
A Computer Science Tapestry 6.1

Classes: From Use to Implementation

● We’ve used several classes, a class is a collection of objects
sharing similar characteristics

➤ A class is a type in C++, like int, bool, double
➤ A class encapsulates state and behavior
➤ A class is an object factory

● string (this is a standard class), need #include <string>
➤ Objects: "hello", "there are no frogs", …
➤ Methods: substr(…), length(…), find(…), <<

● Date need #include "date.h "

➤ Objects: December 7, 1949, November 22, 1963
➤ Methods: MonthName(), DaysIn(), operator -

A Computer Science Tapestry 6.2

Anatomy of the Dice class

● The class Dice, need #include "dice.h"
➤ Objects: six-sided dice, 32-sided dice, one-sided dice
➤ Methods: Roll(), NumSides(), NumRolls()

● A Dice object has state and behavior
➤ Each object has its own state, just like each int has its own

value
• Number of times rolled, number of sides

➤ All objects in a class share method implementations, but
access their own state

• How to respond to NumRolls()? Return my own # rolls

A Computer Science Tapestry 6.3

The header file dice.h

class Dice
{

public:
Dice(int sides); // constructor
int Roll(); // return the random roll
int NumSides() const; // how many sides
int NumRolls() const; // # times this die rolled

private:
int myRollCount; // # times die rolled
int mySides; // # sides on die

};

● The compiler reads this header file to know what’s in a Dice
object

● Each Dice object has its own mySides and myRollCount

A Computer Science Tapestry 6.4

The header file is a class declaration

● What the class looks like, but now how it does anything
● Private data are called instance variables

➤ Sometimes called data members, each object has its own
● Public functions are called methods, member functions, these

are called by client programs

● The header file is an interface, not an implementation
➤ Description of behavior, analogy to stereo system
➤ Square root button, how does it calculate? Do you care?

● Information hiding and encapsulation, two key ideas in
designing programs, object-oriented or otherwise

A Computer Science Tapestry 6.5

From interface to use, the class Dice

#include “dice.h”
int main()
{

Dice cube(6);
Dice dodeca(12);
int x = cube.Roll();
int k;
for(k=0; k < 6; k++)
{ x = dodeca.Roll();
}
return 0;

}

Objects constructed
cube.myRollCount == 0
cube.mySides == 6

dodeca.myRollCount == 0
dodeca.mySides == 12

Method invoked

After for loop

cube.myRollCount == 1
cube.mySides == 6

dodeca.myRollCount == 6
dodeca.mySides == 12

A Computer Science Tapestry 6.6

Header file as Interface

● Provides information to compiler and to programmers
➤ Compiler determines how big an object (e.g., Dice cube(6))

is in memory
➤ Compiler determines what methods/member functions can

be called for a class/object
➤ Programmer reads header file (in theory) to determine

what methods are available, how to use them, other
information about the class

● What about CD, DVD, stereo components?
➤ You can use these without knowing how they really work
➤ Well-designed and standard interface makes it possible to

connect different components
➤ OO software strives to emulate this concept

A Computer Science Tapestry 6.7

William H. (Bill) Gates, (b. 1955)

● CEO of Microsoft, richest
person in the world (1999)

➤ First developed a BASIC
compiler while at Harvard

➤ Dropped out (asked to
leave?) went on to develop
Microsoft

“You’ve got to be willing to read
other people’s code, then write
your own, then have other
people review your code”

● Generous to Computer Science
and philanthropic in general

● Visionary, perhaps cutthroat

A Computer Science Tapestry 6.8

From Interface to Implementation

● The header file provides compiler and programmer with how
to use a class, but no information about how the class is
implemented

➤ Important separation of concerns, use without complete
understanding of implementation

➤ Implementation can change and client programs won’t
(hopefully) need to be rewritten

• If private section changes, client programs will need to
recompile

• If private section doesn’t change, but implementation does,
then client programs relinked, but not recompiled

