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Abstract. Scientific experimental results are often depicted as plots of
functions to aid their visual analysis and comparison. In computationally
comparing these plots using techniques such as similarity search and clus-
tering, the notion of similarity is typically distance. However, it is seldom
known which distance metric(s) best preserve(s) semantics in the respec-
tive domain. It is thus desirable to learn such domain-specific distance
metrics for the comparison of plots. This paper describes a technique
called LearnMet proposed to learn such metrics. The input to LearnMet
is a training set with actual clusters of plots. These are iteratively com-
pared with clusters over the same plots predicted using an arbitrary but
fixed clustering algorithm. Using a guessed initial metric for clustering,
adjustments are made to the metric in each epoch based on the error
between the predicted and actual clusters until the error is minimal or
below a given threshold. The metric giving the lowest error is output as
the learned metric. The proposed LearnMet technique and its enhance-
ments are discussed in detail in this paper. The primary application of
LearnMet is clustering plots in the Heat Treating domain. Hence it is
rigorously evaluated using Heat Treating data. Given distinct test sets
for evaluation, clusters of plots predicted using the learned metrics are
compared with given actual clusters over the same plots. The extent to
which the predicted and actual clusters match each other denotes the
accuracy of the learned metrics.
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1 Introduction

Motivation. In domains such as Materials Science the results of experiments
are often depicted as graphical plots of scientific functions. This facilitates their
visual analysis by the human eye as well as by computational techniques. In
our earlier work [12, 13], we also refer to such plots as graphs. Computational
analysis of these graphical plots involves several processes such as comparison
between plots [9], similarity search [7] and clustering [12]. The inferences
drawn from such analysis in a given domain are used in many applications such
as process parameter selection [9] and computational estimation [12]. Hence
the analysis should be such that it closely reflects the notion of correctness in
the given domain so that the inferences are precise. In order to achieve this it
is important to capture the semantics in the scientific plots. Processes such as
clustering involve a notion of similarity for comparison which typically refers to
the distance between the plots [4]. Although several distance metrics exist in
the literature [4, 7, 11], it is often not known a priori which of these metrics
best preserves domain semantics. Often none of the metrics in the literature
may alone be suitable. We may need to work with a specially-tuned metric
that is a combination of several metrics. Hence there is a need for distance
metric learning in such plots. State-of-the-art machine learning techniques such
as neural networks [1], genetic algorithms [3], and others [5, 16] are found
to be either inappropriate or inaccurate in this context [14]. This inspires the
development of a technique to learn semantics-preserving metrics for plots.

Proposed Approach. We propose a technique called LearnMet [13] to
learn domain-specific distance metrics for plots of scientific functions. The input
to LearnMet is a training set with actual clusters of such plots provided by
domain experts. The steps of LearnMet are: (1) guess an initial metric D as
a weighted sum of metrics applicable to the domain; (2) use that metric D
for clustering with an arbitrary but fixed clustering algorithm to get predicted
clusters; (3) evaluate clustering accuracy by comparing predicted and actual
clusters to obtain the error between them; (4) adjust the metric D based on the
error, and re-execute clustering and evaluation until error is minimal or below a
threshold; (5) output the metric D giving lowest error as the learned metric.

Experimental Evaluation. LearnMet is thoroughly evaluated in the do-
main of Heat Treating of Materials [2] that motivated this research. Its main
application is to learn distance metrics for clustering plots called heat transfer
curves. Experts provide actual clusters over distinct test sets of heat transfer
curves not used for training. These are compared with clusters predicted by any
fixed clustering algorithm over the same curves using the learned metrics. The
extent to which the predicted and actual clusters match each other measures the
clustering accuracy of the respective metric. Comparative evaluation is also done
using the default Euclidean distance as the notion of similarity in clustering.

Approach Enhancement. Evaluation of the basic LearnMet approach is
found to yield metrics with higher accuracy in clustering compared to the default
Euclidean distance [13]. However, there is scope for further enhancement in
terms of the the clustering accuracy of the learned metrics. Also important are
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the efficiency of the learning process, and the simplicity of the learned metrics
which have not been addressed in the basic approach. Learning efficiency refers
mainly to training time. The simplicity of the hypothesis is measured by the
number and type of individual metrics in the learned metric D. In this paper we
propose three approaches for enhancement. The first one focuses on methods to
avoid overfitting for learning a more generic hypothesis. This aims to improve
clustering accuracy. The second one deals with enhancing both accuracy and
efficiency by exploiting fundamental domain knowledge in initial metric selection
and weight adjustment. This is likely to provide faster convergence and learn
metrics closer to the notion of correctness in the domain. The third approach
involves using Occam’s Razor [15] to learn metrics preferring simpler to complex
ones taking into account the goal of accuracy.

Paper Organization. Section 2 of this paper gives a background on graph-
ical plots and distance metrics. Section 3 presents the details of LearnMet. Sec-
tion 4 explains its refinements. Section 5 summarizes experimental evaluation.
Section 6 outlines the related work. Section 7 gives the conclusions.

