
A Computer Science Tapestry 5.1

From Selection to Repetition

● The if statement and if/else statement allow a block of
statements to be executed selectively: based on a guard/test

if (area > 20.0)
{

cout << area << " is large" << endl;
}

● The while statement repeatedly executes a block of
statements while the guard/test is true

int month = 0;
while (month < 12)
{

PrintCalendar(month, 1999);
month += 1; // month = month + 1;

}

A Computer Science Tapestry 5.2

Semantics of while loop

if (test) while (test)
{ {

statements; statements;
statements; statements;

} }

test

Statement list

Next statement

true

false

test

Statement list

Next statement

true

false

A Computer Science Tapestry 5.3

Print a string backwards

● Determine # characters in string, access each character
➤ What string functions do we have ?
➤ How many times should the loop iterate ?

cout << "enter string: ";
cin >> s;
cout << s << " reversed is ";

k = s.length() - 1; // index of last character in s
while (k >= 0)
{ cout << s.substr(k,1);

k -= 1;
}
cout << endl;

● Modify to create a new string that’s the reverse of a string.

A Computer Science Tapestry 5.4

ReverseString as a function

● First step, what is the prototype?

string Reverse(string s)
// pre: s = c0c1c2…cn-1
// post: return c n-1…c2c1c0

● Second step, how do we build a new string?
➤ Start with an empty string, ""
➤ Add one character at a time using concatenation, +

rev = rev + s.substr(k,0);

● Use Reverse to determine if a string is a palindrome

A Computer Science Tapestry 5.5

Anatomy of a loop

● Initialize variables used in loop/loop test (before loop)
➤ Loop test affected by initial values of variables

● The loop test or guard is evaluated before each loop iteration
➤ NOT evaluated after each statement in loop

● The loop body must update some variable/expression used in
the loop test so that the loop eventually terminates

➤ If loop test is always true, loop is infinite

k = s.length() - 1;
string rev = "";
while (k >= 0)
{ rev = rev + s.substr(k,1);

k -= 1;
}
return rev;

A Computer Science Tapestry 5.6

Infinite loops

● Sometimes your program will be “stuck”, control-C to stop
➤ What’s the problem in the loop below? Fixable?

cin >> num;
int start = 0;
while (start != 0)
{ start += 2;

cout << start << endl;
}

● It’s impossible to write one program that detects all infinite
loops (the compiler doesn’t do the job, for example)

➤ This can be proven mathematically, Halting Problem
➤ Some detection possible, but not universally

A Computer Science Tapestry 5.7

Developing Loops

● Some loops are easy to develop code for, others are not
➤ Sometimes the proper loop test/body are hard to design
➤ Techniques from formal reasoning/logic can help

● Practice helps, but remember
➤ Good design comes from experience, experience comes

from bad design

● There are other looping statements in addition to while, but
they don’t offer anything more powerful, just some syntactic
convenience

➤ for loop
➤ do-while loop

A Computer Science Tapestry 5.8

Factorial

● N! = 1x2x…xN is “N factorial”, used in math, statistics

int factorial(int n)
// pre: 0 <= n
// post: returns n! (1 x 2 x … x n)

● We’ll return the value of a variable product, we’ll need to
accumulate the answer in product

➤ The loop will iterate n times, mutiplying by 1, 2, …, n
➤ Alternatives: how many multiplications are needed?
➤ If product holds the answer, then product == n! when

the loop terminates
• Use this to help develop the loop

A Computer Science Tapestry 5.9

Factorial continued

● If product holds the answer, then product == n! when the
loop terminates, replace n with count, the looping variable

➤ Invariant: product == count!

long Factorial(int num)
// precondition: num >= 0
// postcondition returns num!
{

long product = 1;
int count = 0;
while (count < num)
{

count += 1;
product *= count;

}
return product;

}

A Computer Science Tapestry 5.10

Long, int, and BigInt

● On some systems the type long int (long) provides a
greater range than int

➤ With 32-bit (modern) compilers/operating systems int is
roughly –2 billion to 2 billion, but on 16-bit machines the
range is usually –32,768 to 32,767 [how many values?]

➤ 13! Is 1,932,053,504, so what happens with 14!

● The type BigInt, accessible via #include "bigint.h" can
be used like an int, but gets as big as you want it to be

➤ Really arbitrarily large?
➤ Disadvantages of using BigInt compared to int?

