
A Computer Science Tapestry 4.1

Control, Functions, Classes

● We’ve used built-in types like int and double as well as the
standard class string and the streams cin and cout

➤ Each type supports certain operations and has a specific
range of values

• What are these for the types we’ve seen so far?

➤ We need more than these basic building blocks, why?

● We’ve used void functions to encapsulate concepts/statements
with one name, avoid repeated code, help develop programs

➤ Functions with parameters are useful
➤ We need functions that return values to solve more

problems than we’re currently able to solve

A Computer Science Tapestry 4.2

Types of control

● Selection: choose from among many options according to
criteria the programmer codes (from which the user chooses)

➤ If response is yes do this, else do that
➤ If year is a leap year number of days is 366, else 365
➤ If PIN is incorrect three times, keep banking card
➤ If 10th caller, we have a winner

● Repetition (next chapter), repeatedly execute statements until
criteria met

➤ Print twelve months of a calendar
➤ Allow three attempts at PIN entry
➤ Make moves in game until game is over

A Computer Science Tapestry 4.3

Problem solving leads to programming

● Which is the better value, a 10 inch, $10.95 pizza or a 12 inch
$15.95 pizza?

➤ Details needed to solve the problem (no computer)?
➤ What’s missing from programming repertoire?

➤ Print two price/sq. in values, let user make conclusions
➤ Program should determine best value after calculating

● We need selection (why?) and we’d like a function to return a
value for comparison (what’s the function?)

if (PizzaValue(10,10.95) > PizzaValue(12,15.95))
cout << "10 inch pizza is better value" << endl;

A Computer Science Tapestry 4.4

First step, the assignment operator

● Avoid repeated calculations

void SpherePizza(double radius, double price)
{

double volume;
volume = 4.0/3*radius*radius*radius*3.1415;
double area;
area = 4*radius*radius*3.1415;
cout << " area = " << area << endl;
cout << " volume = " << volume << endl;
cout << " $/cu.in " << price/volume << endl;

}

● Assign a value to a variable to give it a value
➤ We have used input stream to enter values for variables
➤ Read the assignment operator as gets, “area gets …”

• Avoids confusion with equality operator we’ll see later

A Computer Science Tapestry 4.5

Calculating change (see change.cpp)
int main()
{

int amount;
int quarters, dimes, nickels, pennies;
cout << "make change in coins for what amount: ";
cin >> amount;

quarters = amount/25;
amount = amount - quarters*25;
dimes = amount/10;
amount = amount - dimes*10;
// more code here, see the full program

}

● How does amount = amount - dimes*10 execute?
➤ Evaluate expression on right hand side of operator =
➤ Store value in variable named on left hand side
➤ Problem if same variable used on both sides? Why?

• Differences between reading and writing values

A Computer Science Tapestry 4.6

Problems with code in change.cpp?
// previous code for entering value, calculating #quarters
dimes = amount/10;
amount = amount - dimes*10;

nickels = amount/5;
amount = amount - nickels*5;
pennies = amount;
cout << "# quarters =\t" << quarters << endl;
cout << "# dimes =\t" << dimes << endl;
cout << "# nickels =\t" << nickels << endl;
cout << "# pennies =\t" << pennies << endl;

● What about output statement if there are no quarters?
● What about repeated code?

➤ Code maintenance is sometimes more important than code
development. Repeated code can cause problems, why?

A Computer Science Tapestry 4.7

Control via selection, the if statement
void Output(string coin, int amount)
{

if (amount > 0)
{ cout << "# " << coin << " =\t" << amount << endl;
}

}
int main()
{

// code for providing values to variables, now output
Output("quarters",quarters);
Output("dimes",dimes);
Output("nickels",nickels);
Output("pennies",pennies);

}

● User enters 23 cents, what’s printed? Why?
➤ Selection statement determines if code executes; test or

guard expression evaluates to true or false
➤ true/false are boolean values

A Computer Science Tapestry 4.8

Selection using if/else statement

int main()
{

string name;
cout << "enter name: ";
cin >> name;
if (name == "Ethan")
{ cout << "that’s a very nice name" << endl;
}
else
{ cout << name << " might be a nice name" << endl;
}
return 0;

}

● What if user enters “ethan” ? or “ Ethan”

● How many statements can be guarded by if or else?
● What other tests/guards can be used (we’ve seen < and ==)

A Computer Science Tapestry 4.9

More Operators: Relational
● The guard/test in an if statement must be a Boolean

expression (named for George Boole)
➤ Values are true and false
➤ bool is a built-in type like int, double, but some older

compilers don’t support it

int degrees;
bool isHot = false;
cout << "enter temperature: ";
cin >> degrees;
if (degrees > 95)
{ isHot = true;
}
// more code here

● Relational operators are used in expressions to compare
values: <, <=, >, >=, ==, !=, used for many types

➤ See Table 4.2 and A.4 for details, precedence, etc.