2 Background

2.1 Graphical Plots in Heat Treating

Figure 1 shows a plot in the Heat Treating domain called a heat transfer curve
that depicts the reaction of a part to a rapid cooling process called quenching
[2]. The curve is a plot of heat transfer coefficients h versus temperature T of a
material during quenching. Heat transfer coefficients represent the heat extrac-
tion capacity in the process. Certain regions on this curve correspond to physical
processes in the domain. The Boiling Point BP marks the temperature of the
part being reduced to the boiling point of the cooling medium. The Leidenfrost
Point LF denotes the breaking of a vapor blanket resulting in rapid cooling.
The maximum heat transfer MAX achieved in a quenching process serves to
separate the curves, and hence the corresponding experiments, statistically into
different categories. The mean heat transfer achieved in the process is also a
statistical distinguishing factor. Other regions on the curve are MIN , the point
of minimum heat transfer, and SC, the point where slow cooling ends [2].

2.2 Distance Metrics for Plots

We describe the distance metrics relevant to our problem with respect to n-
dimensional objects A(A1, A2 . . . An) and B(B1, B2 . . . Bn).

Position-based Distances. They refer to distances based on the absolute
position of the objects [4]. In the context of the given problem, the position-
based distance is Euclidean Distance, i.e., the as-the-crow-flies distance between
objects calculated as DEuclidean(A, B) =

√

Σn
i (Ai − Bi)2

Statistical Distances. These refer to distances based on statistical obser-
vations in the objects [10]. Examples of statistical distances are the Mean Dis-

tance, i.e., distance between mean values of the objects, given as DMean(A, B) =
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Fig. 1. Heat Transfer Curve

|Mean(A)−Mean(B)|, the Maximum Distance, i.e., distance between maximum
values of the objects, given as DMax(A, B) = |Max(A)−Max(B)| and the Min-

imum Distance, i.e., the distance between minimum values of the objects, given
as DMin(A, B) = |Min(A) − Min(B)|.

Critical Distances. In addition to the distance metrics reviewed above, we
introduce the concept of critical distances for graphical plots [13].

Critical Distance Metric: Given two graphical plots A and B, a critical dis-
tance metric represents the distance between critical regions of A and B where a
critical region depicts the occurrence of a significant physical phenomenon. Each
such metric is calculated in a domain-specific manner.

Examples of critical distances are given here with reference to Figure 1. The
Leidenfrost distance is distance between the Leidenfrost points [2] on two heat
transfer curves, given as DLF (A, B) =

√

(ATLF − BTLF )2 + (AhLF − BhLF )2

where TLF is the temperature at Leidenfrost Point and hLF is the heat transfer
coefficient at that point. Another critical distance is the Boiling Point distance

given as DBP (A, B) =
√

(ATBP − BTBP )2 + (AhBP − BhBP )2 where TBP and
hBP are the temperature and heat transfer coefficient at that point respectively.
Likewise, given that TSC and hSC are temperature and heat transfer coefficient
at Slow Cooling respectively, the Slow Cooling distance is given as DSC(A, B) =
√

(ATSC − BTSC)2 + (AhSC − BhSC)2.

3 Proposed Approach: LearnMet

3.1 Overview of LearnMet

In order to describe the learning strategy, a LearnMet metric is first defined.
A LearnMet Distance Metric D is a weighted sum of components, where

each component can be a position-based, a statistical, or a critical distance. The
weight of each component is a numerical value giving its relative importance in
the domain. Thus a LearnMet metric is of the form D = Σm

i=1wiDci where each
Dci is a component, wi is its weight, and m is the number of components.

It is important for D to be a metric for reasons such as those listed below.
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– Clustering algorithms requiring the notion of similarity to be a distance
metric can be used [6].

– Indexing structures such as B+ trees [4] can be applied.
– Pruning in similarity search can be performed using triangle inequality [15].

Sufficient conditions for D to be a metric are stated in Theorem 1.
Theorem 1: If each Dci is a distance metric and each wi >= 0 then D =

Σm
i=1wiDci is a distance metric, i.e., it satisfies metric properties.

For convenience the distance metric properties are listed here as follows [4].

1. Distance is non-negative.
2. Distance of an object to itself is zero.
3. Distance is commutative, thus Distance(P, Q) = Distance(Q, P ) for any

objects P, Q in n-dimensional space.
4. Distance satisfies triangle inequality, i.e., if 3 objects P, Q and R form a

triangle in n-dimensional space, then sum of any two sides is greater than
the third, e.g., Distance(P, Q) + Distance(Q, R) > Distance(P, R).

The proof of this theorem is straightforward and can be found in [14]. In
our targeted applications, conditions in Theorem 1 are satisfied. Since the plots
have interval-scaled variables, distances applicable to them are metrics [4], this
is sufficient to say that each is component a metric. Also, we consider only non-
negative weights since negative weights do not have a semantic interepretation
in our targeted applications [14].

The LearnMet technique is summarized in the flowhart Figure 2.

