From Selection to Repetition

e Theif statementandi f/ el se statement allow a block of
statements to be executed selectively: based on a guard/test

I f (area > 20.0)
{

}

o« The whi | e statement repeatedly executes a block of
statements while the guard/test is true

cout << area << " iIs large" << endl;

int nonth = O;
while (nonth < 12)

{
Print Cal endar (nont h, 1999);

month += 1; [/ month = nonth + 1;

A Computer Science Tapestry

Semantics of while loop

I f (test)

{

}

st at ement s;
st at ement s;

false

Y

true

test/ i

St at enent

| | st

Next statenent |«

A Computer Science Tapestry

while (test)
{

statenent s;
statenent s;

true

t est
——

l

false St at ement

| i st

Y

Next st at enent

Print a string backwards

o Determine # characters in string, access each character
0 What string functions do we have ?
0 How many times should the loop iterate ?

cout << "enter string: ";
cin >> s;
cout << s << " reversed is ";

k = s.length() - 1; // index of last character in s
while (k >= 0)

{ cout << s.substr(k,1);
- = 1’
}

cout << endl:

o Modify to create a new string that’s the reverse of a string.

A Computer Science Tapestry 5.3

ReverseString as a function
e First step, what is the prototype?
string Reverse(string s)

/] pre: s = c,C,C,.. (;,1
/Il post: return c 41---GC,Cy

e Second step, how do we build a new string?
0 Start with an empty string, ™
0 Add one character at a time using concatenation, +

rev = rev + s.substr(k,0);

e Use Reverse todetermine if a string is a palindrome

A Computer Science Tapestry

54

Anatomy of a loop

o Initialize variables used in loop/loop test (before loop)
0 Loop test affected by initial values of variables

e The loop test or guard is evaluated before each loop iteration
0 NOT evaluated after each statement in loop

e The loop body must update some variable/expression used in
the loop test so that the loop eventually terminates

0 If loop test is always true, loop is infinite

k = s.length() - 1;

string rev = "";

while (k >= 0)

{ rev = rev + s.substr(k, 1);

k -= 1;
}

return rev;

A Computer Science Tapestry 5.5

Infinite loops

e Sometimes your program will be “stuck”, control-C to stop
0 What’s the problem in the loop below? Fixable?

cin >> num
int start = 0;
while (start !'= 0)
{ start += 2;
cout << start << endl;

}

e It’'s impossible to write one program that detects all infinite
loops (the compiler doesn’t do the job, for example)

0 This can be proven mathematically, Halting Problem
1 Some detection possible, but not universally

A Computer Science Tapestry 5.6

Developing Loops

e Some loops are easy to develop code for, others are not
0 Sometimes the proper loop test/body are hard to design
0 Techniques from formal reasoning/logic can help

e Practice helps, but remember

0 Good design comes from experience, experience comes
from bad design

e There are other looping statements in addition to whi | e, but
they don’t offer anything more powerful, just some syntactic
convenience

0 for loop
0 do-whi | e loop

A Computer Science Tapestry 5.7

Factorial
e N!'=1x2x...xN 1is “N factorial”’, used in math, statistics

int factorial (int n)
[l pre: 0 <=n
I/ post: returnsn! (1 x2 X ... XN)

o We’ll return the value of a variable pr oduct , we’ll need to
accumulate the answer in pr oduct

0 The loop will iterate n times, mutiplyingby 1,2, ..., n
0 Alternatives: how many multiplications are needed?

0 If product holds the answer, then pr oduct == n! when
the loop terminates

= Use this to help develop the loop

A Computer Science Tapestry 5.8

Factorial continued

e Ifproduct holds the answer, then product == n! when the
loop terminates, replace n with count , the looping variable
0 Invariant. product == count!

| ong Factorial (int num
[l precondition: num>= 0
/| postcondition returns num
{
| ong product = 1;
I nt count = O;
whil e (count < num
{
count += 1;
product *= count;

}

return product;

A Computer Science Tapestry 5.9

Long, int, and Bigint

On some systems the type | ong i nt (I ong) provides a
greater range than i nt

0 With 32-bit (modern) compilers/operating systems i nt is
roughly -2 billion to 2 billion, but on 16-bit machines the
range iIs usually -32,768 to 32,767 [how many values?]

0 13!1s 1,932,053,504, so what happens with 14!

The type Bi gl nt, accessible via #i ncl ude "bi gi nt. h" can
be used like an i nt, but gets as big as you want it to be
0 Really arbitrarily large?

