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Abstract 
. 
Scientific data is often analyzed in the context of 

domain-specific problems, e.g., failure diagnostics, 
predictive analysis and computational estimation. These 
problems can be solved using approaches such as 
mathematical models or heuristic methods.  In this paper 
we compare a heuristic approach based on mining stored 
data with a mathematical approach based on applying 
state-of-the-art formulae to solve an estimation problem. 
The goal is to estimate results of scientific experiments 
given their input conditions. We present a comparative 
study based on sample space, time complexity and data 
storage with respect to a real application in Materials 
Science. Performance evaluation with real Materials 
Science data is also presented, taking into account 
efficiency and accuracy. We find that both approaches 
have their pros and cons in computational estimation. 
Similar arguments can be applied to other scientific 
problems such as failure diagnostics and predictive 
analysis. In the estimation problem in this paper, 
heuristic methods outperform mathematical models. 
 
1. Introduction 
 

Scientific data in domains such as Materials Science is 
often analyzed in the context of domain-specific 
applications. An example is computational estimation 
[20] where the results of experiments are estimated 
without conducting real experiments in a laboratory. 
Another application is failure diagnostics [17] where 
existing cases are used to diagnose causes of failures such 
as distortion in materials. A related application is 
predictive analysis [21] where process variables are 
predicted apriori to assist parameter selection so as to 
optimize the real processes.  

This paper describes the use of mathematical and 
heuristic approaches in such scientific data analysis. The 
goal is to perform a comparative study between these two 
approaches. We focus on a domain-specific 

computational estimation [20] problem and present a 
detailed study of mathematical and heuristic solution 
approaches. The domain of focus is Heat Treating of 
Materials [16]. The result of a heat treating experiment is 
plotted as a heat transfer curve [16]. Scientists are 
interested in estimating this curve given experimental 
input conditions. 

Mathematical models for estimation are based on 
formulae derived from theoretical calculations [2, 16]. 
They provide definite solutions under certain situations. 
However, existing mathematical models are often 
inapplicable under certain circumstances [9, 10]. For 
example, in Heat Treating there is a direct-inverse heat 
conduction model for estimating heat transfer curves [2].  
However, if the real experiment is not conducted, this 
model requires initial time-temperature inputs to be given 
by domain experts each time the estimation is performed. 
This is not always possible [10]. 

Heuristic methods are often based on approximation. 
A heuristic by definition is a rule of thumb likely to lead 
to the right answer but not guaranteed to succeed [15]. 
However heuristic methods are applicable in some 
situations where mathematical models cannot be used or 
do not provide adequate solutions. In our earlier work 
[20], we have proposed a heuristic approach based on 
integrating the data mining techniques of clustering and 
classification as a solution to a computational estimation 
problem. When applied to estimating heat transfer curves, 
this approach works well in many situations where 
mathematical models in heat treatment are not feasible. 

In this paper, we present a comparative study between 
mathematical and heuristic approaches in estimation 
taking into account sample space, time complexity and 
data storage. Sample space refers to the number of 
experiments that can be estimated under various 
conditions. Time complexity refers to the computation of 
the mathematical models or heuristic methods are in terms 
of execution time. Data storage refers to the amount of 
data stored in the database in each approach.  

We also provide performance evaluation with real data 
from the Heat Treating domain considering efficiency and 



accuracy. The efficiency of the approach relates to how 
fast it can perform the estimation. The accuracy of the 
estimated results refers to how close the estimation is to 
the result of a real laboratory experiment.  

 It is found that both mathematical and heuristic 
approaches have their advantages and disadvantages. For 
the given estimation problem in this paper, we find that 
heuristic methods are generally better than existing 
mathematical models. 

The arguments made for computational estimation can 
also be considered valid in the context of the other 
applications such as failure diagnostics [17] and 
predictive analysis [21]. Detailed discussion on each of 
these is beyond the scope of this paper.  

The following contributions are made in this work: 
• Description of mathematical and heuristic 

approaches in computational estimation. 
• Comparative study on sample space, time 

complexity and data storage. 
• Performance evaluation with real data from 

Materials Science.   
The rest of this paper is organized as follows. Section 

2 gives a background of the computational estimation. 
Sections 3 and 4 describe mathematical and heuristic 
solutions to this problem respectively. Sections 5 and 6 
give the comparative study and performance evaluation 
respectively. Section 7 outlines related work. Section 8 
gives the conclusions.  
 