Fig. 2. Flowchart on LearnMet

3.2 Details of Technique

1. Initial Metric Step. Experts are asked to identify components (i.e., dis-
tance metrics) applicable to the plots to serve as building blocks for learning
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a new metric. If experts have a subjective notion about relative importance of
components, this is used to assign initial weights as follows [13].

Initial Weight Heuristic: Assign initial weights to components in the Learn-
Met metric based on relative importance of components in the domain.

If this relative importance is unknown then random weights are assigned to all
components. A special case of this is assigning equal weights to all components.
Weights are typically assigned on a scale of 0 to 10.

2. Clustering Step. Actual clusters over a training set of plots are provided
by domain experts. An arbitrary but fixed clustering algorithm, e.g., k-means
[8] is selected. Using D = Σm

i=1wiDci as the notion of distance, k clusters are
constructed using the selected algorithm, where k is the number of actual clusters
in the training set. The clusters obtained from the algorithm using the metric
D are called the predicted clusters.

3. Cluster Evaluation Step. Cluster evaluation involves comparing the pre-
dicted and actual clusters over the training set with each other. An example of
predicted and actual clusters of plots is shown in Figure 3.

Fig. 3. Predicted and Actual Clusters

Ideally, predicted and actual clusters should match perfectly. Any difference
between them is considered an error. To compute error, we consider pairs of
graphical plots and introduce a notion of correctness [14].

Notion of Correctness: Given a pair of graphical plots A and B, we say that:

– (A, B) is a True Positive (TP ) pair if A and B are in the same predicted
cluster and in the same actual cluster.
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– (A, B) is a True Negative (TN) pair if A and B are in different predicted
clusters and in different actual clusters.

– (A, B) is a False Positive (FP ) pair if A and B are in the same predicted
cluster but in different actual clusters.

– (A, B) is a False Negative (FN) pair if A and B are in different predicted
clusters but in the same actual cluster.

Figure 3 includes examples of each of these kinds of pairs. The pair (g1, g2)
is a true positive; (g2, g3) is a true negative pair; (g3, g4) is a false positive pair;
and (g4, g6) is a false negative pair. The error measure of interest to us is failure
rate which is explained below [15].

Success and Failure Rates: Let TP , TN , FP and FN denote the number of
true positive, true negative, false positive and false negative pairs respectively.
Also let SR be the Success Rate and FR = (1 − SR) be the Failure Rate.

Then, SR = TP+TN
TP+TN+FP+FN and thus, FR = FP+FN

TP+TN+FP+FN
In our context, false positives and false negatives are equally undesirable.

Hence, our definition of failure rate weighs them equally. Given a number G of
graphical plots in the training set, the total number of pairs of plots P is given
by G choose 2, i.e., CG

2 = P = G!
2!(G−2)! [10]. Thus, for 25 plots there are 300

pairs, for 50 graphs, 1225 pairs, etc. We define an epoch in LearnMet as one run
of all its steps, i.e., a complete training cycle.

Overfitting: To avoid overfitting in LearnMet, we use an approach analogous
to incremental gradient descent [1]. Instead of using all pairs of plots for eval-
uation, a subset of pairs is used called ppe or pairs per epoch. In each epoch,
a randomly selected subset of pairs is used for evaluation and weight adjust-
ment. Thus there is enough randomization in every epoch. If ppe = 25, then
we have a total of C300

2 = 300!
25!275! distinct pairs for learning [10]. Thus in each

epoch 25 randomly selected pairs can be used. This still gives a large number of
epochs with distinct pairs for learning. This incremental approach reduces the
time complexity of the algorithm and helps avoid overfitting. Determining good
ppe values is an enhancement issue and will be discussed in Section 4. Also in
LearnMet, the random seed is altered in the clustering algorithm in different
epochs as an additional method to avoid overfitting.

Error Threshold: Ideally, the error i.e., in an epoch should be zero. However,
in practice a domain-specific error threshold t is used, where t is the extent of
error allowed per epoch in the domain, error being measured by failure rate.

If the error is below threshold then the final metric is output as explained in
step 5. However, if the error is not below threshold in a given epoch, then the
metric is adjusted based on this error.

4. Weight Adjustment Step. In order to give the details of weight adjustment
the following terminology on distances is explained since the cause of error can
be traced to certain distances between pairs of plots.

Distance between a Pair of Graphical Plots: The distance D(ga, gb) between
a pair of plots ga and gb is the weighted sum of components in the plots using
metric D. Thus, D(ga, gb) = w1Dc1(ga, gb) + . . . + wmDcm(ga, gb).
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(DFN) and (DFP ) Distances: The distances DFN and DFP are defined
as the average distance using the metric D of the false negative pairs and of the
false positive pairs respectively. These are calculated as:

DFN = (1/FN)ΣFN
j=1D(ga, gb) where (ga, gb) denotes each FN pair.

DFP = (1/FP )ΣFP
j=1D(ga, gb) where (ga, gb) denotes each FP pair.

