
The ASSISTment Builder: Towards an Analysis of Cost Effectiveness of

ITS Creation

Neil T. Heffernan, Terrence E. Turner, Abraao L. N. Lourenco, Michael A. Macasek,

Goss Nuzzo-Jones, Kenneth R. Koedinger*

Worcester Polytechnic Institute

100 Institute Road

Worcester, MA 01609

1-508-831-5569

Carnegie Mellon University

5000 Forbs Avenue

Pittsburg, PA 15213

421-268-2000

nth@wpi.edu, terrence.turner@gmail.com, aln@wpi.edu, macasek@wpi.edu, goss@wpi.edu, koedinger@cmu.edu*

Abstract

Intelligent Tutoring Systems, while effective at producing
student learning [2,7], are notoriously costly to construct
[1,9], and require PhD level experience in cognitive science
and rule based programming. The literature suggests [1,9]
that it takes at least 200 hours of work to build 1 hour on
ITS content. We have been engaged in building tools to
reduce the development time, by allowing authors with no
programming experience to build “pseudo-tutors” [6].
Pseudo-tutors are ITS constructs that mimic cognitive tutors
but are limited in that they only apply to a single problem.
The ASSISTment Builder is a tool designed to rapidly create,
test, and deploy a very simple type of pseudo-tutors called
ASSISTments. These tutors provide a simplified cognitive
model based upon a state graph designed for a specific
problem. These tutors offer many of the features of rule-
based tutors, but with shorter creation time. The system
simplifies the process of tutor creation to allow users with
little or no ITS experience to develop content. The system
provides a web-based interface as a means to build and store
these simple tutors we have called ASSISTments. This paper
describes our attempt to make the process of developing,
testing, and deploying content easy for teachers. We present
data to suggest with the ASSISTments Builder we have
reduced the costs of building pseudo-tutors by as much as a
factor of four. We have achieved this time reduction, while
at the same time making tools that eliminated the need for
AI rule-based programming. We conclude with some
discussion of the limitations and trade-off that have been
made.

Introduction

 This research seeks to address the high development
time of cognitive rule-based tutors in Intelligent Tutoring
Systems (ITS). Despite the effectiveness of model-tracing
rule based tutors [7], it has been shown that development
time can be between 200-1000 hours per hour of content
created [1,9]. Creating cognitive tutors also requires high
level computer science and cognitive psychology domain

knowledge; typically PhD level experience in Artificial
intelligence rule-based programming.
 The Office of Naval Research funded Carnegie Mellon
University and Worcester Polytechnic Institute to create
tools to reduce the cost of making intelligent tutoring
systems. There are two ways to reduce these costs. One is
to make tools that are faster to use. The other is to make
them easier to use, thus removing the need for PhD level
Artificial Intelligence rule-based programmers and
cognitive scientists. The goal was to provide a tool to allow
rapid content creation to users with little computer science
or cognitive psychology background. Koedinger, Aleven,
Heffernan, McLaren & Hockenberry created the Cognitive
Tutor Authoring Tools (CTAT) that allowed the creation of
what were termed “pseudo-tutors” [6]. Pseudo-tutors
represent a simplified cognitive model that is comprised of
a state graph. This graph is finite, and each node
representing a possible state of the problem. User actions
are represented by arcs in the graph, with specific user
actions triggering state transitions [12]. A user’s location
in the graph represents the problem’s current state, and
student actions correspond to possible transitions from that
state. Despite having similar behavior to rule-based tutors,
pseudo-tutors lack the ability to generalize over similar
problems [5]. However, they can be designed to predict
certain behaviors and respond accordingly. CTAT allowed
all this but suffered a few limitations. First, even though
CTAT requires no programming, it still requires an author
to download, and set up, an Integrated Development
Environment called NetBeans to build the interface that the
students will use. We instead chose to allow these pseudo-
tutors to be built and accessed via a web-site. The web-site
hosts the Builder Application as well as the service that
allows students to access that content. A second limitation
of CTAT was that it was not easy to carry on a “dialog”; so
ASSISTment added this feature by combining the state
graph with a branching problem structure we call
“scaffolding”. Scaffolds are sub-problems usually designed
to address a specific skill needed to solve the initial

Accepted at the Florida Artificial Intelligence Research Society (FLAIRS), in cooperation with the American

Association for Artificial Intelligence (AAAI). Page numbers will be known soon.

problem. Scaffolding questions in turn contain their own
state graphs, and depending upon student actions, scaffolds
can branch into other scaffolds. The ASSISTment Builder
was designed as a tool to create these types of scaffolding
pseudo-tutors and is the basis of our research. The next
several sections will describe the ASSISTment system and
builder, before we report on 1) the usability of the system
by teachers, 2) the time it takes to build content, and 3) the
time it takes to tag content with knowledge components.
We will conclude with a discussion of the limitations of
this work.

The ASSISTments Project Framework

 The ASSISTment Project is research project by
Worcester Polytechnic Institute and Carnegie Mellon
University and funded by grants from the Department of
Education, the National Science Foundation. The mission
of the ASSISTment Project is to provide cognitively based
assessment of students while tutoring them. This mission is
supported by three goals [11]. The first goal is to provide
tutoring content to students. The second goal is to provide
useful and up-to-date reports on students to teachers. The
final goal is to provide the tools to allow teachers to create
their own tutoring content.
 The ASSISTment system provides assessment through
student reports to teachers. The reports are updated in real
time, even as students are using the system. The system
provides different types of reports to teachers based on
statistical analysis. Some of the most important reports that
we provide are the predicted MCAS score for a student,
student effort score, the predicted student performance
based on skills mapped to previous questions.
 The final goal of the ASSISTment Project is to provide
teachers with tools to allow them to easily create content
for their own classes. The research involving the
ASSISTment Builder is in support of this final goal. We
have created a web based tool that allows teachers to create
content online at their own leisure, using whichever
platform they have available. We make claims regarding
the ease of development for the ASSISTment Builder and
present data regarding the performance of its users.