A Computer Science Tapestry 5.11

Determining if a number is prime

● Cryptographic protocols depend on prime numbers
➤ Determining if a number is prime must be “easy”
➤ Actually factoring a number must be “hard”
➤ What does hard mean? What factors affect difficulty?

● PGP (pretty good privacy) and e-commerce depend on
secure/encrypted transactions

➤ What are government restrictions on exporting PGP?
➤ Different versions of Netscape in US and other countries?

● Sophisticated mathematics used for easy prime-testing, we’ll
do basic prime testing that’s reasonably fast, but not good
enough for encryption (why not?)

A Computer Science Tapestry 5.12

Determining Primality (continued)

● 2 is prime, 3 is prime, 5 is prime, 17 is prime, … 137, 193?
➤ To check 137, divide it by 3, 5, 7, 9, 11, 13
➤ To check 193, divide it by 3 ,5, 7, 9, 11, 13

• Note that 14x14 = 196, why is 13 largest potential factor?
• How do we determine if a number is divisible by another?

● We’ll check odd numbers as potential divisors
➤ Treat even numbers as special case, avoid lengthy testing
➤ Watch out for 2, special case of even number
➤ Instead of odd numbers, what would be better as tests?
➤ How many times will our testing loop iterate to determine

if n is prime?
➤ See primes.cpp for code

A Computer Science Tapestry 5.13

Details of IsPrime in primes.cpp

● Several different return statements are written, only one is
executed when function executes

➤ The return statement immediately tops, return to call
➤ Some people think functions should have one return

• Potentially easier to debug and reason about,
• Often introduces extraneous variables/tests

● To assign a double value to an int, a typecast is used, tell
the compiler that the loss of precision is ok

➤ Fix all compiler warnings whenever possible
➤ Make casts explicit, tell the compiler you know what you

are doing
● What about complexity/efficiency of IsPrime?

A Computer Science Tapestry 5.14

C++ details: syntax and shorthand

● With while loops and variables we can write a program to do
anything a program can be written for

➤ Other language features make programs easier to develop
and maintain: functions, if statements, other statements

➤ Yet, we want to avoid needing to understand many, many
language features if we don’t have to

➤ You’ll read code written by others who may use features

● Loops are statements, can be combined with other loops, with
if statements, in functions, etc.

● Other kinds of looping statements can make programming
simpler to develop and maintain

● Similar shorthand for other language features: x = x + 1;

A Computer Science Tapestry 5.15

The for loop

● In many coding problems a definite loop is needed
➤ Number of iterations known before loop begins and

simple to calculate and use in loop (counting loop)
• Example: length of string: print a string vertically

void Vertical(string s)
// post: chars of s printed vertically

int len = s.length(); // for loop alternative
int k = 0; for(k=0; k < len; k+= 1)
while (k < len) { cout << s.substr(k,0);
{ cout << s.substr(k,0); }

k += 1;
}

● Initialization, test, update are localized into one place, harder
to leave update out, for example

A Computer Science Tapestry 5.16

Example: add up digits of a number

● If we have a number like 27 or 1,618 what expression yields
the number of digits in the number (hint, think log)

➤ Which digit is easiest to get, how can we access it?
➤ How can we chop off one digit at-a-time?

int digitSum(int n)
// post: returns sum of digits in n
{

// what’s needed here?
while (n > 0) // for loop alternative?
{ sum += n % 10;

// what’s needed here?
}
return sum;

}

A Computer Science Tapestry 5.17

Shorthand for increment/decrement

● Lots of code requires incrementing a variable by one
➤ Three methods, using +, using +=, and using ++

num = num + 1;
num += 1;
num++;

● We use postincrement ++, also possible to write ++num
➤ These differ on when the increment is performed, but this

difference doesn’t matter when used as abbreviation for
the statement n += 1; in a single statement

● Similarly there are postdecrement (and predecrement)
num = num - 1; num -= 1; num--;

A Computer Science Tapestry 5.18

The do-while loop

● The while loop may never execute, some loops should execute
at least once

➤ Prompt for a number between 0 and 100, loop until entered

do
{ cout << "num in range [0..100] ";

cin >> num;
} while (num < 0 || 100 < num);

➤ Execute while the test/guard is true, in example above
what must be true when loop terminates (de Morgan) ?