Given this notion of distances refer to the example in Figure 4. Consider
first the false negative pairs, e.g., (g4, g5) and (g4, g6). These pairs are in the
same actual cluster. However they are predicted to be in different clusters. Since
predicted clusters are obtained with the metric D the cause of the error is that
the (average) distance DFN between these pairs with the given metric is greater
than it should be. Hence these pairs are incorrectly pushed far apart to be in
different predicted clusters although they in reality they should have been closely
placed in the same actual cluster. Conversely, for false positive pairs in different
actual but same predicted clusters, e.g., (g3, g4) in Figure 4, the cause of the
error is that the (average) distance DFP is smaller than it should be. These
distances are now used in altering weights as follows.

Fig. 4. Distances used in Weight Adjustment

Consider the error due to the false negative pairs. To reduce this error it is
desirable to decrease the distance DFN . In order to reduce DFN the weights
of one or more components in the metric used to calculate the distance in the
present epoch is decreased. For this we propose the FN Heuristic.

FN Heuristic: Decrease the weights of components in metric D in proportion
to their contributions to distance DFN . That is, for each component:

New weight w
′

i = wi −
DFNci

DFN
where DFNci = DFN for component Dci alone
Conversely, to reduce error due to the FP pairs we increase DFP by increas-

ing the weights of one or more components in metric D using the FP Heuristic.
FP Heuristic: Increase the weights of components in metric D in proportion

to their contributions to distance DFP . That is, for each component:
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New weight w
′′

i = wi + DFPci

DFP
where DFPci = DFP for component Dci alone
Combining these two we get the weight adjustment heuristic below.
Weight Adjustment Heuristic: For each component Dci, its new weight is

w
′′′

i = max(0, wi −
DFNci

DFN + DFPci

DFP ).

Thus, the new metric is: D
′′′

= Σm
i=1w

′′′

i Dci

The new metric obtained after weight adjustments is likely to minimize error
due to both false positive and false negative pairs. If the weight of a component
becomes negative it is converted to zero as we consider only non-negative weights
[14]. Clustering in the next epoch is done with the new metric.

5. Final Metric Step. If the learning terminates because the error is below
the threshold then the metric in the last epoch is considered accurate and is
output as the final metric. However if termination occurs because the maximum
number of epochs is reached then the most reasonable metric to be output is the
one corresponding to the epoch with the minimum error among all epochs.

Convergence: LearnMet is not guaranteed to converge or yield an optimal
distance metric. However, thorough experimental evaluation in our application
domain has shown convergence to errors below the required threshold [14]. Proof
of convergence in theory will be addressed as future work.

3.3 Algorithm for LearnMet

Given the overview and detailed discussion on the LearnMet technique, we now
present the LearnMet algorithm based on each of the steps discussed.

The LearnMet Algorithm

Given: Training set with k actual clusters over G graphical plots, error threshold t, domain
expert input on distances applicable to plots

1. Initial Metric Step
(a) For each distance on plots assign a component Dci to D
(b) If relative importance of each Dci available
(c) Then use Initial Weight Heuristic to assign each wi

(d) Else assign a random wi to each Dci

(e) Thus set metric D = Σm
i=1wiDci

2. Clustering Step
(a) Select arbitrary but fixed clustering algorithm
(b) Set number of clusters = k (constant)
(c) Cluster plots using distance D = Σm

i=1wiDci

3. Cluster Evaluation Step
(a) Set ppe = Number of pairs per epoch
(b) Select randomly ppe pairs of graphical plots
(c) Calculate TP, TN, FP, FN for ppe pairs
(d) Calculate failure rate FR = (FP + FN)/(TP + TN + FP + FN)
(e) If (FR < t) or (epoch == maxEpochs)
(f) Then go to 5. Final Metric Step

4. Weight Adjustment Step
(a) Calculate distances DFN , DFP

(b) Apply Weight Adjustment Heuristic to get new metric D“‘

(c) Go to 2(d) in Clustering Step using D = D“‘ as distance
5. Final Metric Step

(a) If (FR < t) then return metric D
(b) Else find epoch with minimum failure rate FR
(c) Return corresponding metric D
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4 Enhancement to LearnMet

The basic LearnMet approach yields metrics that provide higher clustering accu-
racy than the default Euclidean distance [13]. This is elaborated in the section
on experimental evaluation. However, there is scope for further enhancement in
our targeted domains. The three primary goals in enhancement are:

– Quality: This goal refers to improving the accuracy of the distance metrics
in processes such as clustering.

– Efficiency: This involves reducing the number of epochs needed for conver-
gence and the total training time.

– Simplicity: This deals with learning simple metrics that meet the require-
ments in the domain. Simplicity is mainly concerned with the number of
components in the distance metric.

The following approaches are used to meet one or more of the above goals:

1. Selecting Pairs Per Epoch: This refers to selecting a suitable number of pairs
of graphical plots in each epoch, denoted as pairs per epoch or ppe. This is
to avoid overfitting to achieve the quality goal. It also impacts efficiency due
to execution time with the given number of pairs in each epoch.

2. Using Domain Knowledge in Weight Selection and Adjustment: This involves
considering semantics of distance components in adjusting weights. It also
involves intelligently guessing the initial weights to enhance the learning.
This aims to learn metrics closer to the notion of correctness in the domain
and to converge faster. Thus it addresses the goals of quality and efficiency.

