
A Computer Science Tapestry 3.1

Programs that Respond to Input

● Programs in chapters one and two generate the same output
each time they are executed.

➤ Old MacDonald doesn’t get new animals without editing
and recompiling the program

• Drawbacks in editing and recompiling?

➤ Allow the user to input values that generate output
• Calculators respond to buttons pressed by users, programs

respond to values entered by users

● Sequential model of programming: input, process, output
➤ Interactive model of programming: entities communicate

with each other continuously
➤ We’ll start with IPO, input, process, output

A Computer Science Tapestry 3.2

C++ Review, Programming Process

● C++ programs begin execution in main
➤ Statements are executed (can you identify a statement?)
➤ Sometimes expressions are evaluated:
cout << "gpa = " << grades/totalCourses << endl;

➤ Function calls execute a group of statements that embody
an abstraction (e.g., Verse, EiEiO, …)

● C++ programs must import needed declarations via #include
directives (not statements, why not?)

➤ Streams in <iostream>, used for ???
➤ Strings in <string>, used for ???
➤ Built-in types include int (integer), double (real number)

and many operators like +, -, *, … are NOT imported

A Computer Science Tapestry 3.3

C++ and Programming Review

● Functions have prototypes (or signatures) that indicate to both
the compiler and the programmer how to use the function

➤ Later functions will return values, like square root
➤ For now, void means no value is returned

➤ Every function has a parameter list, but it’s possible to
have no parameters

Hello(); Verse(“pig”,”oink”);

• What do prototypes look like for these calls?

● Function must appear before it’s called, either the function
declaration (prototype only) or definition (implementation)

A Computer Science Tapestry 3.4

Programming Review

● You’ll design and implement C++ programs
➤ Written in a high-level language, should run on many

platforms, e.g., Windows, Unix, Mac, …
➤ Compiler translates C++ into low-level machine language
➤ Different compilers generate different low-level programs

• Efficiency concerns, portability concerns, proprietary…

● To execute, programs must link libraries --- implementations
of what’s imported via #include directives

➤ iostream library, string library, many more “standard”
➤ Tapestry library

● Errors can result if when programs use libraries incorrectly
➤ Fail to include, fail to link, fail to use properly

A Computer Science Tapestry 3.5

Toward a User-controlled Barnyard
#include <iostream>
#include <string>
using namespace std;

void Verse(string animal, string noise)
{

…
cout << "on his farm he had a " << animal << endl;

}
int main()
{

Verse("pig","oink");
Verse("elephant","hrruyaahungh");
return 0;

}

● What can we do to allow user to enter animal and noise?

A Computer Science Tapestry 3.6

Desired Program Behavior

● We want the user to enter/input values

Enter animal name: sheep
Enter noise: baah
Old MacDonald had a farm, Ee-igh, Ee-igh, oh!
And on his farm he had a sheep, Ee-igh, ee-igh, oh!
With a baah baah here
And a baah baah there
Here a baah, there a baah, everywhere a baah baah
Old MacDonald had a farm, Ee-igh, Ee-igh, oh!

● We’ll pass the user-entered values to the Verse function
➤ The input stream cin takes input from the keyboard using
operator <<

➤ Values that are input are stored in variables (aka objects)

A Computer Science Tapestry 3.7

Input values are stored in variables
void Verse(string animal, string noise)
{ // this function doesn’t change
}

int main()
{

string animal; // variable for name of animal
string noise; // variable for noise it makes
cout << "enter animal ";
cin >> animal;

// what goes here??

Verse(animal,noise);
return 0;

}

● Each variable has a type, a name/identifier, and a value

A Computer Science Tapestry 3.8

John Kemeny, (1926-1992)

● Invented BASIC, assistant to
Einstein, Professor and
President of Dartmouth

➤ Popularized computers
being ubiquitous on
campus/at home

➤ BASIC ported to early
personal computers by
Gates and Allen

● Initially BASIC was free, but
many different dialects arose.
In 1985 Kemeny and Kurtz
shipped TRUE BASIC, to
challenge Pascal in academia

➤ What’s used today?