2. Computational Estimation Problem 
 

In scientific domains such as Materials Science and 
Mechanical Engineering experiments are performed in the 
laboratory with specified input conditions and the results 
are often plotted as graphs. The term graph in this paper 
refers to a two-dimensional plot of a dependent versus an 
independent variable depicting the behavior of process 
parameters. These graphs serve as good visual tools for 
analysis and comparison of the processes. Performing real 
laboratory experiments and plotting such graphs 
consumes significant time and resources, motivating the 
need for computational estimation. 

We explain this with an example from the domain of 
Heat Treating of Materials [16] that inspired this work. 
Heat treating is a field in Materials Science that involves 
the controlled heating and rapid cooling of a material in a 
liquid or gas medium to achieve desired mechanical and 
thermal properties [16].  

Figure 1 shows an example of the input conditions and 
graph in a laboratory experiment in quenching, namely, 
the rapid cooling step in heat treatment. The quenchant 
name refers to the cooling medium used, e.g., T7A, 
HoughtoQuenchG. The part material incorporates the 
characteristics of the part such as its alloy content and 
composition, e.g., ST4140, Inconel600. The part may 

have a thick or thin oxide layer on its surface. A sample 
of the part called the probe is used for quenching and has 
certain shape and dimensions characterized by the probe 
type. During quenching, the quenchant is maintained at a 
given temperature and may be subjected to a certain level 
of agitation, i.e., high or low. All these parameters are 
recorded as input conditions of the quenching experiment. 

 

 
 

Figure 1: Example of Input Conditions and Graph 
 
The result of the experiment is plotted as a graph 

called a heat transfer coefficient curve. This depicts the 
heat transfer coefficient h versus part temperature T. The 
heat transfer coefficient measures the heat extraction 
capacity of the process and depends on the cooling rate 
and other parameters such as part density, specific heat, 
area and volume [2, 9]. The heat transfer curve 
characterizes the experiment by representing how the 
material reacts to rapid cooling.  

Materials scientists are interested in analyzing this 
graph to assist decision-making about corresponding 
processes. For instance, for the material ST4140, a kind of 
steel, heat transfer coefficient curves with steep slopes 
imply fast heat extraction capacity. The corresponding 
input conditions could be used to treat this steel in an 
application that requires such a capacity [22].  

However, performing such an experiment in the 
laboratory takes 5 to 6 hours and the resources require a 
capital investment of thousands of dollars and recurring 
costs worth hundreds of dollars [10, 20]. 

It is thus desirable to computationally estimate in an 
experiment the resulting graph given the input conditions. 
The estimation problem is as follows [22]: 

• Given: The input conditions of a scientific 
experiment 

• Estimate: The resulting graph depicting the 
output of the experiment 

We describe the solutions to this estimation problem 
with mathematical and heuristic approaches. 

 
3. Mathematical Modeling Approach 
 

Mathematical models are based on theoretical 
formulae that are often derived in a domain-specific 
manner. We explain mathematical modeling with 
reference to the problem of estimating heat transfer 
curves. This problem translates to estimating heat transfer 
coefficients as a function of temperature.   



The estimation method presented here is based on the 
extension of the sequential function specification method 
of Beck et al [2]. It uses state-of-the-art formulae for heat 
transfer [16]. The mathematical model relates to direct 
and inverse heat conduction [9, 10].  

 
3.1. Direct Heat Conduction 
      
    The mathematical formulation of the direct heat 
conduction problem when the surface heat flux is 
considered known is given by [10]: 
 

( ) ( ) 







∂
∂

∂
∂

=
∂
∂

r
TTrk

rrt
TTCp

1ρ      (1a)  where, 

k  = thermal conductivity of the probe 
pC = specific heat of the probe 

ρ  = density of the probe 
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and the initial condition is:  
( ) oTrT =0,   (1d) where,  

q = surface heat flux 

bh  = surface heat transfer coefficients  

( )tY  = measured temperature at center of probe 
R  = radius of the probe.   
    This direct problem can readily be solved by classical 
solutions or numerical solution techniques [16]. 
 
