
M. Ikeda, K. Ashley, and T.-W. Chan (Eds.): ITS 2006, LNCS 4053, pp. 382 – 391, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Detection and Analysis of Off-Task Gaming Behavior
in Intelligent Tutoring Systems

Jason A. Walonoski and Neil T. Heffernan

Worcester Polytechnic Institute, Computer Science Department, 100 Institute Rd,
Worcester, MA 01601 USA

{jwalon, nth}@wpi.edu

Abstract. A major issue in Intelligent Tutoring Systems is off-task student be-
havior, especially performance-based gaming, where students systematically
exploit tutor behavior in order to advance through a curriculum quickly and eas-
ily, with as little active thought directed at the educational content as possible.
The goal of this research was to explore the phenomena of off-task gaming be-
havior within the Assistments system. Machine-learned gaming-detection mod-
els were developed to investigate underlying factors related to gaming, and an
analysis of gaming within the Assistments system was conducted to compare
some of the findings of prior studies.

1 Introduction

Intelligent Tutoring Systems (ITS) have been shown to have a positive effect on stu-
dent learning [1], however these effects may be negated by a lack of student motiva-
tion or student misuse. One area of research examining these issues involves studying
student “gaming” of the system, especially recognition of gaming behavior [2]. A
student is gaming if they are attempting to systematically use the tutor’s feedback and
help methods as a means to obtain a correct answer with little or no work, in order to
advance through the curriculum as fast or easily as possible. Student gaming has been
correlated with substantially less learning [3]; therefore it is of particular importance
to understand in order to maximize tutor effectiveness.

One objective of this research was to apply existing methodologies of gaming be-
havior detection to the Assistments mathematics ITS [4]. These methods involved the
construction of machine-learned models to identify gaming behavior. Although gam-
ing behavior has only two hallmark appearances (help abuse and systematic guessing
and checking), there may be various hidden factors at work: some students are
harmed by their gaming while others are not. Machine learning has been shown to be
able to differentiate between these two types of gamers [2].

Additionally, previous work by Baker et al [2][3] has resulted in documentation of
the phenomenon of gaming within ITS and theories about why students game. Our
second objective was to corroborate or contradict those findings by profiling the typi-
cal gaming student in the Assistments system and exploring the relation of gaming
behavior with student learning, and then comparing the results of the studies.

aln
Text Box
Walonoski, J., Heffernan, N.T. (accepted). Detection and Analysis of Off-Task Gaming Behavior in Intelligent Tutoring Systems. In Ikeda, Ashley & Chan (Eds.). Proceedings of the Eight International Conference on Intelligent Tutoring Systems. Springer-Verlag: Berlin. pp. 382-391. 2006

 Detection and Analysis of Off-Task Gaming Behavior in ITs 383

2 Detection of Gaming

If tutoring software is outfitted with a model that can reliably identify gaming behav-
ior, then intervention strategies can be developed and deployed with reasonable assur-
ance that they are invoked under appropriate circumstances. Rather than manually
constructing a model by authoring rules based on the surface features of gaming (sys-
tematic guessing and checking or requesting help until answers are directly supplied),
machine-learning methods were employed to identify the underlying hidden variables
that lead students to game and illustrate how they are affected by their behavior. A
prior study by Baker et al has shown that gaming behavior can be reliably detected
with machine-learned models [2], and in the course of constructing a model for the
Assistments system we adapted those methods for general verification of their find-
ings, to determine if gaming behavior has the same causes, appearances, and resulting
effects in different tutoring systems.

The methodology used was essentially a four-step process: (1) classroom observa-
tion of students using the tutoring software, (2) dataset creation based upon those
observations to be used by machine-learning algorithms, (3) the construction of clas-
sifiers (prediction models) using the datasets, and (4) analysis of the results.

