge.  

 

Previous work on common sense knowledge includes the Cyc project [9] with a goal to codify millions 

of pieces of common sense knowledge in machine readable form that enable a machine to perform human-

like reasoning on such knowledge. Another source is WordNet [5] in which nouns and adjectives are 

manually organized into lexical classes, furthermore a distinction is made between words and word senses; 

yet its limitation is that there are no semantic relationships between the nouns and adjectives with the 

exception of extremely sparse attribute relations. Another prominent collection of commonsense is 

ConceptNet [20], which consists mainly of crowd sourced information. ConceptNet is the outcome of Open 

Mind Common Sense (OMCS) [6]. OMCS has distributed this CSK gathering task across general public 

on the Web. Through the OMCS website, volunteer contributors can enter CSK in natural language or even 

evaluate CSK entered by others. Common sense knowledge is useful in harnessing human judgment and 

subtle aspects of reasoning that are very intuitive and is therefore helpful in related research such as [38] 

where CSK has been used to simulate human reasoning in mining social media data in the context of an 

application in urban planning.  

 

 

4. The Proposed COTIR Approach 

We propose an approach called COTIR: Commonsense, Ontology and Text Mining for Implcit 

Requirements. As the name implies, this integrates three core technologies: text mining, commonsense and 

ontology. The framework of the COTIR approach is presented in Figure 1. The core system functionalities 



11 

 

are depicted as rectangular boxes, while the logic, data and knowledge artifacts that enable core system 

functionalities are represented using oval boxes. A detailed description of this framework is given below. 

 

 

4.1  Data Preprocessing 

A preprocessed requirements document is the input to the framework. Preprocessing is a manual 

procedure that ensures that the requirements document is in the required format acceptable for use in the 

system. This entails extraction of boundary sentences from the requirements document and further 

representing images, figures, tables etc. in its equivalent textual format. 

 

4.2  NL Processor 

The NL processor component facilitates the processing of natural language requirements for the process 

that enables feature extractor. The core natural language processing operations implemented in the 

architecture are as follows: 

• Sentence selection: This helps in splitting the requirements statements into sentences for onward 

processing. 

• Tokenization: This further splits the requirements sentences into tokens. These tokens are usually 

words, punctuation, numbers, etc. 

• Part-of-speech (POS) tagging: This classifies the tokens (words) into parts of speech such as noun, 

verb, adjective and pronoun. 

• Entity detection: The process of dividing a text in syntactically correlated parts of words, like noun 

groups, verb groups, but does not specify their internal structure, nor their role in the main sentence. 



12 

 

• Parsing: This creates the syntax tree which represents the grammatical structure of requirements 

statements, in order to determine phrases, subjects, objects and predicates. 

The Apache OpenNLP library [27] for natural language processing has been used to implement all NLP 

operations in the COTIR approach.  

 

 

Figure 1. The Proposed COTIR Appraoch 

 

4.3  Ontology Library 

The ontology library and CSKB both make up the knowledge model of our framework. The ontology 

library serves as a storehouse for the various domain ontologies (.owl/.rdf). The domain ontologies are 

those that have been developed for specific purpose or those of business rules. The ontology library is 

implemented using Java Protégé 4.1 ontology API. 



13 

 

 

4.4 Common Sense Knowledge Base (CSKB) 

The common sense knowledge bases of WebChild and domain-specific KBs are used for enhanced 

identification of IMR for specific domain.  

 

4.5 Feature Extractor 

The feature extractor heuristic gives the underlying assumptions for identifying potential sources of IMR 

in a requirement document. Due to semantic features on which natural language text exist and by taking 

into account previous work done [11, 13, 16, 19, 28], the following characteristic features underline the 

significant aspects in a piece of text in terms of surface understanding that could possibly make a 

requirement implicit: 

• Ambiguity such as structural and lexical ambiguity. 

• Presence of vague words and phrases such as “to a great extent”. 

• Vague imprecise verbs such as “supported”, “handled”, “processed”, or “rejected” 

• Presence of weak phrases such as “normally”, “generally”. 

• Incomplete knowledge. 

