CPS 06
Program Design and Methodology |

Owen Astrachan

Susan Rodger
http://www.cs.duke.edu/courses/cps006/current
http://www.cs.duke.edu/csed/tapestry

A Computer Science Tapestry

11

Computer Science and Programming

e Computer Science is more than programming
0 The discipline is called informatics in many countries

0 Elements of both science and engineering
= Scientists build to learn, engineers learn to build

— Fred Brooks

0 Elements of mathematics, physics, cognitive science,
music, art, and many other fields

e Computer Science is a young discipline

0 Fiftieth anniversary in 1997, but closer to forty years of
research and development

0 First graduate program at CMU (then Carnegie Tech) in
1965

e To some programming is an art, to others a science

A Computer Science Tapestry 1.2

What iIs Computer Science?

W
Se
W

nat Is it that distinguishes it from the
parate subjects with which it is related?

nat is the linking thread which gathers these

disparate branches into a single discipline?
My answer to these questions is simple --- it is
the art of programming a computer. It is the art

of

designing efficient and elegant methods of

getting a computer to solve problems,
theoretical or practical, small or large, simple

or

complex.
C.A.R. (Tony)Hoare

A Computer Science Tapestry

Computer Science

o Artificial Intelligence

e Scientific Computing

e Theoretical CS

e Computational Geometry
e Architecture

o Software Engineering

e Operating Systems

o« Graphics

o Many other subdisciplines

A Computer Science Tapestry

thinking machines

weather, hearts

analyze algorithms, models
theory of animation, 3-D models
hardware-software interface
peopleware

run the machine

from Windows to Hollywood

14

Algorithms as Cornerstone of CS

o Step-by-step process that solves a problem
0 more precise than a recipe
0 eventually stops with an answer
0 general process rather than specific to a computer or to a
programming language
e Searching: for phone number of G. Samsa, whose number is
929-9338, or for the person whose number is 489-6569
e Sorting: zip codes, hand of cards, exams

0 Why do we sort? What are good algorithms for sorting?
e It depends

— Number of items sorted, kind of items, number of
processors, ??

0 Do we need a detailed sorting algorithm to play cards?

A Computer Science Tapestry 15

Sorting Experiment

o Groups of four people are given a bag containing strips of
paper
0 on each piece of paper is an 8-15 letter English word
0 create a sorted list of all the words in the bag

0 there are 100 words in a bag

o« What issues arise in developing an algorithm for this sort?
0
[

o Can you write a description of an algorithm for others to
follow?

0 Do you need a 1-800 support line for your algorithm?
0 Are you confident your algorithm works?

A Computer Science Tapestry

Themes and Concepts of CS

e Theory
0 properties of algorithms, how fast, how much memory
0 average case, worst case: sorting cards, words, exams
0 provable properties, in a mathematical sense

e Language

0 programming languages: C++, Java, C, Perl, Fortran, Lisp,
Scheme, Visual BASIC, ...

0 Assembly language, machine language,
0 Natural language such as English
e Architecture
0 Main memory, cache memory, disk, USB, SCSI, ...
0 pipeline, multi-processor

A Computer Science Tapestry 17

Theory, Language, Architecture

e We can prove that in the worst case quicksort is bad
0 doesn’t matter what machine it’s executed on
0 doesn’t matter what language it’s coded in
0 unlikely in practice, but worst case always possible

o Solutions? Develop an algorithm that works as fast as
quicksort in the average case, but has good worst case
performance

0 quicksort invented in 1960
0 Introsort (for introspective sort) invented in 1996
e Sometimes live with worst case being bad

0 bad for sorting isn’t bad for other algorithms, needs to be
quantified using notation studied as part of the theory of
algorithms

A Computer Science Tapestry 1.8

Abstraction, Complexity, Models

o« What is an integer?

0 In mathematics we can define integers easily, infinite set
of numbers and operations on the numbers (e.g.,+, -, *, /)

{...-3,-2,-1,0,1,2,3, ...}
0 In programming, finite memory of computer imposes a
limit on the magnitude of integers.

= Possible to program with effectively infinite integers (as
large as computation and memory permit) at the expense of
efficiency

= At some point addition is implemented with hardware, but
that’s not a concern to those writing software (or is it?)

e C++ doesn’t require specific size for integers, Java does

o Floating-point numbers have an IEEE standard, required
because it’s more expensive to do arithmetic with 3.14159 than
with 2

A Computer Science Tapestry 19

Alan Turing (1912--1954)

e Instrumental in breaking codes
during WW 11

e Developed mathematical model of
a computer called a Turing
Machine (before computers)

0 solves same problems as a
Pentium 111 (more slowly)

e Church-Turing thesis

0 All “computers” can solve the
same problems

e Showed there are problems that
cannot be solved by a computer

e Both a hero and a scientist/
mathematician, but lived in an era 8
hard for gay people

A Computer Science Tapestry 1.10

Search, Efficiency, Complexity

Think of a number between 1 and 1,000
0 respond high, low, correct, how many guesses needed?

Look up a word in a dictionary

0 Finding the page, the word, how many words do you look
at?

Looking up a phone number in the Manhattan, NY directory
0 How many names are examined?

How many times can 1,024 be cut in half?
0 210=1,024, 220 =1,048,576

A Computer Science Tapestry 1.11

Complexity: Travelling Salesperson

e Some problems are hard to
solve, others seem hard to
solve but we can’t prove that
they’re hard (hard means
computationally expensive)

e Visit every city exactly once

0 Minimize cost of travel or
distance

1 Is there a tour for under Try all paths from

$2.,000 ? less than 6,000])
miles? every startlng pomt --

« Must phrase question as how long does this take?

yes/no, but we can minimize
with binary search.

e Isclose good enough?