3.2. Inverse Heat Conduction 
 
The mathematical formulation of the inverse heat 
conduction problem is given by [10]: 
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1ρ      (2a)  where,  

k  = thermal conductivity of the probe 
pC = specific heat of the probe 

ρ  = density of the probe 
Boundary conditions are: 
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and, initial condition is: 
( ) oTrT =0,     (2d) 

where the surface heat flux bq  is unknown;  
temperature measurements are considered to be taken 

NjYtT jj ,...,2,1),0( −=     (2e) 

with a single sensor placed at 0=r  at time jt  are given 

over the whole time domain 
ftt ≤<0 , where ft  is the 

final measurement time. 
     Then the inverse problem can be stated as follows:  
By utilizing the N measured data ( )NjY j ,...,2,1= , 

estimate the N heat flux components 
( ) ( )Njqtq jj ,...,2,1=≡  

 
3.3. Steepest Descent Method for Estimation 
 
    Using the direct and inverse heat conduction equations, 
heat transfer coefficients are estimated using the Steepest 
Descent Method [9]. In this method, initial heat transfer 
coefficients values are given as inputs. Using these, the 
method works as follows.  
(i) Accept the given heat transfer coefficients. 
(ii) Use the heat transfer coefficients in the direct heat 

conduction equation to obtain heat flux values. 
(iii) Substitute the heat flux values in the inverse heat 

conduction method. 
(iv) Calculate the heat transfer coefficients using these 

heat flux values.  
(v) If error between heat transfer coefficients in (iv) and 

(i) is minimal or maximum number of iterations is 
reached then stop. Output heat transfer coefficients in 
(iv) as the estimated heat transfer coefficients. 

(vi) Else go to step (i) using heat transfer coefficients 
calculated in step (iv).   

     In order to use this model, the initial heat transfer 
coefficients need to be given. These are calculated based 
on time-temperature data using the input conditions of the 
experiment. From time-temperature data, initial heat 
transfer coefficients are obtained using state-of-the-art 
formulae [2, 9, 16]. However, since actual measurements 
are not taken as in equation (2e) by performing real 
experiments the time-temperature inputs must be supplied 
by experts each time the estimation is performed. The 
experts usually guess these inputs based on the 
experimental input conditions such as quenchant and part.  
     Thus, heat transfer coefficients can be estimated 
mathematically by direct and inverse heat conduction 
using the steepest gradient descent method.  
 
4. Heuristic Approach based on Data Mining 
 
     The term heuristic originates from the Greek word 
“heureskein” meaning “to find” or “to discover” [15]. As 
stated by Newell et al “A process that may solve a given 
problem but offers no guarantees of doing so is called a 
heuristic for that problem” [11]. Nevertheless, heuristic 
methods in the literature often provide good solutions to 
many problems [15].  



      We have proposed a heuristic approach called 
AutoDomainMine [20] to solve the given computational 
estimation problem. The assumption in this approach is 
that data obtained from existing experiments is stored in a 
database and is available for analysis.  
 
4.1. The AutoDomainMine Approach 
 

 
 

Figure 2: The AutoDomainMine Approach 
 

      AutoDomainMine [20] involves a one-time process of 
knowledge discovery from previously stored data and a 
recurrent process of using the discovered knowledge for 
estimation. This approach is illustrated in Figure 2. 
      AutoDomainMine discovers knowledge from existing 
experimental data by integrating the two data mining 
techniques of clustering and classification. Clustering is 
the process of placing a set of objects into groups of 
similar objects [4, 7]. Classification is a form of data 
analysis that can be used to extract models to predict 
categories [4, 8]. These two data mining techniques are 
integrated for knowledge discovery as follows. 
 
4.2. Knowledge Discovery in AutoDomainMine 
 
       The knowledge discovery process is shown in Figure 
3. Clustering is first done over the graphs obtained from 
existing experiments. We use a suitable algorithm such as 
k-means [7] with a domain-specific distance metric as the 
notion of distance [22]. Once the clusters of experiments 
are identified, the clustering criteria, namely, the input 
conditions that characterize each cluster are learned by 
decision tree classification [8]. This helps understand the 
relative importance of conditions in clustering. The 

decision tree paths and the clusters they lead to are used 
to design a representative pair of input conditions and 
graph per cluster so as to preserve domain semantics [22]. 
The decision trees and representative pairs form the 
discovered knowledge used for estimation as follows. 
 

