
A Computer Science Tapestry 9.1

What’s in a file, what’s in a string?

● Characters make up words in English, the type char is used
as a basic building block in C++ and other languages

➤ The type char represents characters in different
languages, encoding depends on the character set used

➤ ASCII is common in C++ and other languages, limited to
128 or 256 different characters (8 bits/character)

➤ Unicode is an alternative, uses 16 bits so more characters

● Strings are built from char values, essentially as vectors/arrays
of characters

➤ Strings support catenation, find, read/write
● At a basic level, files are collections of characters

➤ Especially true in Unix, other operating systems as well

A Computer Science Tapestry 9.2

Basics of the type char

● Values of type char use single quotes, not double quotes
➤ ’a’ as compared to "A"

● The library accessible in <cctype> (or <ctype.h>) supports
character-set independent char operations

string s = "HeLLo";
int k;
for(k=0; k < s.length(); k++)
{ char ch=s[k];

if (isupper(ch))
cout << tolower(ch) << end;

}
● “bool”-like functions return int values, not bool values!!

➤ tolower “does the right thing” for uppercase values

A Computer Science Tapestry 9.3

Char values as integers

● Char values can be compared using <, >, <=, >=, ==, !=
➤ < ordering depends on character set; ’A’ < ’a’ in ASCII
➤ Code should NOT rely on ASCII specifics, use <cctype>

version of tolower rather than

char tolower(char c)
// post: return lowercase version of c
{

if (’A’ <= c && c <= ’Z’)
{

return c + 32;
}
return c;

}

● In practice int values are used in functions like tolower(…)

A Computer Science Tapestry 9.4

Files as lines of characters

● Files are read by both computers and humans
➤ Text files are composed of lines, lines composed of chars

• Lines are simple for humans to read/process

➤ Using operator >> to extract strings, ints, etc. doesn’t let us
read files a line-at-a-time, consider file format below:

Joe 20 30 40

Sam 50 60 30 40

➤ How can we read varying number of scores per line?
• What about alternative of using a sentinel end-of-line value?

● Use getline(..) to read a line-at-a-time, use
istringstream (istrstream) to process the line as a stream

A Computer Science Tapestry 9.5

Using istringstream (istrstream) objects
● “data” file contains lines like: Joe 20 30 40 60 70

ifstream ifile("data");
string line,name;
int num,count;
double total;
while (getline(ifile,line))
{

istrstream iline(line.c_str()); // istringstream
iline >> name;
total = count = 0;
while (iline >> num) // read all numbers on line
{

count++;
total += num;

}
cout << count << " average = " << total/count << endl;

}
● The variable iline must be defined inside the outer loop, why?

A Computer Science Tapestry 9.6

Other file-reading functions

● getline has an optional third argument that defines when a
“line” ends

➤ Process data file
The Beatles : Let it Be

The Rolling Stones : Let it Bleed

string artist,group;
while (getline(ifile,artist,’:’) &&

getline(ifile,group))
{

// process artist, group
}

● Also can read a file one char at-a-time using input.get(ch)
➤ Doesn’t skip white space, reads every character

A Computer Science Tapestry 9.7

State machines for reading

● Sometimes the “definition” of a word changes (like the
definition of a line can change with third argument to getline)

➤ Using >> means white-space delimited words
➤ What about removing comments? What about using other

characters to delimit words, e.g., dashes—as this shows

● Reading is in one of several states, rules for state transitions
determine how to change between states

➤ In reading // comments there are three states: text, first-
slash, comment

➤ In reading /* comments how many states are there?

A Computer Science Tapestry 9.8

State machine for /* comments */

text

star

comment

slash

ch == ’/’

ch == ’*’

ch != ’*’

ch == ’*’

ch == ’/’

ch != ’/’

●Similar to // comment machine
➤Where are characters
printed/echoed?
➤Why four states?

●State transition arcs
➤Be sure every char covered
in each state
➤In particular, slash-to-text?
➤Start to comment?

●What about “this /* string” ?
➤Is it hard to recognize string
literals?
➤What are the issues?

ch != ’/’

ch != ’*’

A Computer Science Tapestry 9.9

Defining states

● See the program decomment.cpp for details
➤ States can be identified with numbers as labels

const int TEXT = 0;
const int FIRST_SLASH = 1;

➤ Using an enumerated type is the same idea, but gives the
labels a type

enum Suit{spades, diamonds, hearts, clubs};

➤ Can assign enum to int, but cannot assign int to enum

Suit s = 3; // illegal
int k = spades; // legal

A Computer Science Tapestry 9.10

Using enums to model cards

● Consider the declaration below from card.h, simulate playing
card

class Card
{

public:

enum Suit {spades, hearts, diamonds, clubs};

Card(); // default, ace of spades
Card(int rank, Suit s);

bool SameSuitAs(const Card& c) const;
int GetRank() const;
bool IsJoker() const;

private:
int myRank;
Suit mySuit;

};

A Computer Science Tapestry 9.11

Using class-based enums

● We can’t refer to Suit, we must use Card::Suit
➤ The new type Suit is part of the Card class
➤ Use Card::Suit to identify the type in client code
➤ Can assign enum to int, but need cast going the other way

int rank, suit;
tvector<Card> deck;
for(rank=1; rank < 52; rank++)
{

for(suit = Card::spades;suit <= Card::clubs; suit++)
{

Card c(rank % 13 + 1, Card::Suit(suit));
deck.push_back(c);

}
}

A Computer Science Tapestry 9.12

How do objects act like built-in types?