A Computer Science Tapestry 4.10

Details of Relational Operators

● Relational (comparison) operators work as expected with int
and double values, what about string and bool?

23 < 45 49.0 >= 7*7 "apple" < "berry"

● Strings are compared lexicographically (alphabetically) so that
"ant" < "zebra" but (suprisingly?) "Ant" < "zebra"

➤ How do lengths of strings compare?
➤ Why does uppercase ‘A’ come before lowercase ‘z’?

● Boolean values have numeric equivalents, 1 is true, 0 is false
cout << (23 < 45) << endl;

cout << ("guava" == "Guava") << endl;

A Computer Science Tapestry 4.11

Relational Operators: details, details,…

● Use parentheses liberally, or hard-to-find problems occur

cout << 23 + 4 < 16 - 2 << endl;

➤ Causes following error using g++, fix using parentheses
rather than deciphering:

invalid operands ‘int’ and ‘ostream &
()(ostream &)’ to binary ‘operator <<’

● What about true/false and numeric one/zero equivalent?
if (3 + 4 – 7)
{ cout << "hi" << endl; }
else
{ cout << "goodbye" << endl; }

A Computer Science Tapestry 4.12

Logical operators

● Boolean expressions can be combined using logical operators:
AND, OR, NOT

➤ C++ equivalents are &&, ||, and !, respectively
• (standard requires and, or, not, most compilers don’t)

if (90 <= grade)
{ if (grade < 95)

{ cout << "that’s an A" << endl;
}

}

➤ What range of values generates ‘A’ message? Problems?

if (90 < grade && grade < 95)
{ cout << "that’s an A" << endl;
}

A Computer Science Tapestry 4.13

Short-circuit Evaluation

● Subexpressions in Boolean expressions are not evaluated if
the entire expression’s value is already known

if (count != 0 && scores/count < 60)
{ cout << "low average warning" << endl;
}

➤ Potential problems if there are no grades to average? What
happens in this case?

➤ Alternatives in absence of short-circuit evaluation:

if (count != 0)
{ if (scores/count < 60)

{ cout << "low average warning" << endl;
}

}

➤ Examples when OR short-circuits?

A Computer Science Tapestry 4.14

Donald Knuth (b. 1938)

● Scholar, practitioner, artisan
➤ Has written three of seven+

volumes of The Art of Computer
Programming

➤ Began effort in 1962 to survey
entire field, still going

● Strives to write beautiful programs
➤ Developed TeX to help typeset

his books, widely used scientific
document processing program

● Many, many publications
➤ First was in Mad Magazine
➤ On the Complexity of Songs
➤ Surreal Numbers

A Computer Science Tapestry 4.15

It’s all relative and it depends

I make the
best bread in
the city

I make the
best bread in
the world

I make the best
bread in the
universe

I make the best
bread on the block

A Computer Science Tapestry 4.16

Richard Stallman (born 1953)
● Described by some as “world’s best

programmer”
➤ Wrote/developed GNU

software tools, particularly g++
➤ Believes all software should be

free, but like “free speech”, not
“free beer”

➤ Won MacArthur award for his
efforts and contributions

➤ League for Programming
Freedom

● Gnu/Linux is a free operating
system and computing
environment

➤ Heavy industry/web use
➤ Wintel killer??

•Local tie-in: Red Hat Linux,
•headquarted in Durham, NC
•IPO in 1999 at $14
•One month later at $110+
•Markets “free” product

A Computer Science Tapestry 4.17

Functions that return values

● Functions we’ve written so far allow us to decompose a
program into conceptual chunks: void functions

➤ Each function call is a statement, not used in an expression

DoThis();
DoThat();
Sing("cow", "moo");
WriteHTMLHeader();

● Perhaps more useful are functions that return values:

double hypotenuse = sqrt(a*a + b*b);
int days = DaysIn("September");
string userID = GetCurrentUser();

A Computer Science Tapestry 4.18

Functions that return values

● Function prototype indicates return type
➤ Nearly any type can be returned, all types we’ll use can be
➤ A function call evaluates to the return type, the call must

be part of an expression, not a stand-alone statement
• Yes: double hypotenuse = sqrt(a*a + b*b);