A Computer Science Tapestry 1.12

Complexity Classifications

e Given aroute and aclaim: This
route hits all cities for less than
$2.000

0 verify properties of route
efficiently.

0 Hard to find optimal
solution

e . Pack trucks with barrels,
o Verification simple, finding ..
optimal solution is hard use minimal # trucks

e Other problems are similar ldeas?

Problems are the “same hardness™:
solve one efficiently, solve them all

A Computer Science Tapestry 1.13

Are hard problems easy?

e P =-easy problems, NP = “hard” problems
0 P stands for polynomial, like x2 or x3

0 NP stands for non-deterministic, polynomial
= guess a good solution

e Question:P=NP?

0 if yes, a whole suite of difficult problems can be solved
efficiently

0 if no, none of the hard problems can be solved efficiently
e Problem posed in 1971, central to the field

Most computer scientists believe P #NP, this is arguably the most
iImportant unsolved problem in computer science

A Computer Science Tapestry

1.14

C.A.R. (Tony) Hoare (b. 1934)

e Won Turing award in 1980

e Invented quicksort, but didn’t
see how simple it was to
program recursively

e Developed mechanism and
theory for concurrent
processing

e In Turing Award speech used
“Emporer’s New Clothes” as
metaphor for current fads in
programming

“Beginning students don’t know
how to do top-down design
because they don’t know which
end is up”

A Computer Science Tapestry 1.15

Creating a Program

e Specify the problem s
[remove ambiguities
0 identify constraints e

o Develop algorithms, design . } ®
classes, design software (N \

architecture
e Implement program
0 revisit design |

010001100101001000011110010101
1d [%fp+-0=8], %ol

1 test, code, debug ®\ set 18,01

int wperator % (dnt ®x, int ¥}

0 revisit design
« Documentation, testing, @

maintenance of program
(o

T3,245] . N

e From ideas to electrons

A Computer Science Tapestry 1.16

From High-to Low-level languages

e C++isa multi-purpose language, we’ll use it largely as an
object-oriented language, but not exclusively

0 Contrast, for example, with Java in which everything is a
class

0 Contrast with Fortran in which nothing is a class

e Compilers translate C++ to a machine-specific executable
program

0 The compiler is a program, input is C++, output is an
executable

0 What language is the compiler written in?

0 In theory C++ source code works on any machine given a
compiler for the machine

e« C++ and other programming language are more syntactically
rigid than English and other natural languages

A Computer Science Tapestry 1.17

Levels of Programming Language

o Machine specific assembly language, Sparc on left, Pentium
on right, both generated from the same C++

mai n:
save %p, - 128, ¥%sp
mov 7, %00
st %00, [% p- 20]
mov 12, %00
st %00, [% p- 24]
I d [% p-20], %00
ld [9% p-24] , %01
call .unmul,O
nop
st %00, [% p- 28]
nmov 0,% 0
b .LL1
nop

A Computer Science Tapestry

pushl %ebp

nmovl %esp, %ebp

subl $12, %esp

movl $7, - 4(%ebp)
novl $12, - 8(%ebp)
nmovl -4(%bp), Yeax
I mul | -8(%bp), Yeax
nmovl %ax, - 12(%ebp)
xorl %eax, Yeax

jmp . L1

.align 4

xorl %eax, Yeax

jmp . L1

1.18

Alternatives to compilation

o Some languages are interpreted, Scheme and Java are examples
0 like simultaneous translation instead of translation of
written document. The same word may be translated many
times
0 The interpreter is a program that translates one part of a
source code at a time
= The interpreter is machine specific, written in some
programming language
o JVM, the Java Virtual Machine
0 Like a PC or Mac but machine is virtual, written in software
0 Executes Java byte codes which are created from Java source
= Like assembly language: between source code and executable
0 JVM must be written for each architecture, e.g., Linux,
Windows, Mac, BeOS, ...

A Computer Science Tapestry

1.19

What Is a computer?

e Turing machine: invented by

Alan Turingin1936asa Mainframe, PC,laptop
theoretical model
supercomputer

Infinite tape, moving

teme/-reéder 1
-l

A computer is a computer,
IS a computer, Church-Turing
Thesis, all have same “power”

A Computer Science Tapestry 1.20

Chips, Central Processing Unit (CPU)

e CPU chips
0 Pentium (top)
0 G3 (bottom)
0 Sound, video, ...
e Moore’s Law

0 chip “size” (# transistors)
doubles every 12--18 months
(formulated in 1965)

1 2,300 transistors Intel 4004,
7.5 million Intel Pentium |1

1975 1980 1285 1980 1995

o

100 Aicre SO0
{ransstors) ‘ ;l.:j[;“ mips)

R & Prartiv)nn™ 25

- TOOE S0
@ BOSEE
100K @ Boa8s 1o
BO2BE
BOEO

Eleal] [5] |

A Computer Science Tapestry 1.21

Why Is programming fun?

What delights may its practitioner expect as a reward?
First is the sheer joy of making things
Second is the pleasure of making things that are useful

Third is the fascination of fashioning complex puzzle-like objects of
interlocking moving parts

Fourth is the joy of always learning

Finally, there is the delight of working in such a tractable medium. The
programmer, like the poet, works only slightly removed from pure thought-
stuff.

A Computer Science Tapestry Fred Broo kS 1.22