2.1 Classroom Observation

Students were observed using the Assistments ITS in real classroom sessions. Each
observation was a triplet of observation time, student identity (alias), and recorded
behavior. Observation was conducted as unobtrusively as possible, with students
unaware that surveillance was taking place (students treated observers as assistant
teachers and displayed no knowledge of being systematically observed). Observations
were taken from a modest distance to (1) minimize student self-consciousness and
awareness of being watched, (2) allow the observer flexibility in positioning them-
selves within the environment to maximize line of sight, and (3) allow the simultane-
ous observation of groups of students. For consistency purposes, each observer was
given an instruction sheet on how to conduct observations. Groups of students were
observed for approximately 20 to 30 seconds per student; so a group of 3 students
would have been observed for 60 to 90 seconds. The possible variation of observation
times was left to the observer depending on the consistency or deviation in the stu-
dents’ behavior in order to get a representative measurement. A numerical code from
Table 1 (adapted from measurements in [3]) was recorded for each student per obser-
vation period. During a given observation period, a student might exhibit multiple
behaviors. In that case, rather than record all the behaviors, observers were instructed
to give priority where gaming behavior was given the highest priority, followed by
the three on-task behaviors (sorted by least engaged to most engaged), followed by
the remaining two off-task behaviors (sorted by most active to least active).

To ensure that this methodology was not subjective to observer bias, an inter-rater
reliability study was performed. Two observers (one of which was the first author)
were provided with the observation instructions and then observed two classes, with
students observed in the exact same order and at the exact same time. The two ob-
servers made 71 observations each. The consistency across all six numerical behav-
iors was 77% (57 out of 71 observations matched). The consistency across the three

384 J.A. Walonoski and N.T. Heffernan

Table 1. Measurement Definitions

Category Observation Definition Priority
A - On Task 1 On Task with the Tutor 4

A - On Task 2
On Task with Paper or Teacher (in-
cluding talking about the problem)

3

A - On Task 3
On Task, but talking while working
(subject matter of conversation is
irrelevant)

2

B - Off Task 4 Off Task and Talking 5

B - Off Task 5
Off Task and Inactive (including web-
surfing, staring into space, sleeping, et
cetera)

6

C - Gaming 6
Gaming (guessing-and-checking or
bottom-out-hinting)

1

alpha-encoded categorical behaviors was 97% (69 out of 71 observations matched),
while there was 100% agreement in the identification of gaming behavior. Since our
classifier was aimed purely at the identification of gaming behavior, as opposed to
distinction between all behaviors, these results have a suitable level of consistency.

Overall, 850 observations were recorded, spanning 8 classes that lasted approxi-
mately 50 minutes each. Those 8 classes consisted of experienced users of the Assist-
ments system, who had been using it biweekly for the entire 2004-2005 academic
year.

2.2 Dataset Creation

The Assistments system automatically logs all user actions and events except mouse
movements. From these logs we can distill information such as a student’s number of
attempts (including whether the attempt was correct or incorrect, or if it was the first
attempt on a given problem), numbers of hint requests (including bottom-out hint
requests that directly supply the correct answer), and action response time in millisec-
onds. Actions were joined to the recorded classroom observations by user identifica-
tion and time to create training instances for the machine-learning algorithms.

Given the length of time spent observing particular students, it is not clear which
actions should be matched with a particular observation. To resolve this issue, actions
were joined to observations using an “unsupervised action filter” based on a variable
“time window.” Informally, a time window is defined as a dilation of time around a
recorded observation time. Not being sure what size time windows are reasonable,
five sizes were utilized: 30 seconds, and 1, 2, 4, and 6 minutes. For example, given a
2-minute time window, all actions made between 1 minute before and after each ob-
servation were included in the generation of the training instances. The filter is con-
sidered “unsupervised” because no attempt is made to filter in or out actions based on
their applicability to the recorded observed behavior.

