Designing and Using Classes

e Class implementation, summary of what we’ve seen
0 Data is private and is accessible in each member function

0 Each object has it’s own data, so that each of five Dice
objects has its own ny Si des and nyRol | Count

0 Member function implementations are in a .cpp file,
Interface isina.h file

e Compiling and linking, interface and implementation
0 Client programs #include a .h file, this is the interface

0 Client programs link the implementation, which is a
compiled version of the .cpp file (.0 or .obj suffix),
iImplementations are often combined in a library, e.qg.,
libtapestry, and the library is linked

A Computer Science Tapestry 7.1

Implementing Classes

o Determining what classes are needed, and how they should be
Implemented is difficult; designing functions is difficult
0 Experience is a good teacher, failure is a good teacher
Good design comes from experience, experience comes from bad design

0 Design and implementation combine into a cyclical
process: design, implement, re-visit design, implement,
test, redesign, ...

= Grow a working program, don’t do it all at the same time

e One design methodology says “look for nouns, those are
classes”, and “look for verbs or scenarios, those are member
functions”

0 Not every noun is a class, not every verb is a method

A Computer Science Tapestry 7.2

Playing Hangman, toward a prototype

e Hangman is a word game, a player tries to guess a secret word
one letter at a time, each missed letter counts against the
player, after 8 or 10 or 12 misses the player is “hung”. Usually
each miss results in drawing a body part on a gallows.

0 Diagram shows four misses
0 Part of 10-letter word is guessed

e What are nouns?
e What are verbs?
e \What are scenarios?

t at _ amos nt

A Computer Science Tapestry 7.3

Nouns, scenarios, verbs

e« Getaword to guess
0 From another player, a dictionary, the web
0 From a WordSource
o Show the word to the player, let the player guess letters

0 The word is displayed, then letters are revealed as guesses
are made

0 Class Word, methods Display, Reveal, Guess, ...

e Guess is also a noun, a letter is guessed, missed letters count
against, good letters reveal, duplicate guesses don’t count

0 GuessedLetters? Letters? Alphabet? Which is the noun?

A Computer Science Tapestry 7.4

Implementing WordSource

e What’s the simplest way to get a word from a WordSource so
that we can test the rest of the program

0 Can we design a class that’s simple to test with at first, but
easy to make more realistic later (essence of prototyping)

0 How can we guess pick one of several words at random
once we’re ready to move towards a more realistic
Implementation?

= Alternatives using small number of strings and a Dice?
= Alternatives using a file of words?

e What should we do to test the WordSource class?
0 Can we test without implementing the whole program?
0 Test each class separately when possible, isolate mistakes

A Computer Science Tapestry 7.5

wor dsour ce. h, wordsource. cpp

e WordSource will return a word, later add “from a file”

#i ncl ude <string>
cl ass WordSource

{
publ i c:
Wor dSour ce() ;
string GetWwrd();
I

// here’s the .cpp file
#i ncl ude "wordsource. h"
Wor dSour ce: : Wr dSour ce()

|
string WordSource: : Get Wrd()
{
return "literature";
}

A Computer Science Tapestry

7.6

Guessing letters

e Player guesses a letter, it’s in the word, or a miss, or has been
guessed already

0 Create a class Letters, have it report whether a letter has
been guessed already, or a letter is in the word, or a miss

0 Should Letters report a miss/correct? If so, does Letters
need to know the word? What are alternatives?

o« Don’t worry about implementation, worry about behavior, or
the interface

0 Eventually you’ll need to worry about implementing, what
will be hardest/harder, how can we test without
Implementing hard part first?

A Computer Science Tapestry 1.7

l etters. h

e We’ll construct an instance of Letters from a secret word/string
0 Ask Letters to display the “to be guessed word”
0 Guess a letter, have Letters report if it’s in the word
0 Optionally report duplicate guesses, add this later

cl ass Letters

{ .
publ i c:
Letters(const string& s);
bool CGuesslLetter(const string& letter);
void Displ ay();
private:
string nyDi splay; // show this string
string nyString; /[l the secret word
}s

A Computer Science Tapestry

Testing and implementing | etters. cpp

o GuesslLetter usesstring: : fi nd todetermine miss/correct

0 Must also “save state” so that Display shows guesses (and
later so that duplicate guess detection works)

0 Initially we can just return true/false to test, no state saved

o We’ll test this version, but be thinking about what
Letters:: @esslLetter mustdo

0 Change state so that display shows guessed letters

0 Ultimately, remember guesses to not penalize twice

0 What about determining when game is over?

0 What about determining # misses so far? Who tracks?

A Computer Science Tapestry 7.9

hang. cpp, the main/testing program

#i nclude <string>

#i ncl ude "pronpt. h"
#include "letters. h"