● The implementation of foo.h is typically in foo.cpp, this is a
convention, not a rule, but it’s well established (foo.cc used
too)

A Computer Science Tapestry 6.9

Implementation, the .cpp file
● In the implementation file we see all member functions written,

same idea as functions we’ve seen so far
➤ Each function has name, parameter list, and return type
➤ A member function’s name includes its class
➤ A constructor is a special member function for initializing an

object, constructors have no return type

Dice::Dice(int sides)
// postcondition: all private fields initialized
{

myRollCount = 0;
mySides = sides;

}

int Dice::NumSides() const
// postcondition: return # of sides of die
{

return mySides;
}

A Computer Science Tapestry 6.10

More on method implementation

● Each method can access private data members of an object, so
same method implementation shared by different objects

➤ cube.NumSides() compared to dodeca.NumSides()

int Dice::NumSides() const
// postcondition: return # of sides of die
{

return mySides;
}

int Dice::Roll()
// postcondition: number of rolls updated
// random ’die’ roll returned
{

RandGen gen; // random number generator (“randgen.h”)

myRollCount= myRollCount + 1; // update # of rolls
return gen.RandInt(1,mySides); // in range [1..mySides]

}

A Computer Science Tapestry 6.11

Understanding Class Implementations

● You do NOT need to understand implementations to write
programs that use classes

➤ You need to understand interfaces, not implementations
➤ However, at some point you’ll write your own classes

● Data members are global or accessible to each class method
● Constructors should assign values to each instance variable

● Methods can be broadly categorized as accessors or mutators
➤ Accessor methods return information about an object

• Dice::NumRolls() and Dice::NumSides()
➤ Mutator methods change the state of an object

• Dice::Roll(), since it changes an object’s myNumRolls

A Computer Science Tapestry 6.12

Class Implementation Heuristics

● All data should be private
➤ Provide accessor functions as needed, although classes

should have more behavior than simple GetXXX methods
● Make accessor functions const

➤ Easy to use const functions (we’ll see more on const
later), although difficult at times to implement properly

➤ A const function doesn’t modify the state of an object

int Dice::NumSides() const
// postcondition: return # of sides of die
{

return mySides;
}

A Computer Science Tapestry 6.13

Building Programs and Classes

● To develop a program, written with classes or not, start small
➤ Get a core working, and add to the core
➤ Keep the program working, easier to find errors when

you’ve only a small amount of new functionality
➤ Grow a program incrementally rather than building a

program all at once

● Start with a prototype
➤ Incomplete, but reasonable facsimile to the final project
➤ Help debug design, ideas, code, …
➤ Get feedback to stay on track in developing program

• From users, from compiler, from friends, from yourself

A Computer Science Tapestry 6.14

Design Heuristics

● Make each function or class you write as single-purpose as
possible

➤ Avoid functions that do more than one thing, such as
reading numbers and calculating an average, standard
deviation, maximal number, etc.,

• If source of numbers changes how do we do statistics?
• If we want only the average, what do we do?

➤ Classes should embody one concept, not several. The
behavior/methods should be closely related

● This heuristic is called Cohesion, we want functions and
classes to be cohesive, doing one thing rather than several

➤ Easier to re-use in multiple contexts

A Computer Science Tapestry 6.15

Design Heuristics continued

● Functions and classes must interact to be useful
➤ One function calls another
➤ One class uses another, e.g., as the Dice::Roll()

function uses the class RandGen

● Keep interactions minimal so that classes and functions don’t
rely too heavily on each other, we want to be able to change
one class or function (to make it more efficient, for example)
without changing all the code that uses it

● Some coupling is necessary for functions/classes to
communicate, but keep coupling loose

➤ Change class/function with minimal impact

A Computer Science Tapestry 6.16

Reference parameters

● It’s useful for a function to return more than one value
➤ Find roots of a quadratic
➤ Get first and last name of a user

● Functions are limited to one return value
➤ Combine multiple return values in object (create a class)
➤ Use reference parameters to send values back from

function
• Values not literally returned
• Function call sends in an object that is changed

● Sometimes caller wants to supply the object that’s changed

string s = ToLower("HEllO") // return type?

string s = "HeLLo";

ToLower(s); // return type?

