(CS2223, D Term 2000 — Prof. Alvarez 1

Prof. Sergio A. Alvarez web: http://www.cs.wpi.edu/~alvarez/
Department of Computer Science e-mail: alvarezQcs.wpi.edu
Worcester Polytechnic Institute phone: (508) 831-5118
Worcester, MA 01609, USA fax: (508) 831-5776

CS2223, D Term 2000
Extra Credit Problem
(Optional; due Monday, May 1)

1 Crash course in optical text recognition

Basic problem. Given imperfect images of n handwritten alphabetical characters, presumably the letters
of a word in English, one wishes to determine the sequence of n actual letters that most likely gave rise to
the images. A translation of this statement into the language of probability theory is given below.

1.1 Probabilistic description

Let I, ---I, represent the n observed images, and let Ly, ---L,, represent a word hypothesis, that is, a
particular sequence of n letters whose likelihood of having generated the observed images is to be evaluated.
Then using Bayes’ theorem one may express the conditional probability that the given word hypothesis is
correct given the observed images as follows:

P(Ly, Ly, ---Ly|LL, I---1,) =C - P(Iy, I, ---I,|Ly, Lo, ---Ly)P(Ly, Lo, ---Ly) (1)

Here, C is a normalization constant (this just means that you want to make sure that all the probabilities
add up to 1). The basic problem thus becomes a concrete optimization problem: mazimize the right-hand
side of the above equation over all possible word hypotheses Ly, --- L,. The solution to this problem depends
on the model that one assumes for image generation and letter co-occurrence as encoded in the two terms
on the right-hand side above. Some comments on this statement follow.

1.2 Using only image data

If one assumes that all letters occur independently of one another and with the same probability, then the
letter co-occurrence probability P(Ly, La, ---L;,) is the same for all word hypotheses, and so that term
effectively drops out of the maximization problem for Eq. 1. The expression to be maximized is now just
the image generation probability:

P(Ila -[27 In|L17 L2; Ln)

We will assume for simplicity that knowledge of the identity of a letter completely determines the probability
that a given image will be generated for that letter, and that the images for different letters within a given
word are generated independently of one another; image probabilities for various letters have to be learned
by the system by examining multiple sample images for each letter. The above expression then simplifies:

P, Iy, ---I,|L1, Lo, ---Ly) = P(I1|L1)P(I2|Ls) - - - P(I|Ly)

It is now possible to break the maximization problem down into n subproblems: for each position in the
sequence, one selects the letter that is most consistent with the image for that position; in other words, Ly
should maximize the expression P(Ij|Lj). The resulting sequence of letters is then the “winning” word.

Models such as those described above use knowledge about image generation, and in particular about
the consistency between a given image and the hypothesis that a particular letter may have given rise to
that image. However, such models completely ignore the letter-order restrictions that exist in English; for
instance, the sequence “cmt” could beat “cat”, despite one’s intuitive sense that there should be a strong
syntactical preference in favor of the latter.

(CS2223, D Term 2000 — Prof. Alvarez 2

1.3 Incorporating language restrictions

A slightly better model uses transition probabilities to represent letter-order restrictions. For each pair (z,y)
of letters, a number P(y|z) between 0 and 1 is given, corresponding to the fraction of words in which letter y
is observed to follow immediately after letter . We assume that the prior probabilities of all letters are also
known; these are numbers between 0 and 1 that measure the relative frequencies of the letters in the given
language (English, for example). These probabilities allow one to assess the likelihood of a given sequence
of letters in the absence of image data. The likelihood of observing the sequence Li, Lo, ---L, can be
computed as a product:

P(Ly, Lo, ---Ly) = P(Ly|blank)P(La|L1) - - - P(Ln|Ly_1) P(Ly|blank)

The language generation model encoded in the transition probabilities can now be combined with the image
generation model implicit in the conditional probabilities P(Ij|Ly) as described previously to quantify the
likelihood of a given sequence of letters in the presence of specific image data. Indeed, Eq. 1 becomes:

P(Ly, ---Ly|L, ---1,) =C - P(I1|Ly) - - - P(I|Ly) P(Ly|blank) P(Lo|Ly) - - - P(Ly|Lyp—1)P(Ly|blank)

The text recognition problem therefore reduces to the following optimization problem: mazimize the likelihood
that appears on the right-hand side of the above equation over all letter sequences Ly - - - L,,. The winning letter
sequence is the one most likely to have led to the observed images, given the known transition probabilities
between letters.

