Writing and Understanding C++

e Writing programs in any language requires understanding the
syntax and semantics of the programming language as well as
language-independent skills in programming.

0 Syntax is similar to rules of spelling and grammar:
= | before e except after c
e The relationship between a command and a quote,
“this is a fact,” or “this is a fact”,
0 Semantics is what a program (or English sentence) means
e You ain’t nothing but a hound dog.
= La plume de ma tante est sur la porte.

o Atfirst it seems like the syntax is hard to master, but the
semantics are much harder

0 Natural languages are more forgiving than programming
languages.

A Computer Science Tapestry 2.1

Toward an Understanding of C++

o Traditional first program, doesn’t convey power of computing
but it illustrates basic components of a simple program

#1 ncl ude <i ostrean®
usi ng nanespace std;

[/ traditional first program

I nt mai n()
{ cout << "Hello world" << endl;
return O;
}
e This program must be edited/typed, compiled, linked and
executed.

o Other languages don’t use compile/link phase, examples?

A Computer Science Tapestry 2.2

Anatomy of a C++ Program

e #i ncl ude statements make libraries of classes and functions
accessible to the program

0 Compiler needs access to interface, what the functions
look like, but not to implementation

0 Linker/Loader needs access to implementations
0 Helps programmers develop code independently

e Comments make programs readable by humans

0 The cost of program maintenance is often far greater than
the cost of program development

0 Use comments liberally, but make them meaningful

A Computer Science Tapestry 2.3

More C++ Anatomy

e Programmer-defined functions

0 Functions are abstractions that help you to reuse ideas and
code

0 The square root key on a calculator invokes a function
0 The chorus of a song iIs a similar abstraction

0 One word, e.g., “chorus”, takes the place of many or
represents a concept

e A program is a collection of functions and classes

e Programs may be implemented in more than one file, but
there is only one mai n function

0 Execution of the program begins with nai n

0 The mai n function returns a value to the operating system
or environment

A Computer Science Tapestry 2.4

Dennis Ritchie

e Developed C and Unix

e Shared 1983 Turing award and National Medal of
Science in 1999

“We wanted to preserve not just a good environment in
which to do programming, but a system around which a
fellowship could form™

e Unix was
0 Free to Universities
0 Expensive originally
0 Linux precursor?

A Computer Science Tapestry

Execution and Flow Control

o Execution of C++ programs is organized around statements

0 A statement executes, it may cause another statement to
execute

0 Statements execute sequentially, or as governed by control

that repeats a group of statements or selects one of several
groups to execute

= Control statements covered later; for now sequential flow

e Syntax determines what’s in a statement, semantics
determines construction of program from statements

o Output will be part of our programs

0 cout Is the output stream, objects are placed on the stream
0 Objects are strings, numbers, many other types

A Computer Science Tapestry 2.6

Stream output

e cout isthe standard output stream, use cer r for errors and
other streams later. Accessible via #i ncl ude<i ost r eane

0 Objects inserted onto stream with insertion oper at or <<
0 Different objects separated by insertion oper at or <<

cout << "yadda yadda yadda" << endl;

cout << " gross =" << 12*12 << endl;
cout << 5 << " jin. ="
<< 5*2.54 << " cm " << endl;

e String literals in quotes, other expressions are evaluated
before being output.

0 endl isthe “end of line” object (10 manipulator)
0 Canalsooutput"\n" or"\t" or"\"" (escape sequences)

A Computer Science Tapestry 2.7

More about streams and syntax

o C++ statements are terminated by a semi-colon

cout << 3.14159*10*10 << " = area "
<< " of circle wiwth radius ="
<< 10 << ", circ = " << 2*10*3. 14159
<< endl ;

e Thinking ahead:
0 Repetition of radius, problems?
0 Repetition of 1, problems?
0 What’s better, several statements, or one long statement?
0 Evaluating expressions: rules of arithmetic?
0 Differences between 2*3 and 2*3. 0 ?

A Computer Science Tapestry 2.8

Toward Using Functions

#i ncl ude <i ostreanp
usi ng nanespace std;

i nt mai n()

{
cout << " [[|[[ITIFITTTTIE " << endl;
cout << " | | " << endl;
cout << " | 0 0 | " << endl;
cout << " | | " << endl;
cout << "| _ " << endl;
cout << " | | | | " << endl;
cout << " | | " << endl;
return O;

}

o Prints head, but not as modular as program using functions
0 Harder to modify to draw differently

A Computer Science Tapestry

Programmer-defined Functions

#i ncl ude <i ostreanp
usi ng nanespace std;
/] functions appear here

I nt mai n()

Hair () ;

Si des() ;

Eyes(); Ears(); Smile();
Si des() ;

return O;

}
o What are advantages of this mai n over one in which several
output statements appear in nai n.