 Detection and Analysis of Off-Task Gaming Behavior in ITs 385

Using the observations and action logs, a number of datasets were generated via
unsupervised action filtering using time windows. The datasets had 1430 attributes
and 1 classification value (gaming, true or false). The six observation types in Table 1
were rolled up into either gaming is true (observation #6) or gaming is false (all other
observations). Machine-learning algorithms are dependent on relevant attributes, so
the selection of attributes is an important exercise. We adapted the attributes of Baker
et al [2] to the particulars of the Assistments system and variable time windows. For
an observation within a particular time window, the attributes were as defined:

• Actions: the total number of all actions.
• Attempts: six attributes for the total number of all attempts, correct attempts,

incorrect attempts, correct first attempts, and incorrect first attempts.
• Attempt Time: five attributes for the sum, minimum, maximum, average, and

standard deviation of all attempt times in milliseconds. Also four Boolean at-
tributes were included indicating whether attempt times were slow, extra-
slow, quick, or extra-quick, which were calculated by comparing the student
response time with the average response time of all students on the given
problems (and plus or minus the standard deviation of all student response
times for the extra-slow and extra-quick attributes).

• Hints: two attributes for the total number of hint requests and bottom-out
hint requests.

• Hint Time: five attributes for the sum, minimum, maximum, average, and
standard deviation of all hint request times in milliseconds. Also four Boo-
lean attributes were included indicating whether hint request times were
slow, extra-slow, quick, or extra-quick, which were calculated by comparing
the student response time with the average response time of all students on
the given problems (and plus or minus the standard deviation of all student
response times for the extra-slow and extra-quick attributes).

• Problems: two attributes for the total number of top-level problem questions,
and the total number of follow-through helping questions.

• User-Interfaces: two attributes for the total number of questions that featured
a multiple-choice user-interface and another for the total number of questions
that featured a textbox user-interface.

• Replays: the total number of times a problem was “replayed” by the Assist-
ments tutor runtime [5] (this generally indicates that the student tried to exit
the system and the runtime had to “replay” the students actions on a given
problem to reconstruct the tutors agenda exactly for the given problem).

• pmpKnow: “poor man’s prior knowledge,” the probability that the student
possesses the prior knowledge required to answer the given question cor-
rectly. Prior knowledge in ITS is often determined by knowledge tracing,
however the Assistments system currently lacks dynamic knowledge model
tracing, so as a substitute we use the poor man’s version: the student’s per-
cent correct across all previous problems. Also four Boolean attributes were
included indicating whether the prior knowledge was high, extra-high, low,
or extra-low in comparison to the average prior knowledge of all students
and in combination with the standard deviation of that average (for the extra-
high and extra-low variables).

386 J.A. Walonoski and N.T. Heffernan

• Problem-Difficulty: four attributes for the minimum, maximum, average, and
standard deviation of problem difficulties for all problems encompassed
within the observation time window. Problem difficulty is a number between
0 (easy) and 1 (hard) that is the percent correct on first attempt by all previ-
ous students. The combination of these values would hopefully represent the
range of difficulty during the observation.

• Ratios: six attributes representing the following ratios: the number of at-
tempts per problem, the number of correct attempts per problem, the number
of incorrect attempts per problem, the number of hints per problem, the num-
ber of bottom-hints per problem, and the number of replays per top-level
problem.

• Pair-wise Interaction Effects: 1378 attributes representing the quadratic ef-
fects between any two of the attributes listed above. For example, the total
number of hints times the average problem difficulty. The list of pair-wise
interaction effect attributes is comprehensive (all the original attributes have
a pair-wise interaction effect attribute with every other original attribute, in-
cluding itself).

2.3 Machine-Learning Algorithms

We used 12 different algorithms from the WEKA machine-learning system [6] on our
datasets to generate models including decision tree methods, lazy methods (k-nearest
neighbors), locally weighted learning, Bayesian methods, a neural network, a proposi-
tional-logic rule learning algorithm (PRISM) [7], as well as logistic regression. A
large number of algorithms were used out of curiosity because each has advantages
and disadvantages (which are outside of the scope of this document) that could poten-
tially reveal different kinds of relationships within the data. Some of the algorithms
generate human-readable rules while others produce mathematical models that are
often difficult to interpret by humans. The results were then examined for (1) classifi-
cation accuracy, (2) accuracy of the confusion matrices, and (3) reasonable rules,
especially those that might corroborate or contradict expected findings based on pre-
vious studies, or other interesting results.

2.4 Results and Discussion

None of the algorithms used significantly outperformed any of the others (according
to statistical tests automatically performed by WEKA). Therefore, choosing a final
model rested on a selecting a classifier that generated reasonable rules that corrobo-
rated both the surface-level hallmark characteristics of gaming and the findings of
previous studies.