• No: sqrt(a*a + b*b);
• ??: cout << sqrt(100) << endl;

• ??: double adjacent = cos(angle)*hypotenuse;

• ??: if (sqrt(x*x + y*y) > min) {…}

• ??: cos(3.1415) == -1;

● The math functions are accessible using #include<cmath>,
on older systems this is <math.h>

A Computer Science Tapestry 4.19

Anatomy of a function

● Function to calculate volume of a sphere

double SphereVol(double radius)
{

return 4.0*radius*radius*radius*acos(-1)/3;
}

➤ Function prototype shows return type, void functions do
not return a value

➤ The return statement alters the flow of control so that the
function immediately exits (and returns a value)

➤ A function can have more than one return statement, but
only one is executed when the function is called (see next
example)

A Computer Science Tapestry 4.20

Functions can return strings
string WeekDay(int day)
{

if (0 == day)
{ return "Sunday";
}
else if (1 == day)
{ return "Monday";
}
else if (2 == day)
{ return "Tuesday";
}
else if (3 == day)
{ return "Wednesday";
}
…

}

● Shorter (code) alternatives?
➤ Is shorter better?

● What does function call look like?

string dayName;
int dayNum;
cout << “enter day (0-6): “;
cin >> dayNum;
dayName = WeekDay(dayNum);

● Which is/are ok? Why?

cout << WeekDay(5)<< endl;
int j = WeekDay(0);
cout << WeekDay(2.1)<< endl;
string s = WeekDay(22);
WeekDay(3);

A Computer Science Tapestry 4.21

Another version of WeekDay
string WeekDay(int day)

// precondition: 0<= day <= 6

// postcondition: return "Sunday" for 0,

// "Monday" for 1, … "Saturday" for 6
{

if (0 == day) return "Sunday";
else if (1 == day) return "Monday";
else if (2 == day) return "Tuesday";
else if (3 == day) return "Wednesday";
else if (4 == day) return "Thursday";
else if (5 == day) return "Friday";
else if (6 == day) return "Saturday";

}

● Every occurrence of else can be removed, why?
● Why aren’t the braces { … } used in this version?

A Computer Science Tapestry 4.22

Function documentation

● Functions usually have a precondition
➤ What properties (e.g., of parameters) must be true for

function to work as intended?
➤ If there are no parameters, sometimes no precondition
➤ Some functions work for every parameter value

double sqrt(double val);
// precondition:

string LoginID(string name)
// precondition:

● Functions always have a postcondition
➤ If precondition is satisfied what does the function do,

what does the function return?

A Computer Science Tapestry 4.23

Free functions and member functions

● The functions in <cmath> are free functions, they aren’t part
of a class

➤ C++ is a hybrid language, some functions belong to a class,
others do not

➤ Java is a pure object-oriented language, every function
belongs to a class

● We’ve used string objects in programs, string is a class
➤ String variables are objects, they’re instances of the class

● A class is a collection having members that have common
attributes (from American Heritage Dictionary)

➤ strings share many properties, but have different values
➤ My little red corvette, her 1958 corvette, his 1977 corvette

A Computer Science Tapestry 4.24

string member functions

● The function length() returns the number of characters

string s = "hello";
int len = s.length(); // value of len is 5
s = "";

// what is value of len here?
len = s.length(); // value of len here?

● Member functions are applied to objects using dot notation
➤ Cannot use length() without an object to apply it to
➤ Not valid int x = length(s);
➤ Valid? double y = sqrt(s.length());

A Computer Science Tapestry 4.25

Finding substrings

● A substring is part of a string, substrings can be extracted
from a string using member function substr(…)

string s = "theater";
int len = s.length(); // value of len is ??
string t = s.substr(0,3); // t is "the", s is ??
t = s.substr(1,4); // t is now ???
s = s.substr(3,3); // s is ?? t is ??