 

 

5. COTIR Use and Evaluation 

The framework of our proposed COTIR approach illustrated in Figure 1 is used to develop a tool by the 

same name for the management of implicit requirements based on text mining, ontology and common 

sense knowledge. We describe the use of this COTIR tool for managing IMRs, followed by a demo 

snapshot of the tool and its evaluation.   



14 

 

 

5.1 Use of the COTIR Tool 

The process of using the IMR tool developed in this work is as follows.  

 Step 1: Preprocess the source documents to get the requirements into text file format devoid of 

graphics, images and tables. 

 Step 2: Select the existing CSKB to be used for the identification of IMRs. 

 Step 3: Import the requirement documents and domain ontology into the tool environment. 

 Step 4: Click on the “analyze” function of the tool to allow the feature extractor identify potential 

sources of IMRs in the requirement document. 

 Step 5: See the potential IMRs that are identified as well as their recommended possible explicit 

requirements. 

 Step 6: Seek the expert opinion on the IMRs; the experts could approve or disapprove the 

recommendations by adding / removing the recommendations through the tool. 

A demo snapshot of this IMR Support tool is shown in Figure 2. This is self-explanatory and can be 

used with the steps listed above. For evaluation of this IMR tool developed, we conduct an assessment of 

its performance using requirements specification. The objectives of the evaluation are as follows: (1) to 

assess the performance of the tool by human experts, (2) to determine its usefulness as a support tool for 

implicit requirements management within an organization, and (3) to identify areas of possible 

improvement in the tool.  

 



15 

 

 

 

Figure 2. Demo Snapshot of COTIR Tool 

 

5.2 Performance Evaluation Procedure 

The evaluation makes use of the following sets of requirements specification from targeted applications: 

i) Course Management System [33], ii) Embedded Monitoring Project [34], and iii) Tactical Control 

System (TCS) requirements [35].  These three requirements specification documents were code named 

R1, R2, R3 as shown in the evaluation in Table II. 

 

We use the following metrics to assess the performance of the system: Precision (P), Recall (R) and F-

measure (F). 



16 

 

 

𝑅 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
   𝑃 =  

𝑇𝑃

𝑇𝑃+𝐹𝑃
              𝐹 =  

𝑃𝑅

𝑃+𝑅
 

 

In these formulas, TP, TN, FP and FN are as follows. 

 TP (true positive): number of requirements judged by both the expert and tool as being implicit 

 TN (true negative): number of requirements judged by both the expert and tool as not being implicit 

 FP (false positive): number of requirements judged by the tool as being implicit and by the expert 

as not being implicit  

 FN (false negative): number of requirements judged by the tool as not being implicit and by the 

expert as being implicit. 

A group of subjects have been asked to assess the implicitness in the requirements documents and also 

use the tool. The subjects are a group of computing professionals, comprising software developers, 

academics and research students. They have been given the following instructions: 1) for each specified 

requirement, mark each requirement based on its implicit nature (noting that a requirement may contain 

more than one form of implicitness), and 2) For each requirement, specify the degree of criticality of each 

implicitness on a scale of 1 to 5 (1 being least critical to 5 being most critical). Table 1 shows a sample 

identification form used for this purpose. The type of implicitness includes: i) Ambiguity (A) ii) 

Incomplete Knowledge (IK) iii) Vagueness (V), and iv) Others (Miscellaneous). 

 

 

 

 

 



17 

 

Table 1: Sample Identification Form 

 

 

 

 

5.3 Summary of Evaluation Results  

Detailed evaluation has been conducted as described herewith. We summarize results of our evaluation, 

taking into account the feedback given by eight experts. Table 2 shows the recall, precision and F-scores 

computed for the tool relative to eight experts’ (E1–E8) evaluations. For a detection tool, the recall value 

is definitely more important than precision. In the ideal case, the recall should be 100%, as it would relieve 

human analysts from the clerical part of document analysis [36]. For our tool with an average recall value 

of about 73.7%, the evaluation shows that the tool is fit for practical use, as it marks six out of eight IMR 

detected by humans and is consistent with best practices in software engineering. The average precision 

is 68.22% which shows the percentage of IMR judged by experts that was also retrieved by the tool is 

good and still consistent with software engineering best practices. The average F-score which is a 

harmonic mean of Precision and Recall is 70.3%. This shows that the result of the IMR support tool 

performance evaluation is very good and the tool is usable as determined by software engineers. As for 



