
A Computer Science Tapestry 7.1

Designing and Using Classes

● Class implementation, summary of what we’ve seen
➤ Data is private and is accessible in each member function
➤ Each object has it’s own data, so that each of five Dice

objects has its own mySides and myRollCount
➤ Member function implementations are in a .cpp file,

interface is in a .h file

● Compiling and linking, interface and implementation
➤ Client programs #include a .h file, this is the interface
➤ Client programs link the implementation, which is a

compiled version of the .cpp file (.o or .obj suffix),
implementations are often combined in a library, e.g.,
libtapestry, and the library is linked

A Computer Science Tapestry 7.2

Implementing Classes

● Determining what classes are needed, and how they should be
implemented is difficult; designing functions is difficult

➤ Experience is a good teacher, failure is a good teacher
Good design comes from experience, experience comes from bad design

➤ Design and implementation combine into a cyclical
process: design, implement, re-visit design, implement,
test, redesign, …

• Grow a working program, don’t do it all at the same time

● One design methodology says “look for nouns, those are
classes”, and “look for verbs or scenarios, those are member
functions”

➤ Not every noun is a class, not every verb is a method

A Computer Science Tapestry 7.3

Playing Hangman, toward a prototype

● Hangman is a word game, a player tries to guess a secret word
one letter at a time, each missed letter counts against the
player, after 8 or 10 or 12 misses the player is “hung”. Usually
each miss results in drawing a body part on a gallows.

➤ Diagram shows four misses
➤ Part of 10-letter word is guessed

● What are nouns?
● What are verbs?
● What are scenarios?

a m o s n t_ _ t _ _ a t _ _ _

A Computer Science Tapestry 7.4

Nouns, scenarios, verbs

● Get a word to guess
➤ From another player, a dictionary, the web
➤ From a WordSource

● Show the word to the player, let the player guess letters
➤ The word is displayed, then letters are revealed as guesses

are made
➤ Class Word, methods Display, Reveal, Guess, …

● Guess is also a noun, a letter is guessed, missed letters count
against, good letters reveal, duplicate guesses don’t count

➤ GuessedLetters? Letters? Alphabet? Which is the noun?

A Computer Science Tapestry 7.5

Implementing WordSource

● What’s the simplest way to get a word from a WordSource so
that we can test the rest of the program

➤ Can we design a class that’s simple to test with at first, but
easy to make more realistic later (essence of prototyping)

➤ How can we guess pick one of several words at random
once we’re ready to move towards a more realistic
implementation?

• Alternatives using small number of strings and a Dice?
• Alternatives using a file of words?

● What should we do to test the WordSource class?
➤ Can we test without implementing the whole program?
➤ Test each class separately when possible, isolate mistakes

A Computer Science Tapestry 7.6

wordsource.h, wordsource.cpp

● WordSource will return a word, later add “from a file”

#include <string>
class WordSource
{
public:
WordSource();
string GetWord();

};
// here’s the .cpp file

#include "wordsource.h"
WordSource::WordSource()
{
}
string WordSource::GetWord()
{

return "literature";
}

A Computer Science Tapestry 7.7

Guessing letters

● Player guesses a letter, it’s in the word, or a miss, or has been
guessed already

➤ Create a class Letters, have it report whether a letter has
been guessed already, or a letter is in the word, or a miss

➤ Should Letters report a miss/correct? If so, does Letters
need to know the word? What are alternatives?

● Don’t worry about implementation, worry about behavior, or
the interface

➤ Eventually you’ll need to worry about implementing, what
will be hardest/harder, how can we test without
implementing hard part first?

A Computer Science Tapestry 7.8

letters.h

● We’ll construct an instance of Letters from a secret word/string
➤ Ask Letters to display the “to be guessed word”
➤ Guess a letter, have Letters report if it’s in the word
➤ Optionally report duplicate guesses, add this later

class Letters
{

public:
Letters(const string& s);
bool GuessLetter(const string& letter);
void Display();

private:
string myDisplay; // show this string
string myString; // the secret word

};

A Computer Science Tapestry 7.9

Testing and implementing letters.cpp

● GuessLetter uses string::find to determine miss/correct
➤ Must also “save state” so that Display shows guesses (and

later so that duplicate guess detection works)
➤ Initially we can just return true/false to test, no state saved

● We’ll test this version, but be thinking about what
Letters::GuessLetter must do

➤ Change state so that display shows guessed letters
➤ Ultimately, remember guesses to not penalize twice
➤ What about determining when game is over?
➤ What about determining # misses so far? Who tracks?