 
 

Figure 3: AutoDomainMine - Knowledge Discovery 
 
4.3. Estimation in AutoDomainMine 
 

 
Figure 4: AutoDomainMine – Estimation 

 
    The process of estimation is shown in Figure 4. In 
order to estimate a graph, given a new set of input 
conditions, the decision tree is searched to find the closest 
matching cluster. The representative graph of that cluster 
is the estimated graph for the given set of conditions. If a 
complete match cannot be found then partial matching is 
done based on the higher levels of the tree using a 
domain-specific threshold [22]. Note that this estimation 
incorporates the relative importance of conditions 
identified by the decision tree.  
          
5. Comparative Study 
 
We compare the mathematical and heuristic approaches 
based on sample space, time complexity and data storage. 
 
5.1. Sample Space 
 

The sample space of any estimation problem is the 
number of cases it can estimate [15]. We explain the 
calculation of sample space with reference to the 
estimation problem in this paper. 



Sample Space Calculation: The sample space is 
calculated as a product of the number of possible values 
of each experimental input condition. Each input 
condition is described by an attribute that gives its name 
and a value that gives its content [22].  

Thus we have, sample space S = ∏
=

A

c
cV

1

    (3)   where, 

A = total number of attributes (conditions) 
Vc = number of possible values of the condition 
 
Consider the example of estimating heat transfer 

curves. In this example, the input conditions are:  
• Quenchant Name: T7A, DurixolV35 etc. 
• Part Material: ST4140, SS304 etc. 
• Agitation Level: Absent, High, Low 
• Oxide Layer: None, Thin, Thick 
• Probe Type: CHTE, IVF etc. 
• Quenchant Temperature: 0 to 200 C 

    The number of possible values of each of these is: 
• Quenchant Name: 9 values 
• Part Material: 4 values 
• Agitation Level: 3 values 
• Oxide Layer: 3 values 
• Probe Type: 2 values. 
• Quenchant Temperature: 20 ranges 

    The sample space is given by a product of these values. 
Hence, in this example we have: 
Sample Space 129602023349 =×××××=  
    We now discuss this with reference to our 
mathematical and heuristic approaches.  
 
5.1.1. Mathematical Approach. In this approach, the 
estimation of heat transfer coefficients is performed using 
the direct and inverse heat conduction equations [9, 10]. 
However, in order to apply these equations, data on time 
and temperature is needed. If the real laboratory 
experiment is not conducted then this data is typically 
supplied by domain experts.  
     Thus, in this process domain expert intervention is 
needed each time the estimation is performed. Thus, in 
order to cover a sample space of 12960 experiments, the 
domain experts would need to provide the time-
temperature inputs 12960 times which seems rather 
infeasible. Besides the fact that supplying these inputs is 
time-consuming and cumbersome, it is not always 
possible for the experts to guess them based on 
experimental input conditions. This is a major drawback 
of the mathematical approach related to sample space. 
     However, an advantage of this approach is that no 
other data on previous experiments needs to be stored in 
advance to cover this sample space. The state-of-the-art 
formulae can be directly applied.  
     This advantage and disadvantage is further clarified as 
we discuss the heuristic solution. 

 
5.1.2. Heuristic Approach. The heuristic solution 
approach to our estimation problem is AutoDomainMine 
[20]. In this approach, when the input conditions of a new 
experiment are submitted, the decision tree paths are 
traced to find the closest match. The representative graph 
of the corresponding cluster is conveyed as the estimated 
result. When an exact match is not found, a partial match 
is conveyed using higher levels of the tree. Thus, even if 
data on all the possible combinations of inputs is not 
available, an approximate answer can still be provided.  
    Hence, in order to cover the sample space of the 

estimation it is not necessary to supply time-temperature 
data for each new experiment whose results are to be 
estimated. The estimation can be performed simply by 
supplying the input conditions of the new experiment. 
Thus, the whole sample space of 12960 experiments can 
be covered without domain expert intervention each time 
the estimation is performed. This is an advantage of the 
heuristic approach with reference to sample space. 
   However, in order to perform the estimation in 

AutoDomainMine, data from existing laboratory 
experiments needs to be stored in the database. This 
forms the basis for knowledge discovery and estimation. 
This is seemingly a disadvantage of the heuristic 
approach. However, the amount of data from existing 
experiments can be much lower than the sample space. 
   For example, in Heat Treating the number of 

experiments stored is 500. With this, AutoDomainMine 
gives an accuracy of around 94% as elaborated later. 
 