3. Learning Simple Metrics: In this approach we apply the Occam’s Razor
principle [15] in preferring simpler theories over complex ones. This involves
first considering metrics with a single component, then with two components,
then three and so forth until convergence occurs or the training times out.

4.1 Selecting Pairs Per Epoch

The basic LearnMet approach uses a default value of pairs per epoch, ppe = G
where G is the number of graphical plots in the training set [13]. The enhanced
approach involves selecting a suitable number of pairs per epoch such that there
are sufficient pairs in every epoch and yet enough randomization. Given that
the number of graphical plots in the training set is G, the total number of pairs
available for learning is P = G!

2!(G−2)! [10]. For example, if G = 25, P = 300.

In every epoch of LearnMet, a random combination of ppe pairs is selected for
evaluation and weight adjustment. The total number of distinct combinations of
ppe pairs that can be made from P pairs is given as R = P !

ppe!(P−ppe)! where R

denotes the extent of randomization. For example, if G = 25 and ppe = 15, the
total number of combinations available for learning (extent of randomization) is
R = 7.68× 1024. We now consider different ranges for ppe.

Low Range of ppe: In order to learn a hypothesis that does not overfit the
training data, it is desirable to have more randomization. This would suggest
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using low ppe values, e.g., ppe <= G. These are likely to give a wider range of
distinct combinations. However, consider for example an extreme of ppe = 1. If
one distinct pair is used in each epoch for evaluation and weight adjustment,
then it could happen that convergence to error below threshold occurs over the
first few epochs. However the learned metric fits only the few pairs that got
considered in these epochs. The resulting hypothesis, namely, the learned metric
would possibly not give high accuracy over unseen test data, since it is not
generic. Likewise, ppe values higher than 1 but still in the low range are likely
to yield a similar, though perhaps less serious problem of overfitting.

High Range of ppe: Consider the argument that a hypothesis is likely to be
stronger if it is learned over a larger volume of data. This would suggest the other
extreme, i.e., using ppe values closer to P = G!

2!(G−2)! Mathematically this would

yield a fairly large number of distinct combinations. In fact the number of distinct
combinations for ppe = x and ppe = P − x are the same [10]. For example, if
G = 25 and P = 300, the number of distinct combinations for ppe = 15 are
the same as for ppe = 285. For ppe = 15, R = 300!

15!(300−15)! , and for ppe = 285,

R = 300!
285!(300−285)! . Both give R = 300!

15!285! = 7.68 × 1024. However, there is a

major difference between the two. For ppe = 285, there is a danger of the same
pairs getting selected in each epoch, with only a few pairs distinct, e.g., if pairs
2 through 286 are selected in one epoch, and pairs 3 to 287 in another, only 2
pairs are distinct in these epochs. Thus there is not really enough randomization.
Moreover, with high ppe values, there is also a huge overhead in each epoch. An
extreme of this is ppe = P , i.e., all pairs per epoch.

Middle Range of ppe: Let us now consider using ppe values close to P/2,
i.e., half the total number of pairs in each epoch. This mathematically gives
a large extent of randomization R = P !

(P/2)!(P/2)! . For example, for P = 300,

ppe = P/2 = 150 and R = 300!
150!150! . Moreover, this is likely to yield a genuinely

distinct combinations of pairs in every epoch, since it does not consider almost
all P pairs together. In addition, this gives a fairly large number of pairs in every
epoch. Thus the learned metrics are likely to be more generic. Also, overhead in
each epoch is not as high as with ppe values close to P . Thus it is good to select
middle range ppe values.

4.2 Using Domain Knowledge in Weight Selection and Adjustment

The basic LearnMet approach [13] proposes a weight adjustment heuristic that
considers all individual metrics at par when assigning the blame for the error.
This heuristic is based solely on the distance contribution of each component to
the average false positive and false negative distances DFP and DFN respec-
tively. However, a contribution of DFNci/DFN = 0.4 for Euclidean distance
may be more or less crucial than the same for Leidenfrost distance. Likewise, it
is desirable to incorporate semantics of components and scale the weight adjust-
ment. Based on this, we define term scaling factor.
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A Scaling Factor for a distance component in the LearnMet metric is a
number that gives the extent to which the weight of that component should be
altered based on its semantics.

Scaling factors are calculated as follows. Consider a single component in
the LearnMet metric used as the notion of distance in clustering. The greater
the accuracy of the clusters given by that component alone, the greater is the
significance of the component in the domain. This is because clustering accuracy
in LearnMet is the extent to which the predicted clusters over a given data set
match the notion of correctness depicted by actual clusters. Thus if a component
alone used as the distance metric yields high clustering accuracy, it implies that
this component by itself is a significant feature in preserving domain semantics.
Now, if a component is more significant, then it is advisable to alter its weight to
a greater extent in making adjustments. This is in line with the logic of exploiting
the good and making it better to get the best results. We propose the following
heuristic for scaling factors.