A Computer Science Tapestry 7.10

hang.cpp, the main/testing program
#include <string>

#include "prompt.h"

#include "letters.h"

#include "wordsource.h"

int main()
{ WordSource ws;

string s = ws.GetWord();
Letters letters(s);
while (true)
{ letters.Display();

s = PromptString("guess a letter");
if (letters.GuessLetter(s))
{ cout << "that’s in the word!!" << endl;
}
else
{ cout << "that’s a miss" << endl;
}

}
}

A Computer Science Tapestry 7.11

Programming Tips, Heuristics, Help

● Develop a core working program, add to it slowly
➤ Iterative enhancement, test as you go, debug as you go

● Do the hard part first, or do the easy part first
➤ Which is best? It depends.

● Concentrate on behavior first when designing classes, then on
state

➤ State is useful for communicating between method calls

● If you’re using several classes, you’ll need to modify the
Makefile or your project in an IDE: Codewarrior/Visual C++

A Computer Science Tapestry 7.12

Common interfaces are a good thing
● The class WordStreamIterator iterates over a file returning one

word/string at a time
string filename = PromptString("enter file name: ");
WordStreamIterator ws;
ws.Open(filename);
for(ws.Init(); ws.HasMore(); ws.Next())
{ cout << ws.Current() << endl;
}

● The class StringSet and StringSetIterator allow sets of strings to be
iterated over one string at a time

StringSet sset;
sset.insert("banana"); sset.insert("cherry");
StringSetIterator it(sset);
for(it.Init(); it.HasMore(); it.Next())
{ cout << it.Current() << endl;
}

A Computer Science Tapestry 7.13

Reuse concepts as well as code

● Using the same syntax for iterating saves time in learning
about new classes, will save coding when we learn how to
exploit the commonality

● We can develop different Question classes and “plug” them
into a quiz program if the member functions have the same
name

➤ See quiz.cpp, mathquest.cpp, and capquest.cpp
➤ Programs must #include different headers, and link in

different implementations, but quiz.cpp doesn’t change

● Random walk classes: one- and two-dimensional, can use the
same driver program if the classes use the same method names

A Computer Science Tapestry 7.14

Random walks

● Throwing darts (randomness in programs) is a technique for
simulating events/phenomena that would be otherwise
difficult

➤ Molecular motion is too time-consuming to model exactly,
use randomness to approximate behavior

• Consider the number of molecules in 10-10 liters of a gas, each
affects the other if we’re simulating motion

• 6.023x1023 molecules/22.4 liters is (approx) 2.7e+12molecules

➤ If we can do 100 megaflops, what does this mean?

● Simulations are important in many modelling applications,
require pseudo-random numbers and some mathematics as
well as programming

A Computer Science Tapestry 7.15

Walking behavior (see frogwalk2.cpp)
int main()
{

int numSteps = PromptRange("enter # steps",0,30000);
RandomWalk frog(numSteps); // define two random walkers
RandomWalk toad(numSteps);
int samePadCount = 0; // # times at same location

frog.Init(); // initialize both walks
toad.Init();
while (frog.HasMore() && toad.HasMore())
{ if (frog.Current() == toad.Current())

{ samePadCount++;
}
frog.Next();
toad.Next();

}
cout << "frog position = " << frog.Position() << endl;
cout << "toad position = " << toad.Position() << endl;
cout << "# times at same location = " << samePadCount << endl;
return 0;

}

A Computer Science Tapestry 7.16

Two-dimensional walker

● One-d walker Current() returns an int as position
● Two-d walker Current() returns a Point as position

➤ Both int and Point can be compared using ==
➤ Both int and Point can be printed using <<

● Same program works for two-d walker, even though
underneath the implementation is very different

➤ Since the interfaces are the same/similar, client programs
are easier to write once, use many times

➤ Client code still needs to #include a different header and
must link in a different (two-d) walker implementation

A Computer Science Tapestry 7.17

What’s the Point?

● The two-dimensional walker uses #include "point.h"
➤ This provides access to class Point declaration/interface
➤ The class Point is actually defined using struct Point
➤ In C++, a struct is a class in which everything is public by

default
• In a class, everything is private by default
• A struct is really a hold-over from C, used in C++ for plain

old data

➤ Some programmers/designers don’t like to use structs in
C++, but use classes only

● We’ll use struct when data is public, when the state is really
more important than the behavior

➤ Guideline, data is private accept in a struct, other options?

A Computer Science Tapestry 7.18

point.h

struct Point
{
Point();
Point(double px, double py);

string tostring() const;
double distanceFrom(const Point& p) const;
double x;
double y;

};

● Two constructors, data is public, how is the (0,0) defined?
➤ How is distance from (3,5) to (11,20) calculated?
➤ How is a Point p printed?