5.2. Time Complexity 
 
     The time complexity of any approach refers to the 
execution time of the technique used for computation [4].  
 
5.2.1. Mathematical Approach. In the direct-inverse 
heat conduction mathematical model, the time complexity 
tM (E) of each estimation is given as [9]: 

)()( 2 inOEtM ×=        (4)    where, 
n = number of time-temperature data points supplied 
i = number of iterations for convergence to minimal error 
      Each such data point corresponds to the measurement 
of heat transfer coefficient at one instance of time.  
      In the given problem the maximum number of data 
points supplied would be 1500 and the minimum number 
would be 25. On an average 100 data points are supplied. 
The number of iterations for convergence is typically of 
the order of 100 iterations [9]. 
      Thus, we have the following time complexities. 
Worst Case: )1001500()( 2 ×= OEtM          (5a) 
Average Case; )100100()( 2 ×= OEtM      (5b) 
Best Case: )10025()( 2 ×= OEtM                 (5c) 



    Since the data points need to be provided for each 
estimation, the time complexity tM (S) over the whole 
sample space S is given by: 

)()( EtSSt MM ×=       (6)  where, 
tM(E) is the time complexity of each estimation. 
      Thus, we have the following time complexities over 
the whole sample space for the worst, average and best 
cases respectively. 
Worst Case: )1001500()( 2 ××= OSStM           (7a) 

Average Case: )100100()( 2 ××= OSStM       (7b) 
Best Case: )10025()( 2 ××= OSStM                  (7c) 
       Given a sample space of S = 12960, it is clear that 
these time complexities are huge.  
 
5.2.2. Heuristic Approach. In the heuristic approach 
AutoDomainMine [20], the knowledge discovery process 
of clustering followed by classification is executed one-
time, while the estimation process of searching the 
decision tree paths to find the closest match is recurrent. 
The complexities of each are calculated as follows. 
       Consider tH(D) to be the time complexity of the 
knowledge discovery process in the heuristic approach. 
This is calculated as the sun of the time complexities of 
the clustering and classification step respectively. We use 
k-means clustering [7] and decision tree classification 
with J4.8 [8]. The complexities of these respective 
algorithms [4] are used to compute the complexity of the 
knowledge discovery process in AutoDomainMine.  Thus 
given that, 
g = number of graphs (experiments) in database  
k = number of clusters 
i = number of iterations in the clustering algorithm 
 we have, 

)()()( tionClassificatClusteringtDt HHH +=    (8a) 
where, )()( gkiOClusteringtH =            (8b) 
and ))log(()( ggOtionClassificatH =    (8c) 
Hence, ))log(()()( ggOgkiODtH +=     (8d) 

       Now consider that the time complexity of each 
estimation in the heuristic approach is tH(E). The manner 
in which the estimation is performed in AutoDomainMine 
is by searching the decision tree paths to find the closest 
match with the given input conditions of a new 
experiment. From a study of the literature [4, 14, 15], we 
find that this search problem in general has a complexity 
of O(log (N)) where N is the number of entries in the 
database from which the tree was generated. Thus, in our 
context this translates to O(log (g)) since g = number of 
graphs in the database = number of experiments (i.e., 
database entries). Thus, 

))(log()( gOEtH =     (9) 
     Hence, given a sample space S, the time complexity 
tH(S) over the whole space is calculated as: 

)()()( EtSDtSt HHH ×+=    (10)   where, 
tH(D) = complexity of knowledge discovery (one-time) 
tH(E) = complexity of each estimation (recurrent) 
S = sample space 
     Thus, from the calculation of the time complexities 
tH(D) and tH(E) respectively, we get, 