● We’ve used Date and Bigint objects, and in many cases used
the same operations that we use on ints and doubles

➤ We print with operator <<
➤ We add using +, +=, and ++
➤ We compare using ==, <, >

● In C++ class objects can be made to act like built-in types by
overloading operators

➤ We can overload operator << to print to streams
➤ We can overload operator == to compare Date objects

● We’ll develop a methodology that allows us to easily
implement overloaded operators for classes

➤ Not all classes should have overloaded operators
➤ Is overloading + to be the union of sets a good idea?

A Computer Science Tapestry 9.13

Case study: the class ClockTime

● Represents hours, minutes, seconds, e.g., 1:23:47 for one hour,
twenty-three minutes, 47 seconds

➤ ClockTime values can be added, compared, printed
class ClockTime
{

public:
ClockTime();
ClockTime(int secs, int mins, int hours);
int Hours() const; // returns # hours
int Minutes() const; // returns # minutes

int Seconds() const; // returns # seconds

● How are values represent internally (private), what are some
options?

➤ Do client program need to know the representation?

A Computer Science Tapestry 9.14

Using the class ClockTime

● The code below shows how the class can be used, what
overloaded operators are shown?

int h,m,s;
ClockTime total(0,0,0);
ClockTime max = total; // zero
while (cin >> h >> m >> s)
{

ClockTime t(s,m,h);
total += t;
if (t > max)
{ max = t;
}

}
cout << "total time = " << total << endl;
cout << "max time = " << max << endl;

A Computer Science Tapestry 9.15

Design and Implementation Issues

● Converting to a string facilitates writing to a stream
➤ We know how to write strings, conversion to a string

solves many problems
➤ Every class should have a toString() method – Java does

● An object could be in a bad state, 1 hour 72 min. 87 sec., How
can this happen? How do we prevent bad state?

➤ Ignore illegal values
➤ Stop the program
➤ Convert to something appropriate

● For ClockTime class we’ll normalize, convert to standard form

A Computer Science Tapestry 9.16

Relational operators

● Relational operators are implemented as free functions, not class
member functions (Tapestry approach, not universal)

➤ Needed for symmetry in some cases, see Howto E for details
➤ We’ll use member function Equals to implement ==

● Print-to-stream operator << must be a free function
➤ We’ll use toString to implement <<, avoid using friend

functions

ostream & operator << (ostream & os, const ClockTime & ct);
bool operator == (const ClockTime& lhs, const ClockTime& rhs);

● These prototypes appear in clockt.h, no code just prototype
➤ Code in header file causes problems with multiple

definitions at link time

A Computer Science Tapestry 9.17

Free functions using class methods

● We can implement == using the Equals method. Note that
operator == cannot access myHours, not a problem, why?

bool operator == (const ClockTime& lhs, const ClockTime& rhs)
{

return lhs.Equals(rhs);
}

● We can implement operator << using toString()

ostream & operator << (ostream & os, const ClockTime & ct)
// postcondition: inserts ct onto os, returns os
{

os << ct.ToString();
return os;

}

● Similarly, implement + using +=, what about != and < ?

A Computer Science Tapestry 9.18

Class or Data invariants

● A ClockTime object must satisfy class invariant to be valid
➤ Data invariant true of object as viewed by client program
➤ Cannot have minutes or seconds greater than 60
➤ What methods can break the invariant, how do we fix this?

● A private, helper function Normalize maintains the invariant

void ClockTime::Normalize()
// post: myMinutes < 60, mySeconds < 60, represents same time
{

myMinutes += mySeconds/60;
mySeconds %= 60;
myHours += myMinutes/60;
myMinutes %= 60;

}

A Computer Science Tapestry 9.19

Implementing similar classes

● The class Bigint declared in bigint.h represents integers
with no bound on size

➤ How might values be stored in the class?
➤ What functions will be easier to implement? Why?

● Implementing rational numbers like 2/4, 3/5, or –22/7
➤ Similarities to ClockTime?
➤ What private data can we use to define a rational?
➤ What will be harder to implement?

● What about the Date class? How are its operations facilitated
by conversion to absolute number of days from 1/1/1 ?

A Computer Science Tapestry 9.20

Niklaus Wirth
● Designed and implemented

several programming languages
including Pascal, Modula-2,
Oberon
Simple, elegant solutions are more
effective, but they are harder to find
than complex ones, and they require
more time which we too often
believe to be unaffordable

● Wrote the paper that popularized
the idea of step-wise refinement

➤ Iterative enhancement
➤ Grow a working program

● Not a fan of C++