A Computer Science Tapestry 7.19

Other details from point.h

● Points can be compared with each other using ==, <, >=, etc.
● Point p can be printed using cout << p << endl;

➤ Later we’ll learn how to overload operators like this
➤ For now we’ll be clients, using Points like ints, BigInts, etc.

● The struct Point has constructors and other behavior
➤ distanceFrom and tostring constitute the behavior
➤ Some programmers think structs shouldn’t have any

functions, holdover from C rather than C++
● What is implemention of Point::distanceFrom like?

A Computer Science Tapestry 7.20

Other uses of structs

● In a program using free (non-class) functions, lots of data is
often passed from one function to another

➤ In class-based programs data is often, though not always,
part of a class and a class object is passed

● Using structs to collect related data makes programs easier to
read, modify, and maintain

➤ Suppose you want to find mean, mode, and median of the
lengths of words in a file, two alternatives:

void doFileStats(const string& filename,
double & mean, int & mode, int & median);

void doFileStats(const string& filename, FileData& data);

A Computer Science Tapestry 7.21

More struct conventions

● It’s almost always worth including a constructor in a struct

struct FileData
{

FileData()
{

myMean = 0.0;
myMode = 0;
myMedian = 0;

}
double myMean;
int myMode;
int myMedian;

};

● What other data might be included in FileData, what about
other constructors?

A Computer Science Tapestry 7.22

Class (and struct) conventions

● For debugging and printing it’s useful for classes to
implement a function tostring(), that "stringizes" an object

➤ Also useful in overloading operator << for an object

Point p;
string s = p.tostring();
cout << s << " " << p << endl;

● When initializing data in a constructor, it’s better to use an
initializer list than to set values in the constructor body

➤ Sometimes initializer lists are required (see next example),
so using them at all times leads to more uniform coding
that works in more situations

A Computer Science Tapestry 7.23

Initializer lists are sometimes required

● Consider a class that has a private Dice data member

class Game
{

public:
Game();
// more functions

private:
Dice myDie;
// more data

};

● The instance variable myDie must be given a # sides, this
cannot be given in the .h file/declaration, must be provided in
the .cpp file/class implementation

➤ It’s an error if an initializer list isn’t use

A Computer Science Tapestry 7.24

Initializer lists

● Here are two versions of an initializer list for Game::Game()

Game::Game()
: myDie(6)

{ }

// if there’s more data, use initializer list
Game::Game()

: myDie(6),
myName(“roulette”)

{ }

● There can be code in constructor body to do more, e.g., read
from a file

➤ Sometimes it’s useful to call private, helper functions

A Computer Science Tapestry 7.25

Mary Shaw

● Software engineering and
software architecture

➤ Tools for constructing large
software systems

➤ Development is a small
piece of total cost,
maintenance is larger,
depends on well-designed
and developed techniques

● Interested in computer science,
programming, curricula, and
canoeing

A Computer Science Tapestry 7.26

Three phases of creating a program

● The preprocessor is a program that processes a file, processing
all #include directives (and other preprocessor commands)

➤ Takes a file, and creates a translation unit
➤ Replaces #include “foo.h” with contents of file foo.h, and

does this recursively, for all #includes that foo includes
and so on

➤ Produces input to the next phase of program creation

● The compiler has a translation unit as input and produces
compiled object code as output

➤ The object code is platform/architecture specific, the
source code is (in theory at least) the same on all platforms

➤ Some compilers require special treatment, not up to
standard C++

A Computer Science Tapestry 7.27

From compiling to linking

● The compilation phase creates an object file, but libraries and
other files still need to be linked to create an executable

➤ Header files like “dice.h” provide only the interface,
enough for the compiler to know that a function call has
the right parameters and is used correctly

➤ The implemention file, “dice.cpp”, must be compiled and
included in the final executable, or the program won’t
work (call a dice function, but no one is home?)

● Linking combines object files, some of which may be
collected in a library of related files, to create an executable

➤ Link the standard library (iostream, for example)
➤ Link other libraries depending on program, graphics,

tapestry, other application-specific libraries

A Computer Science Tapestry 7.28

Issues in creating a program

● Programming environments create optimized or debug code
➤ Use debug version to facilitate development
➤ If you need optimization, use it only after a program works

● Some errors are compilation errors, typically language syntax
or failure to find a #include’d header file

➤ The preprocessor looks in standard places for header files,
sometimes this list needs to be changed

● Other errors are linker errors, libraries or object files that are
needed aren’t included

➤ Change programming environment parameters to find the
libraries