A Computer Science Tapestry 5.19

Priming, loop-and-half problems

● Problem: enter numbers, add them up, stop when 0 entered
➤ What should loop test be?

int sum = 0;
int num;
cin >> num; // prime the loop
while (num != 0)
{ sum += num;

cin >> num;
}
cout << "total = " << sum << end;

➤ Code duplication problem: input (and perhaps prompt)
code is repeated before loop and in loop

• Why is duplicated code a bad thing? Alternatives?

A Computer Science Tapestry 5.20

Loop and a half: quasi infinite solution

● To avoid repeating code, include it in the body of the loop
only, use a test to break out of the loop

➤ break statement exits (inner-most) loop

int sum = 0;
int num;
while (true)
{ cin >> num;

if (num == 0) // get out of loop
{ break;
}
sum += num;

}
cout << "total = " << sum << end;

A Computer Science Tapestry 5.21

Alternative priming solution

● Force loop to execute once by giving tested variable a value
➤ What’s wrong with the solution below?

int sum = 0;
int num=-1;
while (num != 0)
{ cin >> num;

if (num != 0)
{ sum += num;
}

}
cout << "total = " << sum << end;

A Computer Science Tapestry 5.22

Nested loops

● Sometimes one loop occurs in another
➤ Generating tabular data
➤ Sorting vectors (which is studied much later)

● Often code is simpler to reason about if inner loop is moved to
another function

int j,k;
for(j=1; j <= 6; j++)
{ cout << j;

for(k=0; k < j; k++)
{ cout << "\t" << j*k;
}
cout << endl;

}

● What’s printed? What’s the purpose of the inner loop?

A Computer Science Tapestry 5.23

Using classes

● Using only strings, ints, and doubles limits the kinds of
programs we can write

➤ What about graphics?
➤ What about calendars, address books?
➤ What about web-servers, games, …?

● Using object-oriented techniques means we develop new
types that correspond to the real-world artifact we’re writing
code for

➤ What about an online roulette game?
➤ What about appointment book that synchs with PalmV?

● New types are called classes, variables are called objects and
objects are instances of a class, e.g., 3 for int, “hello” for string

A Computer Science Tapestry 5.24

The class Date

● The class Date is accessible to client programmers by
➤ #include "date.h" to get access to the class

• The compiler needs this information, it may contain
documentation for the programmer

➤ Link the implementation in date.cpp, which has been
compiled to date.o (and maybe stored in a library)

● The class Date models a calendar date:
➤ Month, day, and year make up the state of a Date object
➤ Dates can be printed, compared to each other, day-of-week

determined, # days in month determined, many other
behaviors

• Behaviors are called methods or member functions

A Computer Science Tapestry 5.25

Constructing Date objects

● See usedate.cpp

int main()
{

Date today;
Date birthDay(7,4,1776);
Date million(1000000L);
Date badDate(3,38,1999);
Date y2k(1,1,2000);

cout << "today \t: " << today << endl;
cout << "US bday \t: " << birthDay << endl;
cout << "million \t: " << million << endl;
cout << "bad date \t: " << badDate << endl;
cout << y2k << " is a " << y2k.DayName() << endl;

A Computer Science Tapestry 5.26

Constructing/defining an object

● Date objects (like string objects) are constructed when
they’re first defined

➤ Three ways to construct a Date, what are they?
➤ How have we constructed string objects?

● Constructors for Date objects look like function calls
➤ We’ll see that constructor is special member function
➤ Different parameter lists means different constructors

● Once constructed many ways to manipulate a Date
➤ Increment it, subtract an int from it, print it, …
➤ MonthName(), DayName(), DaysIn(), …

A Computer Science Tapestry 5.27

Finding Thanksgiving in the US

● Thanksgiving occurs on fourth Thursday in November

Date Thanksgiving(int year)
// post: return date for Thanksgiving in year

cout << "what year ";
cin >> year;
cout << "bird day is " << Thanksgiving(year) << endl;

● How do we write the function?
➤ How is it similar to Labor Day, Mother’s Day, Flag Day?
➤ Can we generalize the function?

A Computer Science Tapestry 5.28

The class Dice

● Accessible to client programmers using #include "dice.h"
➤ How do clients get access to implementation?
➤ Why are quotes used instead of angle brackets < .. > ?