Scaling Factor Heuristic: Assign a scaling factor to each component in the
LearnMet metric directly proportional to the clustering accuracy with that com-
ponent alone as the notion of distance.

With this discussion, we give the algorithm for computing scaling factors.

Scaling Factor Algorithm

Given: Training sets with actual clusters of plots, Distance components for plots

1. For each component Dci in LearnMet metric do
(a) Repeat z times (where z = a × b, such that a = number of training sets and b = number

of clustering seeds)
i. Do clustering with distance metric D = Dci

ii. Calculate TP, TN, FP, FN for all P pairs
iii. Accuracy of component Dci = success rate SRi = T P+TN

T P+TN+FP+FN

(b) Scaling factor of component Dci = sfi = (1/z)Σz
j=1SRi

2. Return scaling factor sfi for each component Dci

With the use of scaling factors, the Weight Adjustment Heuristic gets mod-
ified. We thus propose the Scaled Weight Adjustment Heuristic as follows.

Scaled Weight Adjustment Heuristic: For each component Dci, its new weight
is: w

′′′

i = max(0, wi − sfi ×
DFNci

DFN + sfi ×
DFPci

DFP ).

Thus, the new metric is: D
′′′

= Σm
i=1w

′′′

i Dci.

Initial Weight Selection. Scaling factors are likely to boost the learning if
weights in the initial metric are assigned according to the initial weight heuristic,
i.e., based on the relative importance of each component. Then though learning
the weight of a component with a low scaling factor may take longer, this is
counterbalanced by fast convergence of components with high scaling factors.
Since components with high scaling factors are more important, overall conver-
gence to the notion of correctness is quicker. Also quality of the learned metric
is likely to be better. In the basic LearnMet approach [13], relative importance
of components is determined by subjective notions of the domain experts and
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initial weights are assigned accordingly. However, if this relative importance is
not known in advance then weights are assigned randomly, or equal weights are
assigned to all components. In the enhanced approach, we assign initial weights
proportional to the accuracy of each individual component in clustering which
is effectively proportional to its relative importance [14].

4.3 Learning Simple Metrics

The goal of simplicity refers to learning a simple metric that meets the require-
ments in the given problem. The main requirement in our problem is quality.
Simplicity is measured in terms of:

– Number of components: The fewer the number of components used in the
metric, the simpler is the metric.

– Amount of data for each component: The less the amount of data needed
to represent each component, the simpler is that component and hence the
corresponding metric.

The reasons for learning a simple metric are as follows.

1. Simple metrics are more efficient in terms of time complexity when used as
the notion of distance in processes such as clustering.

2. Less storage space is required for simple metrics.
3. Experts cannot always identify components applicable to the plots. A brute

force combination of components is not practical.

Principle in Learning. The main principle applied here is that of Occam’s
Razor which states that simpler theories are preferred over complex ones [15].
In our case, the theory refers to the learned metric. However, in our problem
simple metrics are considered better than complex metrics only if both achieve
the same quality. Considering the two criteria of quality and simplicity, the pro-
cess of learning, analagous to greedy search [15] is outlined below.

Process of Learning Simple Metrics

Given: Training set with actual clusters of plots, error threshold t

1. Identify all m components Dci : i = 1 to m in the domain
2. For each Dci

(a) Do clustering in LearnMet with D = Dci, get FR and SR (failure and success rates)
(b) If (FR <= t) then set final metric = D and go to step 5

3. If (FR > t) then m
′

= 2; Repeat

(a) Execute LearnMet with D = Σm
′

i=1wiDci where Dc1 . . . Dc
′

m are the m
′

components with
highest clustering accuracies

(b) If (FR <= t) then set final metric = D and go to step 5

(c) Set m
′

= m
′

+ 1 and go to step 3(a)

4. Until m
′

= m
5. Output final metric
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5 Experimental Evaluation

LearnMet has been rigorously evaluated in the Heat Treating domain [2]. The
source code used for experimentation is our LearnMet software tool [14] devel-
oped in Java, implementing k-means [8] for clustering. The platform used for
running the experiments is a Mobile Intel Celeron (R) PC with a CPU Speed of
2 GHz, 192 MB of RAM and the Microsoft Windows XP Professional Version
2002 operating system. A summary of our evaluation is presented here.

5.1 Evaluation of Basic LearnMet Approach

Effect of Initial Metrics. These experiments are conducted to observe the
impact of the initial metrics on the learning. The experiments shown below are
for G = 25 graphical plots giving 300 pairs. The number of clusters is k = 5
since this is the equal to number of actual clusters given by experts. The test set
consists of 40 distinct graphical plots placed in k = 7 clusters giving 780 pairs.
Experts give an error threshold of 10%, i.e., 0.1 as acceptable in the domain for
evaluation over test sets. As a default, we use the same threshold for learning
over the training set. The maximum number of epochs is maintained at a con-
stant value of 1000. Initial components in the metric are given by experts. Two
distinct assignments of initial weights are given by two different experts. The
corresponding two metrics are denoted by DE1 and DE2 respectively. A third
initial metric EQU is obtained by assigning equal weights to all components.
Several experiments are run by assigning random weights to components in the
initial metric [14]. We show two experiments with randomly generated metrics
called RND1 and RND2. The initial metrics are shown in Figure 5. Each exper-
iment is the average of 10 experiments conducted by altering parameters such
as clustering seeds. The learned metrics are shown in Figure 6.