A Computer Science Tapestry 6.17

Quadratic Equation Example

void Roots(double a, double b, double c,
double& root1, double& root2);

// post: root1 and root2 set to roots of
// quadratic ax^2 + bx + c
// values undefined if no roots exist

int main()
{

double a,b,c,r1,r2;
cout << "enter coefficients ";
cin >> a >> b >> c;
Roots(a,b,c,r1,r2);

cout << "roots are " << r1 << " " << r2 << endl;
return 0;

}

A Computer Science Tapestry 6.18

Who supplies memory, where’s copy?

void Roots(double a, double b, double c,
double& root1, double& root2);

// post: root1 and root2 set to roots of
// quadratic ax^2 + bx + c
// values undefined if no roots exist

● For value parameter, the argument value is copied into
memory that “belongs” to parameter

● For reference parameter, the argument is the memory, the
parameter is an alias for argument memory

double x, y, w, z;
Roots(1.0, 5.0, 6.0, x, y);
Roots(1.0, w, z, 2.0, x); // no good, why?

A Computer Science Tapestry 6.19

Examples

● What’s prototype for a function that rolls two N-sided dice Y
times and returns the number of double 1’s and double N’s

● What’s prototype for a function that returns the number of
hours, minutes, and seconds in N seconds?

● What’s prototype for a function that returns the number of
Saturdays and the number of Sundays in a year?

A Computer Science Tapestry 6.20

Parameter Passing: const-reference

● When parameters pass information into a function, but the
object passed doesn’t change, it’s ok to pass a copy

➤ Pass by value means pass a copy
➤ Memory belongs to parameter, argument is copied

● When parameter is altered, information goes out from the
fucntion via a parameter, a reference parameter is used

➤ No copy is made when passing by reference
➤ Memory belongs to argument, parameter is alias

● Sometimes we want to avoid the overhead of making the
copy, but we don’t want to allow the argument to be changed
(by a malicious function, for example)

➤ const-reference parameters avoid copies, but cannot be
changed in the function

A Computer Science Tapestry 6.21

Count # occurrences of “e”

● Look at every character in the string, avoid copying the string

int LetterCount(const string& s, const string& letter)
// post: return number of occurrences of letter in s
{

int k, count = 0, len = s.length();
for(k=0; k < len; k++)
{ if (s.substr(k,1) == letter)

{ count++;
}

}
return count;

}

● Calls below are legal
int ec = LetterCount("elephant", "e");
string s = "hello"; cout << LetterCount(s, "a");

A Computer Science Tapestry 6.22

General rules for Parameters

● Don’t worry too much about efficiency at this stage of
learning to program

➤ You don’t really know where efficiency bottlenecks are
➤ You have time to develop expertise

● However, start good habits early in C++ programming
➤ Built-in types: int, double, bool, char, pass by value unless

returning/changing in a function
➤ All other types, pass by const-reference unless

returning/changing in a function
➤ When returning/changing, use reference parameters

● Const-reference parameters allow constants to be passed,
“hello” cannot be passed with reference, but ok const-
reference

A Computer Science Tapestry 6.23

Rock Stars for Computer Science

I was going to
call it “Songs in
the Key of C++”

I love to program
biorhythms

We’d tell you about
programming, but our
brains are empty

I think about C++
while I’m driving

A Computer Science Tapestry 6.24

Streams for reading files

● We’ve seen the standard input stream cin, and the standard
output streams cout (and cerr)

➤ Accessible from <iostream>, used for reading from the
keyboard, writing to the screen

● Other streams let us read from files and write to files
➤ Syntax of reading is the same: a stream is a stream
➤ Syntax for writing is the same: a stream is a stream

● To use a file stream the stream must be opened
➤ Opening binds stream to a file, then I/O to/from is ok
➤ Should close file streams, but happens automatically