● What do we do with Dice outside of programs (real world)
➤ What would be nice to model with the class Dice?
➤ What would be hard?

● Dice objects will work as pseudo-random number generators
➤ Not truly random in a strict mathematical sense
➤ Still useful to introduce randomness into programs
➤ Some random numbers are more random than others

A Computer Science Tapestry 5.29

Using the class Dice

int main()
{

Dice cube(6); // six-sided die
Dice dodeca(12); // twelve-sided die

cout << "rolling " << cube.NumSides()
<< " sided die" << endl;

cout << cube.Roll() << endl;
cout << cube.Roll() << endl;
cout << "rolled " << cube.NumRolls()

<< " times" << endl;

// more here

● See roll.cpp, how is a Dice object constructed?

A Computer Science Tapestry 5.30

What you can and cannot do with Dice

● Cannot define a Dice object without specifying # sides

Dice d(1); // ok, but what is it?

Dice cube; // NOT ok, won’t compile

● How random is a Dice object – how can we test this?
➤ Roll two Dice 10,000 times, count how many 2’s and 12’s
➤ How can we test every valid roll? For n-sided Dice?
➤ How many rolls needed to get a “pure Yahtzee”? (five six-

sided Dice rolled, all yield the same value)
• What techniques help in developing this loop/program?
• What about two Dice, three Dice

A Computer Science Tapestry 5.31

Grace Murray Hopper (1906-1992)

● One of the first programmers
on one of the first computers in
the US

➤ “third programmer on
world’s first large-scale
digital computer”

➤ US Navy, later Admiral
“It’s better to show that something

can be done and apologize for
not asking permission, than to
try to persuade the powers that
be at the beginning”

● ACM Hopper award given for
contributions before 30
1994, Bjarne Stroustrup/C++

A Computer Science Tapestry 5.32

Loop development case study

● To calculate an what are the options?
➤ Use pow in <cmath>, when can’t pow be used?
➤ Multiply a x a x … x a , n times?

● Using 1,024 multiplications to calculate 61024 probably ok, but
what about BigInt values raised to powers?

3x3=9 9x9=81 81x81=6561 6561x6561=43,046,721

➤ Number of multiplications needed for 316?
➤ Does this matter?

● How do we calculate 4125 or 1767?
➤ Divide exponent in half

A Computer Science Tapestry 5.33

Efficient Exponentiation (continued)
double Power(double base, int expo)
// precondition: expo >= 0
// postcondition: returns base^expo (base to the power expo)
{

double result = 1.0;
// invariant: result * (base^expo) = answer

● Is invariant true initially? Why?
● If we use return result; then what should loop test be?

➤ How will we make progress towards loop termination?
➤ What values will change in body of loop?

A Computer Science Tapestry 5.34

Exponentiation loop development
double Power(double base, int expo)
// precondition: expo >= 0
// postcondition: returns base^expo (base to the power expo)
{

double result = 1.0;
// invariant: result * (base^expo) = answer
while (expo > 0)
{ if (expo % 2 == 0)

{ expo /= 2; // divide by 2 how many times?
// how does base change?

}
// more here for odd exponent

}
return result;

}

● When exponent is even we divide it by two, what about when
exponent is odd?

A Computer Science Tapestry 5.35

Code for odd exponents
double Power(double base, int expo)
// precondition: expo >= 0
// postcondition: returns base^expo (base to the power expo)
{

double result = 1.0;
// invariant: result * (base^expo) = answer
while (expo > 0)
{ if (expo % 2 == 0) // code here from before

else
{

}

}
return result;

}

● Use: result x baseexpo = (result x base) x baseexpo/2 x baseexpo/2

A Computer Science Tapestry 5.36

Factor out common code
double Power(double base, int expo)
// precondition: expo >= 0
// postcondition: returns base^expo (base to the power expo)
{

double result = 1.0;
// invariant: result * (base^expo) = answer
while (expo > 0)
{ if (expo % 2 != 0) // exponent is odd

{ result *= base;
}
expo /= 2; // 4/2 == 2, 5/2 == 2
base *= base; // (a*a)^(b/2) == a^b

}
return result;

}

● Will this function work if base is a BigInt value? What must
change?