Fig. 5. Initial Metrics in Experiments Fig. 6. Learned Metrics in Experiments

The clustering accuracy of each metric over the test set is shown in Figure
7. Clustering accuracy as stated earlier is measured by comparing clusters ob-
tained from learned metrics with actual clusters over the test set. Comparative
evaluation is also performed using Euclidean distance (shown as ED). Learning
efficiency, i.e, number of epochs for convergence, is shown in Figure 8.

Discussion on experiments with different initial metrics:
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Fig. 7. Clustering Accuracy with Metrics Fig. 8. Learning Efficiency with Metrics

1. Convergence to error below threshold occurs in all the experiments.
2. The experiments with initial metrics provided by experts converge faster.
3. All the experiments converge to approximately the same learned metrics.
4. Accuracies of the learned metrics are higher than those of Euclidean distance.

Effect of the Error Threshold. The parameter of interest in these experi-
ments is the value of the threshold used for error. In the experiments shown here
the training set is of size G = 15 with number of clusters k = 3. The test set is
of size G = 25 with k = 5. Thresholds are altered from 0.1 to 0.01. The initial
metrics in these experiments are the same as in Figure 5. Each experiment here
shows the average of 10 experiments performed by altering clustering seeds [14].
Figures 9 and 10 show the clustering accuracy over the test set and the learning
efficiency over the training set respectively.

Fig. 9. Accuracy with Thresholds Fig. 10. Efficiency with Thresholds

Discussion on the impact of varying error thresholds:

1. Clustering with the learned metrics gives higher accuracy than clustering
with Euclidean distance (as observed from earlier experiments).

2. As the error threshold is reduced, the number of epochs to converge tends to
increase. Thus the learning efficiency reduces with a decrease in threshold.

3. With reduced thresholds however, the clustering accuracy over the test set
is higher. As the threshold is reduced from 0.1 to 0.01, accuracy increases
from approximately 81% to 83%.
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5.2 Evaluation of Enhanced LearnMet Approach

Effect of the Number of Pairs Per Epoch. The following experiments are
conducted to observe the impact of the number of pairs per epoch ppe on the
learning. The parameters varied in these experiments are the ppe values and
seeds in clustering. These experiments are a summary of approximately 200
experiments conducted on ppe values [14] with different training and test set
sizes. The training set shown here has G = 40 graphical plots with number
of clusters k = 7. The test set has G = 25 with k = 5. The initial metric is
D = 5DEuclidean + 4DMean + 3DMax + 2DLF + 1DBP . The error threshold is
maintained at 1%, i.e., 0.01 (based on results of experiments with thresholds).
Observations are summarized in terms of clustering accuracy over the test set
and learning efficiency over the training set in Figures 11 and 12 respectively. In
addition, Figure 13 shows some details of behavior during training. The failure
rate is plotted versus the epoch for three different ranges of ppe values.

Fig. 11. Accuracy with ppe Values Fig. 12. Efficiency with ppe Values

Fig. 13. Training Behavior with ppe Values

Discussion on the effect of ppe values:

1. Low ppe values, such as ppe < G may converge faster but the learned metrics
give relatively lower clustering accuracy over the test set. Also some exper-
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iments with low ppe values may take as long to converge as ppe close to G.
This depends on which ppe pairs get selected in each epoch.

2. Middle range ppe values take longer to converge but give best clustering
accuracy over the test set.

3. High ppe values close to P , (i.e, all pairs) take still longer to converge and
give accuracy over test set less than middle range values.

4. Failure rate decreases monotonously for high ppe values but oscillates for
lower ppe values. This is because for low ppe values, a distinctly different set
of pairs get used in each epoch for learning, so the metric is learned over a
different set of pairs each time. For higher ppe values, almost the same pairs
get selected in each epoch, thus causing a uniform decrease in failure rate.

Effect of Scaling Factors and Initial Weights. The experiments below are
conducted to observe the impact of scaling factors (sf) on the learning. These
experiments are a summary of approximately 200 experiments conducted on scal-
ing factors [14]. The experiments shown here are for a training set of G = 40
with number of clusters k = 7. The test set is of size G = 15 and number of
clusters k = 3. The distance components used are the DSC , DEuclidean, DMin,
DMean, DMax, DLF and DBP . The number of pairs per epoch is maintained at
ppe = P/2 = 150 (based on results of ppe experiments). Error threshold is set
to 1%. The parameters varied are the initial weights, scaling factors and cluster-
ing seeds. Figure 14 illustrates the parameter settings used for the experiments
shown here. Figures 15 and 16 show the test set and training set observations in
terms of clustering accuracy and learning efficiency respectively.