))(log())log(()()( gOSggOgkiOStH ×++=  (11) where, 
g = number of graphs (experiments) in database  
k = number of clusters 
i = number of iterations in the clustering algorithm 
S = sample space 
      Given this, we now consider the time complexities in 
the best, average and worst case in our problem. 
       Note that the maximum value of g is equal to all the 
experiments in the database, i.e. 500 in this context. The 
minimum value of g is empirically set to be at least 1/5 of 
the total number of experiments [22]. Thus, g is at least 
100. The average value for g is considered to be half the 
total number of experiments, i.e., g is equal to 250 in the 
average case [22]. The number of clusters k is usually set 
close to the square root of the number of graphs g since 
this value is found to yield the highest classifier accuracy 
[22]. Thus, for g = 500, k =22; for g = 250, k = 16; and 
for g = 100, k = 10. The number of iterations in the 
clustering algorithm is typically of the order of 10. Given 
these values, we have the following time complexities in 
the worst, average and best cases respectively. 
Worst: ))500(log())500log(500()1022500()( OSOOStH ×++××=  (12a) 
Avg: ))250(log())250log(250()1016250()( OSOOStH ×++××=     (12b) 
Best: ))100(log())100log(100()1010100()( OSOOStH ×++××=  (12c) 

     These complexities in the heuristic approach are much 
lower than the worst, average and best case time 
complexities respectively in the mathematical modeling 
approach. This is an advantage of the heuristic method. 
 
5.3. Data Storage 
 
The data storage criterion refers to the quantity of data 
stored from existing experiments in each approach. 
 
5.3.1. Mathematical Approach. This approach uses 
theoretical formulae and inputs supplied by domain 
experts each time the estimation is performed. No data 
from previously performed experiments is utilized in the 
computation. Hence, in theory the quantity of data stored 
for this approach is zero. Thus, given that Q refers to the 
quantity of data, we find that in the mathematical model, 
Q= 0. This is an advantage of the mathematical approach.  
      However, it is to be noted that the experts while 
providing initial time-temperature inputs to this model, 
may refer to existing experiments. Thus, in practice data 
stored from previously performed experiments could 
perhaps be useful in mathematical modeling. But this data 
storage is not a requirement of the model per se. 



 
5.3.1. Heuristic Approach. This approach uses the 
existing experiments in the database for knowledge 
discovery and estimation. Given that g is the number of 
graphs (experiments) in the database, n is the number of 
data points stored per graph and A is the number of 
attributes stored for each experiment, the quantity Q of 
data stored in the heuristic approach is given as 

AngQ ××=  
    The heuristic approach cannot work without data from 
previous experiments. This is one of the situations where 
the mathematical model wins over the heuristic method. 
     Theoretically, there is no bound on the minimum 
quantity of data that needs to be stored in order to 
perform the estimation heuristically. However, the more 
the data from existing experiments, the more accurate is 
the estimation. This is because a greater number of 
experiments are available for knowledge discovery by 
clustering and classification and a greater number of 
decision tree paths can be searched for estimation. Also, 
the more distinct the input conditions are, the better it is 
for the heuristic approach. This is because a greater 
number of distinct paths can be identified in the decision 
tree to more classify new experiments.  
      Note that in scientific domains experiments are often 
designed using the Taguchi metrics [13]. The input 
conditions are selected such that 100 experiments can 
effectively represent approximately 300 experiments. 
This in turn enhances the sample space and accuracy of 
the estimation. It is therefore desirable that Taguchi 
metrics [13] be used for the experimental setup to provide 
effectively more data for the heuristic approach.  
 
6. Performance Evaluation 
 
6.1. Accuracy 
 
      Accuracy is a quality measure that refers to how close 
the estimated result is to the output of a real experiment. 
The evaluation of accuracy is explained with reference to 
the mathematical and heuristic approaches individually. 
 
6.1.1 Mathematical Approach. The accuracy of 
mathematical models in Heat Treating is evaluated as 
follows [9]. The heat transfer curve estimated by a given 
mathematical model is superimposed over the real heat 
transfer curve obtained from a laboratory experiment 
conducted with the same input conditions. If the two 
match each other as per the satisfaction of the domain 
experts, then the estimation is considered to be accurate. 
We present a summary of the evaluation. 
      Test 1: This test is conducted with the inputs below.  