A Computer Science Tapestry 6.25

Input file stream: Note similarity to cin

string word;
int numWords = 0; // # words read so far
while (cin >> word) // read succeeded
{ numWords++;
}
cout << "number of words read = " << numWords << endl;

ifstream input; // need <fstream> for this
string filename = PromptString("enter name of file: ");
input.open(filename.c_str());

while (input >> word) // read succeeded
{ numWords++;
}
cout << "number of words read = " << numWords << endl;

A Computer Science Tapestry 6.26

Find longest word in file (most letters)

● Idea for algorithm/program
➤ Read every word, remember the longest word read so far
➤ Each time a word is read, compare to longest-so-far, if

longer then there’s a new longest-so-far

● What should longest-so-far be initialized to?
➤ Short word? Long word? First word?

● In general, when solving extreme-value problems like this use
the first value as the initial value

➤ Always works, but leads to some duplicate code
➤ For some values a default initialization is possible

A Computer Science Tapestry 6.27

Maximal and Minimal Values

● Largest int and double values are found in <climits> and
<cfloat>, respective (<limits.h> and <float.h>)

➤ INT_MAX and INT_MIN are max and min ints
➤ DBL_MAX and DBL_MIN are max and min doubles

● What about maximal string value alphabetically? Minimal?
➤

● What about longest string in length? Shortest?
➤

A Computer Science Tapestry 6.28

Using classes to solve problems

● Find the word in a file that occurs most frequently
➤ What word occurs most often in Romeo and Juliet
➤ How do we solve this problem?

● Suppose a function exists with the header below:

int CountOccurrences(const string& filename,
const string& s)

// post: return # occurrences of s in file w/filename

● How can this function be called to find the maximally
occurring word in Romeo and Juliet?

➤ Read words, update counter?
➤ Potential problems?

A Computer Science Tapestry 6.29

Complete the code below
int CountOccurrences(const string& filename, const string& s)’
// post: return # occurrences of s in file w/filename

int main()
{

string filename = PromptString("enter file: ");
ifstream input(filename.c_str());
string word;

while (input >> word)
{ int occs = CountOccurrences(filename, word);

}
cout << "maximally occurring word is " << maxWord << endl;
cout << "which occurs " << max << " times" << endl;

}

A Computer Science Tapestry 6.30

Two problems

● Words appear as The and the, how can we count these as the
same? Other issues?

➤ Useful utilities in “strutils.h”
• ToLower return a lowercase version of a string
• ToUpper return an uppercase version of a string
• StripPunc remove leading/trailing punctuation
• tostring(int) return “123” for 123, int-to-string conversion
• atoi(string) return 123 for “123”, string-to-int conversion

● We count occurrences of “the” as many times as it occurs
➤ Lots of effort duplicated, avoid using the class StringSet
➤ A set doesn’t store duplicates, read file, store in set, then

loop over the set counting occurrences

A Computer Science Tapestry 6.31

StringSet and WordIterator

● Both classes support access via iteration
➤ Iterating over a file using a WordIterator returns one

word at-a-time from the file
➤ Iterating over a set using a StringSetIterator returns

one word at-a-time from the set

● Iteration is a common pattern: A pattern is a solution to a
problem in a context

➤ We’ll study more patterns later
➤ The pattern has a name, and it’s an idea embodied in code

rather than the code itself

● We can write code without knowing what we’re iterating over
if the supports generalization in some way

A Computer Science Tapestry 6.32

See setdemo.cpp
#include <iostream>
using namespace std;
#include "stringset.h"

int main()
{

StringSet sset;
sset.insert("watermelon"); sset.insert("apple");
sset.insert("banana"); sset.insert("orange");
sset.insert("banana"); sset.insert("cherry");
sset.insert("guava"); sset.insert("banana");
sset.insert("cherry");

cout << "set size = " << sset.size() << endl;

StringSetIterator it(sset);
for(it.Init(); it.HasMore(); it.Next())
{ cout << it.Current() << endl;
}
return 0;

}