The classifier that was ultimately selected as our preferred model was generated
using the J48 decision tree algorithm (based on Quinlan’s C45 algorithm [8]). Al-
though other algorithms had faster classification times or higher accuracies, this
model was chosen because across all training and testing folds it produced reasonably
clean confusion matrices, generated human-readable rules that upon interpretation
seemed to corroborate findings from past studies.

 Detection and Analysis of Off-Task Gaming Behavior in ITs 387

Several of our resulting rules offered further support to the hypotheses of Baker et
al [2][3] that suggest that one cause of gaming is low prior knowledge combined with
problem difficulty. Other rules could be interpreted in such a way as to identify the
class of “gamed-not-hurt” students, which supports the Baker et al distinction be-
tween students whose learning is affected by gaming and those who are not. Finally,
results at the four and six minute intervals suggests that using longer time windows
does not adversely effect the detection of gaming, and in fact improves as those stu-
dents who game tend to make a habit of it and identifying them becomes easier and
easier as they continue their off-task behavior.

After being selected as the preferred model, the J48 algorithm was rerun using
leave-one-out cross-validation (LOOCV) as the testing method. This involved gener-
ating our model 850 times, each time using 849 of the 850 instances for training pur-
poses and leaving out one different instance for testing, and then using the model to
predict whether the 850th instance was gaming or not. This process was repeated for
each of the datasets (one for each time window).

While most of the models resulting from LOOCV had 100% classification accu-
racy, averaging out the results of all models results in about 96% accuracy. Given the
low rate of observed gaming (19 out of 850 observations, ~2.2%), the effectiveness of
the models becomes questionable. Analysis of the confusion matrices helps our un-
derstanding of how the models perform. On average, the models tend to correctly
identify non-gaming instances about 98% of the time, while correctly identifying
gaming instances only about 19% of the time. Although this is not ideal, if we con-
sider that gaming is much more harmful to learning than other behaviors [3] and it is
such an infrequent behavior, then 19% of gaming instances may seem better than
what might be expected from chance alone. So, while the model accuracy leaves
something to be desired, we are at least satisfied in the general reasonability of the
resulting “rules” given what is known about gaming behavior.

Ultimately, results of our final model were satisfactory since construction of the
datasets and models verified some of the underlying hidden variables that lead stu-
dents to game (e.g. low prior knowledge), and the generated rules were human-
readable and reasonably captured the hallmark surface-level characteristics and other
known causes of gaming behavior. Although we would like to improve the accuracy
and strength of our final model, it could be outfitted as-is into the Assistments system
to dynamically detect gaming behavior and trigger various intervention strategies, as a
post-tutoring reporting device, or as an objective evaluator of various intervention
strategies within controlled experiments.

3 Gaming Within the Assistments System

The last portion of this research was a general examination of gaming behavior within
the Assistments system. This examination made use of a prima facie algorithm (as
opposed to the machine-learned model) that calculates how frequently individual
students gamed based on surface-level features of hint abuse and guessing-and-
checking only. If a student asks for a hint on, or answers incorrectly (possible guess),
any step within a given problem three consecutive times, then they are assumed to be
gaming that problem. When a problem is gamed, a possibly-gaming index is increased

388 J.A. Walonoski and N.T. Heffernan

by one. If an entire problem is completed without any step being gamed, then the
possibly-gaming index is reduced by one. If at any time the possibly-gaming index is
above three, any further identified gaming increases a student’s total-gaming-score by
one.