2 Formulation as a graph problem

The optimization problem stated above may be viewed as a special variant of the single-source shortest path
problem in a graph. The underlying graph in this case has a source node and a sink node, corresponding
to the blank characters that delimit the given sequence of n characters. The other nodes of the graph are
arranged in columns. There is one column for each of the n characters in the word to be recognized. Each
column contains m (typically 26) nodes, one for each letter of the alphabet. Each column is “fully connected”
to the column immediately to the right, i.e. there is a directed arc from each node of a given column to each
node of the next column. This reflects the desire to initially allow any possible sequence of n letters.

Word hypotheses correspond to paths in this graph from the source node to the sink node. Each path
has an associated cost. In order to make the cost function additive, we simply take the logarithm of the
likelihood described in the previous section and split up the result into parts corresponding to various arcs.
Specifically, the weight of the arc from the node for letter L; in column ¢ — 1 to the node for letter L; in
column c is

cost((c — 1,), (¢,) = —log P(L;|L;) — log P(L|L;)

Notice that we have changed the notation slightly here relative to the notation that was being used previ-
ously; namely, L; now represents the j-th letter of the alphabet, regardless of what position(s) within a word
hypothesis it is being considered for. The total likelihood over a given word hypothesis thus corresponds
directly to the sum of the weights over the path in the graph that represents the given word hypothesis
(you have to change the signs of the weights, then take an exponential at the end to recover the likelihood,
but this is straightforward). The second term in the expression for the weights is perhaps more naturally
associated with the terminal node of the arc in question rather than with the arc itself; nonetheless, the
above description also leads to a correct formulation. In either case, the most likely word hypothesis will
correspond to the path with the lowest total cost. In summary, one arrives at the following problem.

Trellis problem. Given a weighted directed graph G organized into n + 2 columns numbered from 0 to
n + 1, with columns 0 and n + 1 each consisting of a single node, columns 1...n each consisting of the same
number m of nodes (for example, m = 26), and with column ¢ fully connected to column ¢ + 1 for each
¢ = 0..n, find the path of least weight from the source node in column 0 to the sink node in column n + 1.

(CS2223, D Term 2000 — Prof. Alvarez 3

3 Your task, should you choose to accept it ...

Refer to the above description for an explanation of the context of this problem as well as a formulation of
the trellis problem. Define C(k,j) to be the minimum cost of a path from the source node to the node in
column % corresponding to letter L;. We will refer to C' as the value function for the trellis problem.

Problem 1: Recursive description of the value function

Find a recurrence relation satisfied by the value function. This relation should express the value function
for column k, namely the values C'(k,j) for j = 1..m, in terms of the values of the value function for the
previous column, C(k — 1, -), together with the weight values cost((k — 1,-), (k, j)) of the arcs from nodes in
column k£ — 1 to each given node in column k. Here, k ranges from 1 to n + 1.

Problem 2: Dynamic programming approach to calculating the value function

Based on your work for the previous problem, write pseudocode for a dynamic programming algorithm that
calculates the value function C(n + 1, blank). Describe in words the order in which your algorithm processes
the nodes of the word hypotheses graph.

Problem 3: Evaluation of your approach

Estimate the running time of your algorithm as a function of n and m. Explain your reasoning in detail.
How does the efficiency of your algorithm compare to that of the obvious recursive algorithm based on your
answer to problem 1 ?

