
A Computer Science Tapestry 2.1

Writing and Understanding C++ 

● Writing programs in any language requires understanding the 
syntax and semantics of the programming language as well as 
language-independent skills in programming.

➤ Syntax is similar to rules of spelling and grammar:
• i before e except after c
• The relationship between a command and a quote, 

“this is a fact,” or “this is a fact”,
➤ Semantics is what a program (or English sentence) means

• You ain’t nothing but a hound dog.
• La plume de ma tante est sur la porte.

● At first it seems like the syntax is hard to master, but the 
semantics are much harder

➤ Natural languages are more forgiving than programming 
languages.



A Computer Science Tapestry 2.2

● Traditional first program, doesn’t convey power of computing 
but it illustrates basic components of a simple program

#include <iostream>
using namespace std;

// traditional first program

int main()
{

cout << "Hello world" << endl;
return 0;

}

● This program must be edited/typed, compiled, linked and 
executed.

● Other languages don’t use compile/link phase, examples?  



A Computer Science Tapestry 2.3

Anatomy of a C++ Program

● #include statements make libraries of classes and functions 
accessible to the program

➤ Compiler needs access to interface, what the functions 
look like, but not to implementation

➤ Linker/Loader needs access to implementations
➤ Helps programmers develop code independently

● Comments make programs readable by humans
➤ The cost of program maintenance is often far greater than 

the cost of program development
➤ Use comments liberally, but make them meaningful



A Computer Science Tapestry 2.4

More C++ Anatomy

● Programmer-defined functions
➤ Functions are abstractions that help you to reuse ideas and 

code
➤ The square root key on a calculator invokes a function
➤ The chorus of a song is a similar abstraction
➤ One word, e.g., “chorus”, takes the place of many or 

represents a concept
● A program is a collection of functions and classes
● Programs may be implemented in more than one file, but 

there is only one main function
➤ Execution of the program begins with main
➤ The main function returns a value to the operating system 

or environment



A Computer Science Tapestry 2.5

Dennis Ritchie
● Developed C and Unix
● Shared 1983 Turing award and National Medal of 

Science in 1999

“We wanted to preserve not just a good environment in 
which to do programming, but a system around which a 
fellowship could form”

● Unix was
➤ Free to Universities
➤ Expensive originally
➤ Linux precursor?



A Computer Science Tapestry 2.6

Execution and Flow Control

● Execution of C++ programs is organized around statements
➤ A statement executes, it may cause another statement to 

execute
➤ Statements execute sequentially, or as governed by control 

that repeats a group of statements or selects one of several 
groups to execute

• Control statements covered later; for now sequential flow
● Syntax determines what’s in a statement, semantics 

determines construction of program from statements

● Output will be part of our programs
➤ cout is the output stream, objects are placed on the stream
➤ Objects are strings, numbers, many other types



A Computer Science Tapestry 2.7

Stream output

● cout is the standard output stream, use cerr for errors and 
other streams later. Accessible via #include<iostream>

➤ Objects inserted onto stream with insertion operator <<
➤ Different objects separated by insertion operator <<

cout << "yadda yadda yadda" << endl;
cout << " gross = " << 12*12 << endl;
cout << 5 << " in. = " 

<< 5*2.54 << " cm. " << endl;

● String literals in quotes, other expressions are evaluated 
before being output.

➤ endl is the “end of line” object  (IO manipulator)
➤ Can also output "\n" or "\t" or "\"" (escape sequences)



A Computer Science Tapestry 2.8

More about streams and syntax

● C++ statements are terminated by a semi-colon

cout << 3.14159*10*10 << " = area "
<< " of circle with radius = "
<< 10 << ", circ = " << 2*10*3.14159 
<< endl;

● Thinking ahead:
➤ Repetition of radius, problems?
➤ Repetition of π, problems?
➤ What’s better, several statements, or one long statement?
➤ Evaluating expressions: rules of arithmetic?
➤ Differences between 2*3 and 2*3.0 ?



A Computer Science Tapestry 2.9

Toward Using Functions

#include <iostream>
using namespace std;
int main()
{

cout << "  ||||||||||||||||  " << endl;
cout << "  |              |  " << endl;
cout << "  |    o    o    |  " << endl;
cout << " _|              |_ " << endl;
cout << "|_                _|" << endl;
cout << "  |   |______|   |  " << endl;
cout << "  |              |  " << endl; 
return 0;

}

● Prints head, but not as modular as program using functions
➤ Harder to modify to draw differently



A Computer Science Tapestry 2.10

Programmer-defined Functions
#include <iostream>
using namespace std;
// functions appear here

int main()
{

Hair(); 
Sides();
Eyes(); Ears(); Smile();
Sides();
return 0;

}

● What are advantages of this main over one in which several 
output statements appear in main.