• Quenchant Name: HoughtoQuenchG 
• Part Material: ST4140 

• Agitation Level: Low 
• Oxide Layer: None 
• Probe Type: CHTE 
• Quenchant Temperature: 60 - 70 C 

      Figure 5 shows the heat transfer curves plotted as heat 
transfer coefficient h versus temperature T from both the 
real laboratory experiment and the mathematical model. 
According to the experts, the results show much 
difference in the magnitude of heat transfer coefficient as 
well as the temperature at which the maximum heat 
transfer coefficient occurs [9]. Moreover, the heat transfer 
curve from mathematical models shows the occurrence of 
a Leidenfrost point1 (LF) [16] while the curve from the 
real experiment does not. Thus this estimation is 
considered inaccurate by the experts.  

 
Figure 5: Output of Test 1 in Mathematical Approach  

 
     Test 2: The input conditions in this test are as follows. 

• Quenchant Name: T7A 
• Part Material: ST4140 
• Agitation Level: High 
• Oxide Layer: Thin 
• Probe Type: CHTE 
• Quenchant Temperature: 20 - 30 C 

       Figure 6 shows the output of this test in terms if the 
heat transfer curves obtained from the laboratory 
experiment and the mathematical model. Both the curves 
show the occurrence of the Leidenfrost point [16], which 
is one of the important parameters that characterize the 
quenching process. Moreover both curves have the 
Leidenfrost points occurring at approximately the same 
values of temperature and heat transfer. The difference 
between the maximum heat transfer of the two curves is 
also within acceptable limits with respect to temperature 
and heat transfer coefficient. Positions of most other 
                                                 
1 The Leidenfrost point marks the breaking of a vapor 
blanket around a part. Heat transfer curves with and 
without a Leidenfrost point depict distinctly different 
cooling tendencies [16]. 



points on the two curves are also similar. Thus the experts 
conclude that this estimation is accurate 

 
Figure 6: Output of Test 2 in Mathematical Approach 

 
     Likewise on conducting several tests with different 
input conditions, the estimation accuracy of the 
mathematical models is found to be in the range of 
approximately 85 to 90%. However, this is subject to the 
availability of good time-temperature inputs from experts.  
 
6.1.1 Heuristic Approach. The accuracy of the heuristic 
model is evaluated with formal surveys conducted by the 
targeted users of the system [22]. The users run tests with 
the tool developed using the AutoDomainMine technique 
(a CHTE trademark). The N-holdout strategy [15] is used 
for evaluation. Among the 500 experiments in the Heat 
Treating database, 400 are used for training the technique 
and the remaining 100 are kept aside as the test set.  
       Tests are conducted as follows. In each test, the users 
enter the input conditions of a real experiment from the 
test set. They observe the estimated output of 
AutoDomainMine and compare it with the output of the 
corresponding real experiment. If the real and estimated 
results are close enough as per user satisfaction then the 
estimated is considered to be accurate. Accuracy is then 
reported as the percentage of accurate estimations over all 
the tests conducted [22].  
     We target the users of various applications of 
AutoDomainMine such as parameter selection [18], 
simulation tools [6], decision support [20] and intelligent 
tutors [3]. Accuracy is reported in the context of each 
application. A summary of our evaluation is presented.  
     Test 1: For the sake of comparison, this test is 
conducted with the same input conditions as Test 1 of the 
mathematical approach (see Section 6.1.1).  
       

 
 

Figure 7: Output of Test 1 in Heuristic Approach 
 

      Figure 7 shows the estimated output of Test 1. On 
comparing this with the result of the real experiment, the 
users conclude that the estimation is close enough to the 
real result (see Figure 5). The maximum heat transfer 
occurs at approximately the same temperature and heat 
transfer coefficient values. Also the heat transfer curve in 
Figure 8 does not have a Leidenfrost point, nor does the 
curve from the real experiment. Most of the other regions 
on the two curves are also observed to be similar. Hence, 
this estimation is considered to be accurate. 
 
     Test 2: The input conditions in this test are the same as  
in Test 2 of the mathematical approach (see 6.1.1).  
      