#i ncl ude "wordsource. h"

i nt main()
{ Wor dSour ce ws;
string s = ws. GetWord();
Letters letters(s);
while (true)
{ letters.Display();
S = PromptString("guess a letter");
If (letters. GuessLetter(s))

{ cout << "that’s in the word!!" << endl;
}

el se

{ cout << "that’s a mss" << endl;

}

}
}

A Computer Science Tapestry 7.10

Programming Tips, Heuristics, Help

e Develop a core working program, add to it slowly
0 lterative enhancement, test as you go, debug as you go

e Do the hard part first, or do the easy part first
0 Which is best? It depends.

o Concentrate on behavior first when designing classes, then on
state

0 State is useful for communicating between method calls

e Ifyou’re using several classes, you’ll need to modify the
Makefile or your project in an IDE: Codewarrior/Visual C++

A Computer Science Tapestry 7.11

Common interfaces are a good thing

o The class WordStreamlterator iterates over a file returning one

word/string at a time
string filenane = PronptString("enter file nane: ");

Wor dStream t er at or ws;

ws. Qpen(fil enane);

for(ws.lnit(); ws.HasMre(); ws.Next())
{ cout << ws.Current() << endl;

}
o The class StringSet and StringSetlterator allow sets of strings to be
Iterated over one string at a time

StringSet sset;

sset.insert("banana"); sset.insert("cherry");
StringSetlterator it(sset);

for(it.Init(); it.HasMre(); it.Next())

{ cout << it.Current() << endl;

}

A Computer Science Tapestry 7.12

Reuse concepts as well as code

e Using the same syntax for iterating saves time in learning
about new classes, will save coding when we learn how to
exploit the commonality

o« We can develop different Question classes and “plug” them
into a quiz program if the member functions have the same
name

0 See quiz.cpp, mathquest.cpp, and capguest.cpp

0 Programs must #include different headers, and link in
different implementations, but quiz.cpp doesn’t change

e Random walk classes: one- and two-dimensional, can use the
same driver program if the classes use the same method names

A Computer Science Tapestry 7.13

Random walks

e« Throwing darts (randomness in programs) is a technique for
simulating events/phenomena that would be otherwise
difficult

0 Molecular motion is too time-consuming to model exactly,
use randomness to approximate behavior

= Consider the number of molecules in 101 liters of a gas, each
affects the other if we’re simulating motion

* 6.023x10%2 molecules/22.4 liters is (approx) 2.7e+12molecules

0 If we can do 100 megaflops, what does this mean?

e Simulations are important in many modelling applications,
require pseudo-random numbers and some mathematics as
well as programming

A Computer Science Tapestry 7.14

Walking behavior (see frogwalk2.cpp)

I nt main()
{
I nt nuntteps = Pronpt Range("enter # steps", 0, 30000);
Randomal k frog(nuntt eps) ; /1 define two random wal kers
Randomal k t oad(nuntt eps) ;
I nt sanePadCount = O; /1l # times at sane | ocation
frog.Init(); /1 initialize both wal ks
toad.Init();
while (frog. HasMore() && toad. HasMore())
{ If (frog.Current() == toad. Current())
{ samePadCount ++;
}
frog. Next ();
t oad. Next () ;
}
cout << "frog position = << frog. Position() << endl;
cout << "toad position = << toad. Position() << endl;
cout << "# times at sane location =" << sanePadCount << endl;
return O;
}

A Computer Science Tapestry 7.15

Two-dimensional walker

e One-d walker Current() returns an int as position
o« Two-d walker Current() returns a Point as position
0 Both int and Point can be compared using ==
7 Both int and Point can be printed using <<

e Same program works for two-d walker, even though
underneath the implementation is very different

0 Since the interfaces are the same/similar, client programs
are easier to write once, use many times

1 Client code still needs to #include a different header and
must link in a different (two-d) walker implementation

A Computer Science Tapestry 7.16

What's the Point?

o The two-dimensional walker uses #i ncl ude "poi nt. h"
0 This provides access to class Point declaration/interface
0 The class Point is actually defined using st ruct Poi nt

0 In C++, a struct is a class in which everything is public by
default

= In aclass, everything is private by default

= Astruct is really a hold-over from C, used in C++ for plain
old data

0 Some programmers/designers don’t like to use structs in
C++, but use classes only

o We’ll use struct when data is public, when the state is really
more important than the behavior

0 Guideline, data is private accept in a struct, other options?

A Computer Science Tapestry 7.17

poi nt.h

struct Poi nt

{
Poi nt () ;

Poi nt (doubl e px, doubl e py);

string tostring() const ;
doubl e di st anceFron{const Point& p) const;
doubl e x:
doubl e v;

¥

e Two constructors, data is public, how is the (0,0) defined?
0 How is distance from (3,5) to (11,20) calculated?
0 How is a Point p printed?