0 Disadvantages of using Bi gl nt comparedtoi nt ?

A Computer Science Tapestry

5.10

Determining if a number Is prime

e Cryptographic protocols depend on prime numbers
0 Determining if a number is prime must be “easy”
0 Actually factoring a number must be “hard”
0 What does hard mean? What factors affect difficulty?

o PGP (pretty good privacy) and e-commerce depend on
secure/encrypted transactions

0 What are government restrictions on exporting PGP?
0 Different versions of Netscape in US and other countries?

e Sophisticated mathematics used for easy prime-testing, we’ll
do basic prime testing that’s reasonably fast, but not good
enough for encryption (why not?)

A Computer Science Tapestry 511

Determining Primality (continued)

e 2Iisprime, 3isprime,5isprime, 17 is prime, ... 137, 1937
0 Tocheck 137, divide it by 3,5, 7,9, 11, 13
0 Tocheck 193, divide itby 3 5,7, 9, 11, 13
= Note that 14x14 = 196, why is 13 largest potential factor?
< How do we determine if a number is divisible by another?

o« We’ll check odd numbers as potential divisors

Treat even numbers as special case, avoid lengthy testing
Watch out for 2, special case of even number

Instead of odd numbers, what would be better as tests?

How many times will our testing loop iterate to determine
If nis prime?

0 See prinmes. cpp for code

N I [y B

A Computer Science Tapestry 5.12

Detalls of | sPri ne in primes.cpp

o Several different return statements are written, only one is
executed when function executes

0 Ther et ur n statement immediately tops, return to call

0 Some people think functions should have one return
= Potentially easier to debug and reason about,
= Often introduces extraneous variables/tests

e Toassignadoubl evaluetoani nt,at ypecast is used, tell
the compiler that the loss of precision is ok

0 Fix all compiler warnings whenever possible

0 Make casts explicit, tell the compiler you know what you
are doing

o« What about complexity/efficiency of | sPri ne?

A Computer Science Tapestry 5.13

C++ detalls: syntax and shorthand

With while loops and variables we can write a program to do
anything a program can be written for

0 Other language features make programs easier to develop
and maintain: functions, if statements, other statements

0 Yet, we want to avoid needing to understand many, many
language features if we don’t have to

0 You’ll read code written by others who may use features

Loops are statements, can be combined with other loops, with
If statements, in functions, etc.

Other kinds of looping statements can make programming
simpler to develop and maintain

Similar shorthand for other language features: x = x + 1;

A Computer Science Tapestry 5.14

The f or loop

e In many coding problems a definite loop is needed

0 Number of iterations known before loop begins and
simple to calculate and use in loop (counting loop)

= Example: length of string: print a string vertically

void Vertical (string s)
/| post: chars of s printed vertically

int len = s.length(); /1 for loop alternative
Iint kK = 0; for(k=0; k < len; k+= 1)
while (k < I en) { cout << s.substr(k,0);
{ cout << s.substr(k,0); }

k += 1;

}

o Initialization, test, update are localized into one place, harder
to leave update out, for example

A Computer Science Tapestry 5.15

Example: add up digits of a number

o If we have a number like 27 or 1,618 what expression yields
the number of digits in the number (hint, think log)

0 Which digit is easiest to get, how can we access it?
0 How can we chop off one digit at-a-time?

int digitSun(int n)
[/ post: returns sumof digits in n

{
/[l what's needed here?
while (n > 0) // for loop alternative?
{ sum +=n % 10;
/[l what's needed here?
}
return sum;
}

A Computer Science Tapestry 5.16

Shorthand for increment/decrement

e Lots of code requires incrementing a variable by one
0 Three methods, using +, using +=, and using ++

num = num + 1;
num += 1;
numt+;

e We use postincrement ++, also possible to write ++num

0 These differ on when the increment is performed, but this
difference doesn’t matter when used as abbreviation for
the statementn += 1; Inasingle statement

o Similarly there are postdecrement (and predecrement)
num = num - 1; num - = 1; num - ;

A Computer Science Tapestry 5.17

The do-whi | e loop

e The while loop may never execute, some loops should execute
at least once

0 Prompt for a number between 0 and 100, loop until entered

do
{ cout << "numin range [0..100] *";

cin >> num
} while (num< 0 || 100 < num;

0 Execute while the test/guard is true, in example above
what must be true when loop terminates (de Morgan) ?

A Computer Science Tapestry 5.18

Priming, loop-and-half problems

e Problem: enter numbers, add them up, stop when 0 entered
0 What should loop test be?