➤ New hair style? Stretched head?
➤ Are these advantages?
➤ How is width of head determined? Drawbacks? Solutions?



A Computer Science Tapestry 2.11

Advantages of Functions

#include <iostream>
using namespace std;
// functions appear here

int main()
{

Hair(); 
Sides();
Eyes(); Ears(); Smile();
Sides();
return 0;

}

● What about eyeglasses? Mustache? Big nose? Frown?
➤ Advantages in extending program rather than modifying 

program.
➤ Multiple heads (totem poles)



A Computer Science Tapestry 2.12

Totem Functions

int main()
{

Head1();
Head2();
Head3();
return 0;

}

● What changed between the two 
runs of the program?

● Can you write Headxx() ?
➤ Is Head1 a good name?
➤ Does Headxx call other 

functions?
➤ Suppose we used graphics 

instead of cout << ?

||||||||||||||||         ||||||||||||||||    

|              | |              |    

|    o    o    | |    o    o    |    

_|              |_ _|              |_   

|_                _| |_                _|  

|   |______|   | |   |______|   |    

|              | |              |    

|||||||///////// |||||||/////////    

|              | |              |    

|  --- --- | |  --- --- |    

|---|o|--|o|---| |---|o|--|o|---|    

|  --- --- | |  --- --- |    

_|              |_ _|     0      |_   

|_                _| |_                _|  

|   +------+   | |   +------+   |    

|   |      |   | |   |      |   |    

|              | |              |    

|||||||||||||||| ||||||||||||||||    

|              | |              |    

|    o    o    | |    o    o    |    

|              | |       o      |    

|       o      | |-+    |||||||   +-|  

|    |||||||   | |-+              +-|  

_|              |_ |   |______|   |    

|_                _| |              |    

|   |______|   |

|              |



A Computer Science Tapestry 2.13

Parameterized Functions

● A square root function that only returns square root of 2 isn’t 
very useful

➤ F = sqrt(2), so 2 is a parameter/argument to the function
➤ Useful parameter to head-drawing functions?

•
•

➤ What about happy birthday printing argument/parameter?

● Functions have parameters, arguments are passed to functions

Birthday("Fred");   // sing to fred
Birthday("Ethel");  // sing to ethel



A Computer Science Tapestry 2.14

Functions and Parameters (continued)
#include <iostream>
using namespace std;

void WinBigMoney(string name)
{

cout << "Hello " << name << " you may have "
<< " won $1,000,000" << endl;

cout << name << ", please call 1-900-IMN-IDIOT"
<< endl;

}
int main()
{

Hello("owen"); Hello("susan");
Hello("bill gates");
return 0;

}

● Parameter list provides type and name of parameter
➤ Argument type must match parameter type
➤ Function’s prototype based on types only, not names



A Computer Science Tapestry 2.15

Parameterized Functions for Songs

● On his farm Old MacDonald had a X that that says Y
➤ pig, oink
➤ cow, moo

void Verse(                 );

● Five bottles of Z on a wall, five bottles of Z
➤ cola
➤ lemonade

void Verse(           );

● Mama’s going to buy you a X, and if that X Y
➤ Mocking bird, don’t sing
➤ Looking glass, get’s broke

void Verse(          );



A Computer Science Tapestry 2.16

Calling Functions: where, when, how?

● Some functions are imported from libraries
➤ Function prototypes specified in header files, 

implementations linked later
➤ Compiler “sees” prototype before client code calls function

● Some functions are in the same file in which they’re called
➤ Function declaration is the prototype only
➤ Function definition includes the implementation

void Verse(string name);     void Verse(string name)
{

cout << "hi " << name << endl;
}

● Declaration or definition must appear before call
➤ Ok to put declaration before, definition after call
➤ Ok to put main last, all definitions first (problems?)



A Computer Science Tapestry 2.17

Ada Lovelace, 1816-1853
● Daughter of Byron, advocate of 

work of Charles Babbage, 
designer of early “computer” 
(the Analytical Engine)

➤ Made Babbage’s work 
accessible

“It would weave algebraic 
patterns the way the Jacquard 
loom weaved patterns in 
textiles”

● Tutored in mathematics by 
Augustus de Morgan

● Marched around the billiard 
table playing the violin

● Ada is a notable programming 
language



A Computer Science Tapestry 2.18

Program Style

● People who use your program don’t read your code
➤ You’ll write programs to match user needs

● People who maintain or modify your program do read code
➤ Must be readable, understandable without you next door
➤ Use a consistent programming style, adhere to conventions

● Identifiers are names of functions, parameters, (variables, 
classes, …)

➤ Sequence of letters, numbers, underscore __ characters
➤ Cannot begin with a number (we won’t begin with __)
➤ big_head vs. BigHead, we’ll use AlTeRnAtInG format
➤ Make identifiers meaningful, not droll and witty 