Fig. 14. Parameters Settings in Scaling Factor Experiments

Discussion on scaling factor experiments:

1. With scaling factors proportional to accuracy of each individual component
and with random initial metrics, convergence may occur faster or slower than
with no scaling factors. This depends on the initial metric.

2. With initial metrics given by experts and with scaling factors proportional
to accuracy, results are better than with random metrics.

3. Even better results are observed for initial metrics and scaling factors both
proportional to accuracy of each individual component in clustering.

Effect of Components. These experiments show the impact of altering the
components in the distance metric. Approximately 100 experiments have been
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Fig. 15. Accuracy with Scaling Factors Fig. 16. Efficiency with Scaling Factors

conducted [14], a summary of which is presented below. The number of graphical
plots in the training set is G = 25 from which P = 300 pairs of plots are obtained.
The number of clusters is k = 5 from the actual clusters over the training set.
The number of pairs per epoch is maintained at ppe = P/2 = 150, since this
is learned as a good setting from previous experiments. The error threshold
is maintained at 0.01 and scaling factors proportional to accuracy are used in
the weight adjustment heuristic. The maximum number of epochs is constant at
1000. The test set used is of size G = 15, with k = 3 actual clusters provided. The
number of components m is altered in each experiment. The possible components
identified for in the domain are the individual metrics DSC , DEuclidean, DMean,
DMax, DLF , DBP , and DMin. Initial weights of the components are proportional
to clustering accuracy of each, for those experiments with multiple components
in the metric. For metrics with single components, the weight is 1, i.e., that
component alone is the distance metric. We alter the seeds in the clustering
algorithm for randomization. The components in each experiment are shown in
Figure 17. The observations are mainly clustering accuracy over the test set as
shown in Figure 18.

Fig. 17. Components in Experiments Fig. 18. Accuracy with Components

Discussion on experiments with components:

1. Among the individual metrics, Euclidean distance gives highest accuracy.
2. The highest is accuracy is in the range if 90%.
3. The simplest metric giving this accuracy has 4 components DEuclidean,

DMax, DLF and DBP .
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6 Related Work

In [7], an overview of distance metrics useful for similarity search in multi-
media databases is presented. Some of these are applicable as components in
the LearnMet metric. However, they do not learn a single metric encompassing
various distance types. Tri-plots [11] provide a tool for multidimensional data
mining using intrinsic dimensionality, cross correlations and cumulative distri-
bution functions of pair-wise distances between n-dimensional objects. Tri-plots
could possibly be useful to us in assigning the individual components to the
LearnMet metric. However, the focus in Tri-plots is on the overall shape and
dimensionality of objects. In our context the basic shape and dimensionality of
the graphical plots is similar. The focus is on the semantics.

In [5] a learning method is proposed to find relative importance of dimensions
for n-dimensional objects. However, their focus is on dimensionality reduction
and not on domain semantics. In [16] they learn which type of position-based
distance is applicable for the given data starting from the formula of Mahalanobis
distance. However they do not consider other distance types besides position-
based distances [16] and do not address semantics.

Genetic algorithms [3] can be used to select features in graphs relevant for
clustering thus trying to learn a distance metric. However, they do not give
enough accuracy in our applications [14]. Neural networks [1] could possibly
be used for distance metric learning. However our data is such that the distance
between pairs of plots is not known in advance to serve as the training set
required [14]. Similar issues hold for other learning techniques such as support
vector machines [15] since we do not have positive and negative training samples
available in advance as required for learning.

Zhou et al [17] propose an approach for ensembling neural networks. They
train a number of neural networks at first, then assign random weights to them
and employ a genetic algorithm to evolve the weights to characterize the fitness
of the neural network in consitituting an ensemble. Although we do not use neu-
ral networks, each distance metric in our problem could possibly be viewed as
a learner, thus in combining them we get an ensemble. At present, we use an
approach analogous to greedy search to learn simple metrics [15]. Considering
other approaches for such sub-problems within LearnMet and comparing their
computational complexity and accuracy with our present approach presents in-
teresting future issues. However, it is beyond the scope of this paper.

7 Conclusions

The LearnMet technique is proposed to learn semantics-preserving distance met-
rics for graphical plots of scientific functions. Learning in this technique involves
comparing predicted clusters of such plots using a guessed initial metric with
actual clusters provided by experts, and refining the distance metric in every
epoch based on the error between the predicted and the actual clusters, until
the error is minimal or below the given threshold. The metric giving the low-
est error is output as the learned metric. LearnMet is rigorously evaluated in
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the Heat Treating domain that motivated its development. It is found to learn
distance metrics that improve clustering results as compared to Euclidean dis-
tance. Enhancements are made to LearnMet by using approaches to select a
suitable number of training samples in each epoch, incorporating domain knowl-
edge in weight adjustment and using the Occam’s Razor principle in learning.
The enhancements are found to provide even better clustering accuracy. They
also increase the learning efficiency and yield simpler learned metrics. LearnMet
is basically an empirical approach. Future work includes theoretical discussions
and proofs on various LearnMet heuristics and a comparative study on the com-
putational complexity of LearnMet.
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