3.1 Assistments System Survey Responses

A survey was administered to students who had been using the Assistments system
throughout the 2004-2005 academic year on a biweekly basis. The survey consisted of
32 Likert-scale questions and some open response items. Gaming scores were calcu-
lated for those students who completed the entire survey using the prima facie algo-
rithm. Depending on where a students average score fell in relation to the overall
average and the overall standard deviation, they were classified as very-high, above-
average, below-average, or very-low gamers. Out of 365 students, 53 were very-high
gamers, 91 were above-average, 179 were below-average, and 42 were very-low
gamers. By analyzing the distribution of responses by gaming-classification we con-
structed the following profile:

• Mathematics: Students who gamed were more likely to believe that they
were not good at math and less likely to believe they could do well at math if
they worked hard. Students who gamed often said they were less likely to do
homework in math class, and the more students gamed, the less they said
they liked math class. The less a student gamed the more they were likely to
strongly agree that they would use math in a job when they grew up. Stu-
dents who gamed often were much more likely than other students to
strongly agree that their parents thought it important for them to do well in
math, which may explain the performance-based motivation behind some
gaming.

• Computers: Even though students who gamed often were less likely to have
a computer at home, they were also less likely to report having trouble con-
centrating on the computer. Students who gamed often agreed more often
and more strenuously that they liked learning from a computer than those
who gamed very little.

• Educational Medium: Students who tended not to game were more likely to
say that they preferred using the Assistments system to doing homework. In a
similar question, there were no differences between the groups when asked if
they would prefer to use the tutor rather than take a test – they mostly all
strongly agreed that they would. The less a student gamed, the more strongly
they would prefer using the Assistments system to normal classroom activity.

• Help Seeking: Students who gamed very little were more likely to strongly
agree that they would seek help when they didn't understand something. The
more a student gamed, the more they thought that being told the answer was
more helpful than reading the hints. The more a student gamed, the more
they agreed that the hints aided in their understanding of similar problems.

• Problem Difficulty: Students who gamed often tended to strongly agree that
the items were frustrating because they were too hard, while students who
gamed very little were more likely to disagree. This is probably partially

 Detection and Analysis of Off-Task Gaming Behavior in ITs 389

related to student prior knowledge. Students who gamed often were more
likely to agree or strongly agree that they tried to get through difficult prob-
lems as quickly as possible.

• Goals: Students who gamed often tended more than other students to say that
their goal was to get through as many items as possible. Interestingly, the
more students gamed, the more they also tended to strongly agree that their
goal was to learn new things.

• Students who gamed often had a slight tendency to say that they prefer facts
and data to concepts and ideas more than other students.

Some of these results are interesting merely because they either corroborate or dis-
agree with past findings. For example, Baker et al have reported that students who
game do not like computers [9], while our survey suggests that those students who
appeared to be heavily gaming prima facie, agreed more often and more strenuously
that they liked learning from a computer than those who gamed very little. However,
our survey results show that gamers were less likely to own a computer at home, and
were more likely to dislike math class (also inconsistent with previous findings).

3.2 Gaming and Learning

Off-task gaming behavior has been correlated with substantially less learning in sev-
eral prior studies [3]. In an attempt to validate those findings, learning rates that had
been previously calculated for [10] using traditional methods as well as longitudinal
data analysis, were grouped by the very-high, above-average, below-average, and
very-low gaming categories. The results are summarized in Table 2.

These results seem to corroborate previous findings that indicate that off-task gam-
ing behavior is correlated with substantially less learning. However, a few statistical
tests were run to examine the significance of these results. Before those tests were
run, students were classified as being gamers or not. If a student’s score put them at
the level of very-high gaming, then they were a considered a gamer, and otherwise
they were not. This was done to simplify the results and make them easier to interpret.

Table 2. Learning Rates by Gaming Category

Category Traditional
Slope

Traditional
Intercept

SW
Slope

SW
Intercept

Actual
MCAS

Scaled
Ans.

Very Low Gaming 1.68 26.92 0.34 24.04 35.17 0.76

Below Avg Gaming 1.62 19.53 0.33 19.31 30.56 0.80

Above Avg Gaming 1.29 15.07 0.33 14.23 24.24 0.70

Very High Gaming 0.95 11.99 0.26 11.71 19.66 0.77

Overall Average 1.44 17.88 0.32 17.25 27.69 0.76

The first test was an analysis of variance (ANOVA) of learning (SW slope) by
gaming status. The results suggest that the learning rates of students who game and
those that do not are reasonably different than mere chance alone, and they show that
gaming behavior is correlated with less learning (p < 0.19).