A Computer Science Tapestry 3.9

Variables and Parameters

● Both are placeholders for values. Each has a type and a name
➤ Parameters are given values when arguments passed in a

function call:

void Verse(string animal, string noise){…}

Verse("duck", "quack");

➤ Variables are given values when initially defined, or as a
result of executing a statement

string animal; // defined, no value supplied
cout << "enter animal ";
cin >> animal; // user-entered value stored

A Computer Science Tapestry 3.10

Define variables anywhere, but …

● Two common conventions for where to define variables.
➤ At the beginning of the function in which they’re used:
{

string animal,noise;
cout << "enter animal ";
cin >> animal;
cout << "enter noise a " << animal << " makes ";
cin >> noise;

}

➤ Just before the first place they’re used:

string animal;
cout << "enter animal ";
cin >> animal;
string noise;
cout << "enter noise a " << animal << " makes ";
cin >> noise;

A Computer Science Tapestry 3.11

Using numbers in a program
#include <iostream>
using namespace std;
int main()
{

double degrees;
cin << "enter temperature in degrees F. ";
cin >> degrees;
cout << degrees << " F = "

<< (degrees-32) * 5 / 9 << endl;
return 0;

}

● User can enter 80 or 80.5
➤ There are two types for numbers, double and int, why?
➤ Are parentheses needed in (degrees-32)? Why?

A Computer Science Tapestry 3.12

Variables and Parameters for Numbers

● The type string is not a built-in type, technically it’s a class
➤ What must you do to use strings in your programs?
➤ What alternatives are there if strings not supported?

● There are many numerical types in C++. We’ll use two
➤ int, represents integers: {…-3,-2,-1,0,1,2,3,…}

• Conceptually there are an infinite number of integers, but the
range is limited to [-231, 231-1](on most systems)
Alternatives? Why is range limited?

➤ double, represents real numbers like π, √2
• Not represented exactly, so expressions like 100*0.1 may

yield unexpected results
• Double precision floating point numbers, another type float

exists, but it’s a terrible choice (generates poor results)

A Computer Science Tapestry 3.13

GIGO: program as good as its data?

● In calculations involving floating point numbers it’s easy to
generate errors because of accumulated approximations:

➤ What is 1023 + 1?
➤ When is (x + y) + z different from x + (y + z) ?

● The type int is severely constrained on 16-bit computers, e.g.,
running DOS, largest value is 32,767 (215-1)

➤ Even on 32-bit machines, how many seconds in a
millennium? 60*60*24*365*1000, problems?

➤ On UNIX machines time is measure in seconds since 1970,
problems?

➤ What’s Y2K all about?

A Computer Science Tapestry 3.14

What arithmetic operations exist?

● Syntax and semantics for arithmetic operations
➤ Addition, subtraction: + and –, int and double

23 + 4 x + y d – 14.0 + 23

➤ Multiplication: *, int and double
23 * 4 y * 3.0 d * 23.1 * 4

➤ Division: /, different for int and double
21 / 4 21 / 4.0 x / y

➤ Modulus: %, only for int
21 % 4 17 % 2 x % y

● Mixed type expressions are converted to “higher” type
➤ Associativity of operators determines left-to-right behavior

● Use parentheses liberally
➤ Without () use operator precedence, *,/, % before +,-

A Computer Science Tapestry 3.15

Preview: other operators/types

● Later we’ll study functions like sqrt, cos, sin, pow, …
➤ Accessible using #include <cmath> (or <math.h>)
➤ No way to calculate xy with an operator, need <cmath>

➤ If these functions are accessible via a header file are they
built-in functions?

➤ Do other languages include different operators?

● For integers unlimited in range use #include "bigint.h"
for the type BigInt

➤ Why is this "bigint.h" instead of <bigint>?
➤ Which is more efficient, BigInt or int?

A Computer Science Tapestry 3.16

Comparing Dominos to Pizza Hut to …
void SlicePrice(int radius, double price)
// compute pizza statistics
{

// assume all pizzas have 8 slices

cout << "sq in/slice = ";
cout << 3.14159*radius*radius/8 << endl;

cout << "one slice: $" << price/8 << endl;
cout << "$" << price/(3.14159*radius*radius);
cout << " per sq. inch" << endl;

}

● How can we call this several times to compare values?
● Are there alternatives to the 8 slices/pie convention?
● What about thickness?