 
 

Figure 8: Output of Test 2 in Heuristic Approach 
       
      The output the estimation in Test 2 of the heuristic 
approach is shown in Figure 10. Upon comparing this 
with the result of the corresponding real experiment (see 
Figure 6), the users find that the two are close enough.  
The maximum heat transfer and Leidenfrost occur at 
around the same values of h and T for the real and 
estimated curves. Note that the portion of the curve on the 
left hand side of bell shaped-region is not considered 
significant as per the domain because the part has already 
been cooled to the quenchant temperature by then [16]. 



Thus, given that the significant points and most other 
regions are similar in the two curves this estimation is 
considered to be accurate. 
       Upon running tests with all the data in the test set, the 
estimation accuracy of AutoDomainMine is found to be 
in the range of 90 to 95%. Figure 9 shows the accuracy of 
this heuristic approach in the context of computational 
estimation and its targeted applications. 
 

 
 

Figure 9: Accuracy of Heuristic Approach 
 

    Thus, on the whole, we find that the estimation 
accuracy in the heuristic approach is somewhat higher 
than that in the mathematical approach. 

 
6.2. Efficiency 
 
     Efficiency refers to the amount of time taken to 
perform the estimation, i.e., the setup time for supplying 
the inputs and the response time of the tool. We record 
the amount of time taken to supply inputs for each test in 
both the mathematical and heuristic approaches. Note that 
in the mathematical approach, in addition to experimental 
input conditions, experts need to provide initial values for 
time-temperature. Thus, the time taken to provide these 
additional inputs is also recorded. The response time of 
each approach in terms of how long it takes to produce 
the output, given the inputs, is observed as well.   
 

 
      

Figure 10: Efficiency of Estimation Approaches 
 
      Figure 10 shows average input and response times of 
the mathematical and heuristic approaches. We find that 
input time of the mathematical approach is much more 
than the heuristic approach. Also, the response time of the 

mathematical approach is of the order of minutes while 
that of the heuristic approach is negligible.  
       Thus, the heuristic approach is distinctly more 
efficient than the mathematical approach. 

 
7. Related Work 
 
       An intuitive estimation approach is a naive similarity 
search over existing data [4]. Input conditions of a user-
submitted experiment are compared with those of existing 
experiments to find the closest match. However, non-
matching condition(s) could be significant in the domain. 
A weighted search [5] guided by basic domain knowledge 
can possibly be used to overcome this problem. Relative 
importance of search criteria, i.e., input conditions can be 
coded as weights into feature vectors. The closest match 
is then the weighted sum of matching conditions. 
However the problem is that these weights are not known 
apriori.  
       Case-based reasoning [1] could also be used for 
estimation. In our context, this involves comparing input 
conditions to retrieve the closest matching experiment, 
reusing its heat transfer curve as a possible estimate, 
performing adaptation if needed, and retaining the 
adapted case for future use. However adaptation 
approaches in the literature [1] are not feasible for us. For 
example in Heat Treating, if  “agitation level” in the new 
case has a higher value than in the retrieved case, then a 
domain-specific adaptation rule could be used to infer 
that high agitation implies high heat transfer coefficients. 
However, this is not enough to plot a heat transfer curve 
in the new case.  
      Integration of rule-based and case-based approaches 
is another possible estimation approach [12]. However 
this is generally used when the case solution is categorical 
such as in medicine and law. To the best of our 
knowledge, it has not been used for graphs and images.  
 
8. Conclusions 
   
     In this paper, mathematical and heuristic approaches 
for computational estimation are compared using the 
criteria of sample space, time complexity, data storage, 
efficiency and accuracy. We consider the Heat Treating 
domain and compare the direct-inverse heat conduction 
mathematical model with our proposed heuristic approach 
AutoDomainMine. Performance evaluation with real data 
from Materials Science is also presented. It is found that 
mathematical models are feasible when data from 
previous experiments is not stored, domain experts are 
available to provide inputs and efficiency is not critical. 
Heuristic approaches are found to give much higher 
efficiency and relatively higher accuracy than the 
mathematical models. However heuristic methods are 



applicable only when data from previously performed 
experiments is available. In the context of the estimation 
problem in this paper, heuristic approaches are preferred. 
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