0 New hair style? Stretched head?
0 Are these advantages?
0 How is width of head determined? Drawbacks? Solutions?

A Computer Science Tapestry 2.10

Advantages of Functions

#i ncl ude <i ostreanp
usi ng nanespace std;
[/ functions appear here

I nt mai n()

Hair () ;

Si des() ;

Eyes(); Ears(); Smile();
Si des();

return O;

}

o What about eyeglasses? Mustache? Big nose? Frown?

0 Advantages in extending program rather than modifying
program.

0 Multiple heads (totem poles)

A Computer Science Tapestry 2.11

Totem Functions | | | |

I 0 0 | |) o) |

N B N B

- - B N B N
Int main() o L o B
{ | | | |
R R RN EERRR R RN,
Headl(); | | | |
Head2(); e]
Head3() ; R | | e |

return O; | |_ _ 0 |_

} T e

e What changed between the two
runs of the program?

| |
| |

| |

| |

e Can you write Headxx() ? : o o :
0 Is Headl a good name? : :

| |

| |

1 Does Headxx call other
functions? | N

0 Suppose we used graphics | |
instead of cout <<?

—_—— f———— — — —
1 1

A Computer Science Tapestry 2.12

Parameterized Functions

e A square root function that only returns square root of 2 isn’t
very useful

0 F=sqrt(2), so 2 is a parameter/argument to the function
0 Useful parameter to head-drawing functions?

0 What about happy birthday printing argument/parameter?

e Functions have parameters, arguments are passed to functions

Bi rt hday("Fred"); /'l sing to fred
Birthday("Ethel"); [/ sing to ethel

A Computer Science Tapestry 2.13

Functions and Parameters (continued)

#i ncl ude <i ostreanp
usi ng nanespace std;

voi d W nBi gMoney(string nane)

{
cout << "Hello " << name << " you nmy have "
<< " won $1, 000, 000" << endl;
cout << nane << ", please call 1-900-1M\-IDl OT"
<< endl :
} .
i nt main()
{
Hel | o("owen"); Hell o("susan");
Hello("bill gates");
return O;
}

o Parameter list provides type and name of parameter
0 Argument type must match parameter type
0 Function’s prototype based on types only, not names

A Computer Science Tapestry 2.14

Parameterized Functions for Songs

e On his farm Old MacDonald had a X that that says Y
0 pig, oink
[COW, Moo
voi d Verse()
o Five bottles of Z on a wall, five bottles of Z
0 cola

0 lemonade
voi d Verse()

e Mama’s going to buy you a X, and if that X Y
0 Mocking bird, don’t sing
0 Looking glass, get’s broke
voi d Verse();

A Computer Science Tapestry

2.15

Calling Functions: where, when, how?

e« Some functions are imported from libraries

0 Function prototypes specified in header files,
Implementations linked later

0 Compiler “sees” prototype before client code calls function
e Some functions are in the same file in which they’re called

0 Function declaration is the prototype only

0 Functpen definition includes the implementation

voi d Verse(string nane); voi d Verse(string nane)
{
cout << "hi " << nanme << endl;
}

o Declaration or definition must appear before call
0 Ok to put declaration before, definition after call
0 Ok to put mai n last, all definitions first (problems?)

A Computer Science Tapestry 2.16

Ada Lovelace, 1816-1853

Daughter of Byron, advocate of

work of Charles Babbage,
designer of early “computer”
(the Analytical Engine)

0 Made Babbage’s work
accessible

“It would weave algebraic

patterns the way the Jacquard
loom weaved patterns in
textiles”

Tutored in mathematics by
Augustus de Morgan

Marched around the billiard
table playing the violin

Ada is a notable programming
language

A Computer Science Tapestry

2.17

Program Style

e People who use your program don’t read your code
0 You’ll write programs to match user needs

e People who maintain or modify your program do read code
0 Must be readable, understandable without you next door
0 Use a consistent programming style, adhere to conventions

o Identifiers are names of functions, parameters, (variables,
classes, ...)

0 Sequence of letters, numbers, underscore __ characters
0 Cannot begin with a number (we won’t begin with)
0 bi g _head vs. Bi gHead, we’ll use AlITeRNAtInG format
0 Make identifiers meaningful, not droll and witty

A Computer Science Tapestry 2.18