I nt sum = O;
I nt num
cin >> num [l prime the | oop
while (num! = 0)
{ sum += num
cin >> num
}

cout << "total = " << sum << end;

10 Code duplication problem: input (and perhaps prompt)
code Is repeated before loop and in loop
= Why is duplicated code a bad thing? Alternatives?

A Computer Science Tapestry 5.19

Loop and a half: quasi infinite solution

e To avoid repeating code, include it in the body of the loop
only, use a test to break out of the loop

0 br eak statement exits (inner-most) loop

I nt sum = O;

| Nt num

while (true)

{ cin >> num
| f (num == 0) /'l get out of |oop
{ Dbreak;
}

sum += num

}

cout << "total = " << sum << end;

A Computer Science Tapestry 5.20

Alternative priming solution

e Force loop to execute once by giving tested variable a value
0 What’s wrong with the solution below?

Il nt sum = O;

| Nt nunme=- 1;

while (num! = 0)

{ cin >> num
I f (num!= 0)
{ sum += num
}

}

cout << "total = " << sum << end;

A Computer Science Tapestry 5.21

Nested loops

e Sometimes one loop occurs in another
0 Generating tabular data
0 Sorting vectors (which is studied much later)

e Often code is simpler to reason about if inner loop is moved to
another function

int j,k;
for(j=1; j <= 6; j+t)
{ cout << j;

for(k=0; k < j; k++)
{ cout << "\t" << |*Kk;
}

cout << endl:

}
e What’s printed? What’s the purpose of the inner loop?

A Computer Science Tapestry 5.22

Using classes

e Using only strings, ints, and doubles limits the kinds of
programs we can write

0 What about graphics?
0 What about calendars, address books?
0 What about web-servers, games, ...?

e Using object-oriented technigues means we develop new
types that correspond to the real-world artifact we’re writing

code for
0 What about an online roulette game?
0 What about appointment book that synchs with PalmV?

e« New types are called classes, variables are called objects and
objects are instances of a class, e.g., 3 for int, “hello” for string

A Computer Science Tapestry 5.23

The class Dat e

e« The class Dat e is accessible to client programmers by
0 #1 ncl ude "dat e. h" to get access to the class

= The compiler needs this information, it may contain
documentation for the programmer
0 Link the implementation in dat e. cpp, which has been
compiled to dat e. o (and maybe stored in a library)

e The class Dat e models a calendar date:
0 Month, day, and year make up the state of a Dat e object
0 Dat es can be printed, compared to each other, day-of-week
determined, # days in month determined, many other
behaviors
= Behaviors are called methods or member functions

A Computer Science Tapestry 5.24

Constructing Dat e objects

e See usedate.cpp

I nt mai n()

{
Dat e

Dat e
Dat e
Dat e
Dat e

cout
cout
cout
cout
cout

t oday;
birthDay(7, 4, 1776);
mllion(1000000L);
badDat e(3, 38, 1999) ;
y2k(1, 1, 2000);

<< "t oday \t:

<< "US bday \t:

<< "mllion \t: "
<< "pbad date \t: "
<< y2k << " is a "

A Computer Science Tapestry

<<
<<
<<
<<
<<

t oday << endl ;
bi rthDay << endl;
mllion << endl;
badDate << endl;
y2k. DayNane() << endl;

5.25

Constructing/defining an object

o Dat e objects (like st r i ng objects) are constructed when
they’re first defined

0 Three ways to construct a Dat e, what are they?
0 How have we constructed st r i ng objects?

e Constructors for Dat e objects look like function calls
0 We’ll see that constructor is special member function
0 Different parameter lists means different constructors

e Once constructed many ways to manipulate a Dat e

0 Increment it, subtract an int from it, print it, ...
0 Mont hName(), DayNane(), Daysln(), ...

A Computer Science Tapestry

5.26

Finding Thanksgiving in the US
e Thanksgiving occurs on fourth Thursday in November
Dat e Thanksgi vi ng(int year)

/] post: return date for Thanksgiving in year

cout << "what year ";
cin >> year;
cout << "bird day is " << Thanksgi ving(year) << endl;

e How do we write the function?