390 J.A. Walonoski and N.T. Heffernan

The second test was an ANOVA of knowledge (SW intercept) by gaming status.
The results very strongly indicate that students who engage in gaming behavior are
more likely to come to the Assistments system with lower prior knowledge than other
students (p < 0.0001).

One last test examined the correlation of gaming with a students actual MCAS
score via Bartlett’s Test of Sphericity, which very strongly showed that gamers do not
perform well on the actual MCAS state administered mathematics exam (p < 0.0001).

These three tests show that prima facie gamers start with less knowledge, learn
less, and perform worse on the actual MCAS examination.

4 Conclusions

Off-task gaming behavior is a major issue within the field of ITS, since it has been
correlated with poor learning. The goal of this research was to explore this important
phenomenon within the Assistments system. A machine-learned decision-tree model
for gaming detection was developed, and while the practicality of this model was
questionable, the resulting rules corroborated the connection of low prior knowledge
and problem difficulty with gaming. Further analysis of gaming and its effects within
the Assistments system was undertaken, via student survey responses and student
learning-rates. The survey results provide some agreement and disagreement with
previous studies about the nature of gaming, and the learning rates corroborated find-
ings that indicate that off-task gaming behavior is correlated with lower prior knowl-
edge and less learning.

Acknowledgements

This research was made possible by the US Dept of Education, Institute of Education
Science, "Effective Mathematics Education Research" program grant #R305K03140,
the Office of Naval Research grant # N00014-03-1-0221, NSF CAREER award to
Neil Heffernan, and the Spencer Foundation. All the opinions in this article are those
of the authors only. This work would not have been possible without the assistance of
the 2004-2005 WPI/CMU Assistments team including Mingyu Feng, Andrea Knight,
Ken Koedigner at CMU, Abraao Lourenco, Michael Macasek, Goss Nuzzo-Jones,
Kai Rasmussen, Leena Razzaq, Steven Ritter at Carnegie Learning, Carolyn Rose at
CMU, Terrence Turner, and Ruta Upalekar.

References

1. Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutor-
ing goes to school in the big city. International Journal of Artificial Intelligence in Educa-
tion, 8, 30-43.

2. Baker, R.S., Corbett, A.T., Koedinger, K.R. (2004) Detecting Student Misuse of Intelligent
Tutoring Systems. Proceedings of the 7th International Conference on Intelligent Tutoring
Systems.

 Detection and Analysis of Off-Task Gaming Behavior in ITs 391

3. Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z. (2004) Off-Task Behavior in
the Cognitive Tutor Classroom: When Students “Game The System”. Proceedings of ACM
CHI 2004: Computer-Human Interaction.

4. Razzaq, L, Feng, M., Nuzzo-Jones, G., Heffernan, N.T. et. al (2005). The Assistment Pro-
ject: Blending Assessment and Assisting. Proceedings of the 12th Annual Conference on
Artificial Intelligence in Education, Amsterdam.

5. Nuzzo-Jones, G., Walonoski, J.A., Heffernan, N.T., Livak, T. (2005). The eXtensible Tutor
Architecture: A New Foundation for ITS. Proceedings of the 12th Annual International
Conference on Artificial Intelligence in Education, Amsterdam.

6. Ian H. Witten and Eibe Frank (2005). "Data Mining: Practical machine learning tools and
techniques", 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

7. J. Cendrowska (1987). PRISM: An algorithm for inducing modular rules. International
Journal of Man-Machine Studies. Vol.27, No.4, 349-370.

8. JR Quinlan. “C4. 5: Programs for Machine Learning.” The Morgan Kaufmann Series in
Machine Learning, San Mateo, 1993.

9. Baker, R.S., Roll, I., Corbett, A.T., Koedinger, K.R. (2005) Do Performance Goals Lead
Students to Game the System? Proceedings of the 12th International Conference on Artifi-
cial Intelligence and Education, Amsterdam.

10. Feng, M., Heffernan, N.T, Koedinger, K.R. (2006) Addressing the Testing Challenge with
a Web-Based E-Assessment System that Tutors as it Assesses, Proceedings of WWW2006,
Edinburgh, Scotland.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