18 

 

the IMRs marked by human evaluators but missed by the tool, manual examination has shown that they 

represent highly implicit factors where we could not identify explicit patterns that would allow the 

automation of IMR detection. This provides the potential for further research. Our observation from the 

simulation experiments is that the performance of the tool also depends significantly on the quality of the 

domain ontology and the CSKB, and the extent to which they are appropriately harnessed. 

 

 

Table 2: Recall, Precision and F-Score metrics from 8 experts (E1-E8) 

 

 

 

6. Conclusions and Ongoing Work 

In conclusion, the ability to automatically identify and manage IMRs will mitigate many risks that can 

adversely affect system architecture design and project cost in software development. This research 

involves a systematic IMR tool support framework which uses common sense knowledge that can be 

integrated into an organizational Requirements Engineering procedure for identifying and managing IMRs 

in software development processes. This is a direct response to problems in the practice of many 

organizations that have not been addressed by existing requirements management tools.  

Requirements E1 E2 E3 E4 E5 E6 E7 E8 Average

Precision R1 75 75 75 69.23 66.67 83.33 50 91.67 73.24

R2 66.67 58.33 33.33 58.33 83.33 58.33 75 75 63.54

R3 68.75 81.25 56.25 75 43.75 86.67 50 81.25 67.87

Average 68.22

Recall R1 90 90 75 90 80 83.33 75 78.57 82.74

R2 66.67 70 66.67 58.33 76.92 70 69.23 75 69.1

R3 73.33 72.22 64.29 66.67 58.33 81.25 61.54 76.47 69.26

Average 73.7

F-Score R1 81.82 81.82 75 78.26 72.73 83.33 60 84.62 77.2

R2 66.67 63.63 44.44 58.33 80 63.63 72 75 65.46

R3 70.97 76.47 60 70.59 50 83.87 55.17 78.79 68.23

Average 70.3



19 

 

 

      Thus, this work addresses the problem of identifying IMRs in Requirements documents and its further 

management. The novelty of this research is that integrates three core technologies, namely, common 

sense knowledge, ontology and text mining to propose an automated IMR framework. Another significant 

contribution is that an IMR support tool is developed based on the proposed framework and is helpful in 

domain-specific contexts. This has been evaluated and is found to yield good results that make the tool 

usable in practice as of now, as confirmed by the software engineering users.  

 

     Ongoing work includes conducting further research to enhance the performance of tool. We also aim 

to conduct detailed comparative studies with other state-of-the-art technologies in related areas. This 

potentially includes tools such as NAI, SR-Elicitor and ARUgen that can be used in IMR detection. We 

would consider different aspects such as lexical ambiguity, structural ambiguity and vagueness, using 

suitable performance evaluation metrics for comparison.  

 

      Our current and ongoing work would useful to AI scientists and software engineers. Its targeted 

applications include providing software requirements specifications for various AI systems, where 

common sense is useful in automation. We particularly advocate the use of our proposed COTIR 

framework in the development of smart city tools in the future. This would fall under the general area of 

commonsense knowledge in smart cities. We envisage that it would have significant broader impacts.  

 

 

 

 



20 

 

Acknowledgments 

This research was mainly conducted when Mr. Onyeka Emebo was a Visting PhD Scholar supported by 

the Fullbright Scholarship Program during academic year 2015-2016. He visited Montclair State 

University, NJ, USA from Covenant University, Ota, Nigeria where he is a PhD student with advisor 

Daramola Olawande. He worked at Montclair State University with advisor Aparna Varde from the 

Department of Computer Science. Early work in this research area started when Aparna Varde was a 

Visiting Researcher at the Max Planck Institute for Informatics in Saarbruecken, Germany in August 2015. 