● Function prototype for substr

string substr(int pos, int len);
// pre: 0 <= pos < s.length()
// post: returns substring of len characters
// beginning at position pos
// ok if len too big, NOT ok if pos too big

A Computer Science Tapestry 4.26

Find pieces of symbolic IP addresses

cs.duke.edu goby.cs.duke.edu duke.edu

➤ Pieces are separated by a period or dot
➤ Assume at most four pieces, first is the 0-th piece
➤ Prototype for function is:

string NthIP(string IP, int n);
// pre: 0<= n < 4
// post: return n-th piece of IP, return ""
// if there is no n-th piece

● What are the values of each variable below?

string first = NthIP("cs.duke.edu",0);
string last = NthIP("cs.duke.edu",3);
string xxyy = NthIP("cs.duke.edu",100);

A Computer Science Tapestry 4.27

We need find to write NthIP

● String member function find looks for an occurrence of one
string in another, returns position of start of first occurrence

➤ If no occurrence, then string::npos is returned

string s = "I am the eggman";
int k = s.find("I"); // k is 0
k = s.find("he"); // k is 6
k = s.find("egg"); // what is k?
k = s.find("a"); // what is k?
k = s.find("walrus"); // what is k?
s = "duke.edu";
k = s.find("."); // what is k?
if (k != string::npos)
{ s = s.substr(k+1,s.length()); // what is s?
}

A Computer Science Tapestry 4.28

How to get started writing NthIP?

string NthIP(string s, int n)
// pre: 0<= n < 4
// post: return n-th piece of IP s, return ""
// if there is no n-th piece
{

int len = s.length();
int pos = s.find(".");
if (pos == string::npos) return "";
if (1 == n) // s must have dot,why?
{ return s.substr(0,pos);
}
s = s.substr(pos.len); // what’s value of s?

string s = NthIP(" duke.edu" ,1); // trace the call

A Computer Science Tapestry 4.29

When is a year a leap year?

● Every year divisible by four is a leap year
➤ Except years divisible by 100 are not

• Except years divisible by 400 are

● Alternatively:
➤ Every year divisible by 400 is a leap year
➤ Otherwise, years divisible by 100 are not leap years
➤ Otherwise, years divisible by 4 are leap years
➤ Otherwise, not a leap year

bool IsLeap(int year);

// post: return true iff year is a leap year

A Computer Science Tapestry 4.30

Once more again, into the leap
bool IsLeap(int year)
// post: return true iff year is a leap year
{

if (year % 400 == 0)
{ return true;
}

}

int main()
{

if (IsLeap(2000)) cout << "millennium leap" << endl;
else cout << "Y2K bug found" << endl;
}
return 0;

}

A Computer Science Tapestry 4.31

There’s more than one way to …

bool IsLeap(int year)
// post: return true iff year is a leap year
{

return (year % 400 == 0) ||
(year % 4 == 0 && year % 100 != 0);

}

● How does this work?
➤ Why isn’t an if/else necessary?
➤ What’s the value of an expression formed from Boolean

operators?
➤ Is this version more efficient?
➤ Are these two versions different? From what perspective?

A Computer Science Tapestry 4.32

Preview: the class Date

● In addition to int, double, and string, there are several
standard C++ classes and several classes standard to A
Computer Science Tapestry

➤ Most C++ classes designed to be “industrial strength”
• This often means efficiency at the expense of safety
• Easy to hang yourself, shoot yourself in the foot, …

➤ Tapestry classes designed for novice programmers
• Sacrifice some efficiency, but often not noticeable
• Make it run, make it run, make it fast:

– it’s better to write correct code than to write fast code

● The class Date is accessible using #include”date.h”, the
class represents calendar dates, e.g., June 14, 1999

A Computer Science Tapestry 4.33

What can you do with a Date?

#include <iostream>
using namespace std;
#include "date.h"

int main()
{

int month, year;
cout << "enter month (1-12) and year ";
cin >> month >> year;

Date d(month, 1, year);
cout << "that day is " << d << ", it is a "

<< d.DayName() << endl;
cout << "the month has " << d.DaysIn()

<< " days in it " << endl;

return 0;
}

A Computer Science Tapestry 4.34

Date member functions

● Date d(9,15,1999);

➤ Construct a Date object given month, day, year
➤ Problems in other countries?
➤ Other useful ways to construct a Date?

● d.DayName()

➤ Returns “Saturday”, “Sunday”, and so on

● d.DaysIn()

➤ Returns the number of days in the month

● Other functions you think might be useful?

A Computer Science Tapestry 4.35

DeMorgan’s Law: Boolean operators

● Writing complex Boolean expressions can be tricky
➤ Prompt user for a number, print a message if the value

entered is anything other than 7 or 11 (e.g., 2, 3, 22, …)

➤ Prompt user for “rock”, “paper”, “scissors”, print message
if anything else is entered

A Computer Science Tapestry 4.36

DeMorgan continued

● Logical equivalents

!(a && b) (!a) || (!b)

!(a || b) (!a) && (!b)

● If 7 and 11 are legal values, what are the illegal values?

if (value == 7 || value == 11) // ok here

➤ How to write a statement for illegal values:

if () // not ok