A Computer Science Tapestry 7.18

Other details from poi nt. h

e Points can be compared with each other using ==, <, >=, etc.
Point p can be printed using cout << p << endl;

0 Later we’ll learn how to overload operators like this

0 For now we’ll be clients, using Points like ints, Bigints, etc.

The st ruct Poi nt has constructors and other behavior
0 di stanceFromandt ost ri ng constitute the behavior

0 Some programmers think structs shouldn’t have any
functions, holdover from C rather than C++

What is implemention of Poi nt : : di st anceFr omlike?

A Computer Science Tapestry 7.19

Other uses of structs

e Inaprogram using free (non-class) functions, lots of data is
often passed from one function to another

0 In class-based programs data is often, though not always,
part of a class and a class object is passed

e Using structs to collect related data makes programs easier to
read, modify, and maintain

0 Suppose you want to find mean, mode, and median of the
lengths of words in a file, two alternatives:

voi d doFileStats(const string& fil enane,
doubl e & nean, int & node, int & nedian);

voi d doFil eStats(const string& filenane, FileData& data);

A Computer Science Tapestry 7.20

More struct conventions

e It’s almost always worth including a constructor in a st r uct

struct Fil eData

{
Fi | eDat a()
{
myMean = 0. 0;
nyMode = O;
nmyMedi an = O;
}
doubl e nyMean;
| nt nmy Mbde;
| nt my Medi an;
}.

e What other data might be included in Fi | eDat a, what about
other constructors?

A Computer Science Tapestry 7.21

Class (and struct) conventions

e For debugging and printing it’s useful for classes to
Implement a function tostring(), that " stringizes" an object

0 Also useful in overloading oper at or << for an object

Poi nt p;
string s = p.tostring();
cout << s << " " << p << endl;

e« When initializing data in a constructor, it’s better to use an
initializer list than to set values in the constructor body

0 Sometimes initializer lists are required (see next example),
so using them at all times leads to more uniform coding
that works in more situations

A Computer Science Tapestry 7.22

Initializer lists are sometimes required

o Consider aclass that has a private Di ce data member

cl ass Gane

{
publi c:

Gare() ;
/] nmore functions
private:
Dice nyD e;
/1 nore data
};
o The instance variable nyD e must be given a # sides, this
cannot be given in the .h file/declaration, must be provided in

the .cpp file/class implementation
0 It’s an error if an initializer list isn’t use

A Computer Science Tapestry 7.23

Initializer lists

o Here are two versions of an initializer list for Gane: : Ganme()

Gane: : Gane()
. nmyDi e(6)
{ }

/I if there’s more data, use initializer list
Game::Game()
: myDie(6),
myName(“roulette”)
{}
e There can be code in constructor body to do more, e.g., read
from a file

0 Sometimes it’s useful to call private, helper functions

A Computer Science Tapestry 7.24

Mary Shaw

o Software engineering and
software architecture

0 Tools for constructing large
software systems

0 Development is a small
piece of total cost,
maintenance is larger,
depends on well-designed
and developed techniques

o Interested in computer science,
programming, curricula, and
canoeing

A Computer Science Tapestry 7.25

Three phases of creating a program

e The preprocessor is a program that processes a file, processing
all #include directives (and other preprocessor commands)

1 Takes a file, and creates a translation unit

0 Replaces #include “foo.h” with contents of file foo.h, and
does this recursively, for all #includes that foo includes
and so on

0 Produces input to the next phase of program creation

e The compiler has a translation unit as input and produces
compiled object code as output

0 The object code is platform/architecture specific, the
source code is (in theory at least) the same on all platforms

0 Some compilers require special treatment, not up to
standard C++

A Computer Science Tapestry 7.26

From compiling to linking

e The compilation phase creates an object file, but libraries and
other files still need to be linked to create an executable

0 Header files like “dice.h” provide only the interface,
enough for the compiler to know that a function call has
the right parameters and is used correctly

0 The implemention file, “dice.cpp”, must be compiled and

Included in the final executable, or the program won’t
work (call a dice function, but no one is home?)

e Linking combines object files, some of which may be
collected in a library of related files, to create an executable

0 Link the standard library (iostream, for example)

0 Link other libraries depending on program, graphics,
tapestry, other application-specific libraries

A Computer Science Tapestry 7.27

Issues In creating a program

e« Programming environments create optimized or debug code
0 Use debug version to facilitate development
0 If you need optimization, use it only after a program works

e Some errors are compilation errors, typically language syntax
or failure to find a #include’d header file

0 The preprocessor looks in standard places for header files,
sometimes this list needs to be changed

o Other errors are linker errors, libraries or object files that are
needed aren’t included

0 Change programming environment parameters to find the
libraries

A Computer Science Tapestry 7.28