We would like to mention the contributions of Niket Tandon from Allen Institute for Artificial 

Intelligence, Seattle, WA. His valuable inputs during this work and the permission for reuse of a relevant 

part of the WebChild code have been very helpful in this research activity. We sincerely thank all our 

sources of support. 

 

 

References 

[1] A. Parameswaran,: Capturing Implicit Requirements (02-08-2011), http://alturl.com/emeej 

[2] A. Stone, and P. Sawyer, : Identifying tacit knowledge-based requirements. In Software, IEE 

Proceedings-, vol. 153, no. 6, pp. 211-218. IET, 2006. 

[3] Zang, Liang-Jun, Cong Cao, Ya-Nan Cao, Yu-Ming Wu, and C. A. O. Cun-Gen. "A survey of 

commonsense knowledge acquisition." Journal of Computer Science and Technology 28, no. 4 (2013): 

689-719.  

[4] Amgoud, L., Ouannani, Y., & Prade, H. Arguing by analogy—towards a formal view. A preliminary 

discussion. In Working Papers of the 1st International Workshop on Similarity and Analogy-based 

Methods in AI (SAMAI’12) (pp. 64-67). 



21 

 

[5] C.D. Fellbaum, G.A. Miller (Eds.): WordNet: An Electronic Lexical Database. MIT Press, 1998. 

[6] Singh P, Lin T, Mueller E, Lim G, Perkins T, Zhu W. Open mind common sense: Knowledge 

acquisition from the general public. In Proc. Conf. Cooperative Information Systems, Oct.30-Nov.1 

2002, pp.1223-1237. 

[7] Choi, F. Y. (2000, April). Advances in domain independent linear text segmentation. In Proceedings 

of the 1st North American chapter of the Association for Computational Linguistics conference (pp. 

26-33). Association for Computational Linguistics. 

[8] Chowdhury, G. G. (2003). Natural language processing. Annual review of information science and 

technology, 37(1), 51-89. 

[9] Douglas B. Lenat: CYC: A Large-Scale Investment in Knowledge Infrastructure. Comm. of the ACM 

38(11), pp. 32-38, 1995. 

[10] Decker, B., Ras, E., Rech, J., Klein, B., & Hoecht, C. (2005, November). Self-organized reuse of 

software engineering knowledge supported by semantic wikis. In Proceedings of the Workshop on 

Semantic Web Enabled Software Engineering (SWESE) (p. 76). 

[11] Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001, June). An automatic quality evaluation for 

natural language requirements. In Proceedings of the Seventh International Workshop on 

Requirements Engineering: Foundation for Software Quality REFSQ (Vol. 1, pp. 4-5). 

[12] Gruninger, M., & Lee, J. (2002). Ontology-applications and design. Communications of the ACM, 

45(2), 39-41. 

[13] Kamsties, E., Berry, D. M., Paech, B., Kamsties, E., Berry, D. M., & Paech, B. (2001, July). Detecting 

ambiguities in requirements documents using inspections. In Proceedings of the first workshop on 

inspection in software engineering (WISE’01) (pp. 68-80). 



22 

 

[14] N. Tandon, G. de Melo, G. Weikum: Deriving a Web-Scale Common Sense Fact Database. AAAI 

2011. 

[15] L. Singer, , O. Brill, , S. Meyer, , K. Schneider,: Utilizing Rule Deviations in IT Ecosystems for 

Implicit Requirements Elicitation. In: Proceedings of the Second International Workshop on 

Managing Requirements Knowledge (MaRK), pp. 22–26 (2009). 

[16] Lami, G., Gnesi, S., Fabbrini, F., Fusani, M., & Trentanni, G. (2004). An automatic tool for the 

analysis of natural language requirements. Informe técnico, CNR Information Science and Technology 

Institute, Pisa, Italia, Setiembre. 

[17] Lung, C. H., Urban, J. E., & Mackulak, G. T. (2007). Analogy-based domain analysis approach to 

software reuse. Requirements Engineering, 12(1), 1-22. 

[18] Maedche, A. (2012). Ontology learning for the semantic web (Vol. 665). Springer Science & Business 

Media. 

[19] Meyer, B. (1985). On formalism in specifications. IEEE software, 2(1), 6. 