0 How is it similar to Labor Day, Mother’s Day, Flag Day?
0 Can we generalize the function?

A Computer Science Tapestry 5.27

The class D ce

o Accessible to client programmers using #i ncl ude "di ce. h"
0 How do clients get access to implementation?
0 Why are quotes used instead of angle brackets <..>?

e What do we do with Di ce outside of programs (real world)
0 What would be nice to model with the class Di ce?
0 What would be hard?

o Dice objects will work as pseudo-random number generators
0 Not truly random in a strict mathematical sense
0 Still useful to introduce randomness into programs
0 Some random numbers are more random than others

A Computer Science Tapestry 5.28

Using the class Di ce

I nt mai n()
{
Di ce cube(6); /] six-sided die
Di ce dodeca(12); [l twel ve-sided die

cout << "rolling " << cube. Nunti des()
<< " sided die" << endl;

cout << cube.Roll () << endl;

cout << cube.Roll () << endl;

cout << "rolled " << cube. NunRol | s()
<< " tinmes" << endl;

/] nore here

o See roll.cpp, how is a Dice object constructed?

A Computer Science Tapestry 5.29

What you can and cannot do with Dice

o Cannot define a Dice object without specifying # sides

Dice d(1); [l ok, but what is it?
Dice cube; /I NOT ok, won’t compile

e How random is a Dice object — how can we test this?
0 Roll two Di ce 10,000 times, count how many 2’s and 12’s
1 How can we test every valid roll? For n-sided Di ce?

0 How many rolls needed to get a “pure Yahtzee”? (five six-
sided Dice rolled, all yield the same value)
= What techniques help in developing this loop/program?
< What about two Dice, three Dice

A Computer Science Tapestry 5.30

Grace Murray Hopper (1906-1992)

e One of the first programmers
on one of the first computers in
the US

0 “third programmer on
world’s first large-scale
digital computer”

0 US Navy, later Admiral

“It’s better to show that something
can be done and apologize for
not asking permission, than to
try to persuade the powers that
be at the beginning”

e ACM Hopper award given for
contributions before 30

1994, Bjarne Stroustrup/C++

A Computer Science Tapestry 531

Loop development case study

e Tocalculate a" what are the options?
0 Use powin <cmat h>, when can’t pow be used?
0 Multiply axax...xa , N times?

e Using 1,024 multiplications to calculate 6'%4 probably ok, but
what about Bigint values raised to powers?

3x3=9 9x9=81 81x81=6561 6561x6561=43, 046, 721
0 Number of multiplications needed for 316?
0 Does this matter?

o How do we calculate 42> or 17577
0 Divide exponent in half

A Computer Science Tapestry 5.32

Efficient Exponentiation (continued)

doubl e Power (doubl e base, int expo)
/] precondition: expo >= 0
/| postcondition: returns base”expo (base to the power expo)

{

doubl e result = 1.0;
/[l invariant: result * (base”expo) = answer

e Isinvariant true initially? Why?
e Ifweusereturn result; then what should loop test be?

0 How will we make progress towards loop termination?
0 What values will change in body of loop?

A Computer Science Tapestry 5.33

Exponentiation loop development

doubl e Power (doubl e base, int expo)
[l precondition: expo >= 0
/| postcondition: returns base”expo (base to the power expo)

{

double result = 1.0;
/[l invariant: result * (base”“expo) = answer
while (expo > 0)
{ If (expo %2 == 0)
{ expo /= 2; [l divide by 2 how many tines?
/'l how does base change?

}

/'l nmore here for odd exponent

}

return result;

}
e When exponent is even we divide it by two, what about when

exponent is odd?

A Computer Science Tapestry 5.34

Code for odd exponents

doubl e Power (doubl e base, int expo)
/] precondition: expo >= 0
/| postcondition: returns base”expo (base to the power expo)
{
doubl e result = 1.0;
/[l invariant: result * (base”expo) = answer

while (expo > 0)

{ I f (expo %2 == 0) // code here from before
el se
{
}

}

return result;

e Use: result x base®P° = (result xbase) x base®xPo/2 x baseexro/2

A Computer Science Tapestry 5.35

Factor out common code

doubl e Power (doubl e base, int expo)
[l precondition: expo >= 0

/| postcondition: returns base”expo (base to the power expo)

{
doubl e result = 1.0;
/[l invariant: result * (base”expo)
while (expo > 0)
{ If (expo %2 !'= 0) /| exponent
{ result *= base;
}
expo /= 2; Il 4] 2
base *= base; [l (a*a)”™(b/2)
}
return result;
}

answer

I s odd

2, 5/2

o Will this function work if base is a Bi gl nt value? What must

change?

A Computer Science Tapestry

5.36