[20] R. Speer, C. Havasi: Representing General Relational Knowledge in ConceptNet 5. LREC 2012.  

[21] O. Daramola, T. Moser, G. Sindre, and S. Biffl,: Managing Implicit Requirements Using Semantic 

Case-Based Reasoning Research Preview. REFSQ 2012, LNCS 7195, pp. 172–178, Springer-Verlag 

Berlin Heidelberg (2012). 

[22] R. Gacitua, B. Nuseibeh, , P. Piwek, , A.N. de Roeck, , M. Rouncefield, , P. Sawyer, , A. Willis, and 

H. Yang, “Making Tacit Requirements Explicit”, Second International Workshop on Managing 

Requirements Knowledge (MaRK'09) 2009. 

[23]  R. Stoiber., M. Glinz, : Modeling and Managing Tacit Product Line Requirements Knowledge. 

Proceedings of the Second International Workshop on Managing Requirements Knowledge 

(MaRK’09), Atlanta, USA, September 2009. 



23 

 

[24] G.E. Lebani, E. Pianta: Encoding Commonsense Lexical Knowledge into WordNet. Global WordNet 

Conference 2012. 

[25] Spanoudakis, G. (1996). Analogical reuse of requirements specifications: A computational model. 

Applied Artificial Intelligence, 10(4), 281-305. 

[26] Sugumaran, V., & Storey, V. C. (2002). Ontologies for conceptual modeling: their creation, use, and 

management. Data & knowledge engineering, 42(3), 251-271. 

[27] Welcome to Apache OpenNLP (24/10/2012) http://opennlp.apache.org/ 

[28] Wilson, W. M., Rosenberg, L. H., & Hyatt, L. E. (1997, May). Automated analysis of requirement 

specifications. In Proceedings of the 19th international conference on Software engineering (pp. 161-

171). ACM. 

[29] Yatskevich, M., & Giunchiglia, F. (2004). Element level semantic matching using WordNet. In 

Meaning Coordination and Negotiation Workshop, ISWC 

[30] Onyeka, E. (2013, May). A process framework for managing implicit requirements using analogy-

based reasoning: Doctoral consortium paper. In Research Challenges in Information Science (RCIS), 

2013 IEEE Seventh International Conference on (pp. 1-5). IEEE. 

[31] Tandon, N., de Melo, G., Suchanek, F., & Weikum, G. (2014). Webchild: Harvesting and organizing 

commonsense knowledge from the web. In Proceedings of the 7th ACM international conference on 

Web search and data mining (pp. 523-532). ACM. 

[32] Gharehchopogh, F. S., & Khalifelu, Z. A. (2011). Analysis and evaluation of unstructured data: text 

mining versus natural language processing. In Application of Information and Communication 

Technologies (AICT), 2011 5th International Conference on (pp. 1-4). IEEE. 

[33] Abma, B. J. M. "Evaluation of requirements management tools with support for traceability-based 

change impact analysis." Master's thesis, University of Twente, Enschede (2009). 



24 

 

[34] Software Requirements Specification – EMMON (12-07-2010) 

http://www.artemis-emmon.eu/deliverables/FP7-JU-EMMON-2010-DL-WP7-003-D7.1-software-

requirements-specification-document.pdf. 

[35] TCS Software Requirements Specification (02-12-1999) 

https://fas.org/irp/program/collect/docs/sss_20.pdf. 

[36] Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambiguity identification 

and measurement in natural language requirements specifications. Requir. Eng. 13 (2008) 207–239 

[37] Varde, A., Tandon, N., Nag Chowdhury, S., Weikum, G.: Common Sense Knowledge in Domain 

Specific Knowledge Bases, Technical Report, Max Planck Institute for Informatics, Saarbruecken, 

Germany, August 2015.  

[38] Du, X., Emebo, O., Varde, A., Tandon, N., Nag Chowdhury, S., Weikum, G.: Air Quality Assessment 

from Social Media and Structured Data: Pollutants and Health Impacts in Urban Planning, IEEE 

International Conference on Data Engineering, ICDE, HDMM Workshop, May 2016, 

Helsinki, Finland. 

 