Builder Interaction with the CTOP

 At the core of the ASSISTment Project is the Common
Tutor Object Platform (CTOP), a lightweight component
framework for creating and deploying all applications in
the ASSISTment Project [10]. The CTOP was designed
with extensibility in mind it consists of a core object model
and a data layer [10]. The core object model contains
components considered to be universally applicable to ITS
software [10]. The ASSISTment Builder uses the problem
component and its subcomponents, the interface and the
behavior. The interface subcomponent is made up of high-
level widgets which are interpreted by the runtime
application for viewing and interacting with the user [10].
The behavior subcomponent defines the result of an action
on the interface; i.e. whether a specific answer corresponds

to a transition to a new state in the state graph representing
the tutor [10].
 The ASSISTment Builder allows a user to specify the
high level widgets to be used for an interface as well as the
properties associated with that interface. It does this by
using the Interface component API to provide a form based
GUI that exposes the configurable parts of the interface in
an easy to modify manner. Similarly, the ASSISTment
Builder uses the Behavior component API to display the
state graph linking states and strategies in form based GUI
that is easy to update. Strategies currently supported
include message strategies (messages that are displayed
when the user enters a specific answer or requests help),
and scaffolding questions, which are represented in a
nested list structure not dissimilar from a hierarchical tree.
The ASSISTment Builder also updates the interface and
behavior as each one is changed.

Figure 1: The ASSITment.org web-site.

The ASSISTment Builder

 The main goals of the ASSISTment Builder are ease of
use and accessibility during content creation. The initial
prototype of the ASSISTment Builder was developed
without the CTOP and suffered from maintenance and
stability problems. To address these issues our research
focused on pseudo-tutors and used the CTOP component
framework for ease of development and maintainability.
The web was chosen as the delivery medium to make the
tool immediately available to users. The only requirement
to use the tool is registration on our website; no software
needs to be obtained or installed. Our primary users are
middle school and high school teachers in the state of
Massachusetts who are teaching the curriculum of the
Massachusetts Comprehensive Assessment System; thus,
the ASSISTment Builder was designed with an interface
simple enough for users with little or no computer science
and cognitive psychology background. The ASSISTment
Builder also includes other tools to allow teacher
themselves to create content and organize it into
curriculums and assigned to classes, all of which can be
done by the teachers themselves. This provides teachers

with a total web-based solution for content management
and deployment.

Figure 2: The ASSISTment Builder.

ASSISTments

 The pseudo-tutors created by the ASSISTment Builder
are a subset of the tutors possible under the CTOP. These
tutors and pseudo-tutors are referred to as ASSISTments
throughout this paper.
 An example of a basic ASSISTment is a top-level
question that branches into scaffolding problems depending
on the student’s actions. To simplify content creation there
are only five choices of high level widgets for the interface
available to content creators: radio-buttons, pull-down
menus, checkboxes, text-fields, and algebra text fields. The
ASSISTment Builder also allows users to add images to a
problem’s interface. A problem’s state graph consists of
only two states. The student will remain in the initial state
until they answer the problem correctly, or they are
programmatically moved forward. Other incorrect student
actions will keep them in the initial state, but may be
mapped to specific tutoring strategies. These strategies
include branching into scaffolding problems, or specific
textual and/or visual feedback called buggy messages that
address common student errors.
 Scaffolding problems are queued immediately after the
behavior consumes an interface action that results in a
transition to a state containing scaffolds. One or more
scaffolding problems can be mapped to a specified user
action. In the ASSISTment Builder an incorrect answer to
the top-level problem or a request for hints on the top-level
problem will immediately queue a list of scaffolding
problems specified by the content creator. Upon answering
a scaffolding problem correctly the student is presented
with the next one in the queue until it is empty. When an
ASSISTment has no more problems in queue it is
considered to be finished.
 Aside from buggy messages and scaffolds, a problem
can also contain hint messages. Hint messages provide

insights into methods to solve the given problem.
Combining hints, buggy messages, and scaffolds together
provides a means to create ASSISTments that are simple but
can address complex behavior. Content creators can create
complex tree structures of problems each with their own
specific buggy messages, hints, and possibly sub-scaffolds.

ASSISTment Builder Structure

 We constructed the ASSISTment Builder as a web
application for accessibility and ease of use purposes. A
content creator can build, test, and deploy an ASSISTment
without installing any additional software. It is a simple
task to design and test an ASSISTment and release it to
students. If further changes or editing are needed the
ASSISTment can be loaded into the ASSISTment Builder,
modified, and saved; all changes will immediately be
available in all curriculums that contain the ASSISTment.
By making the ASSISTment Builder available over the web,
new features are instantly made available to users without
any software update. The central storage of ASSISTments
on our servers makes a library of content available to
teachers which they can easily combine with their own
created content and release to their classes organized in
curriculums.
 Another goal was to redesign the ASSISTment Builder to
make use of the CTOP component framework. To do this
the Apache Struts Framework was used in conjunction with
the CTOP to maintain a strict MVC architecture. By
following a strong Model 2 Model View Controller (MVC)
design pattern extending the ASSISTment Builder is also
easy. The CTOP is designed to be extendable with new
types of tutors, widgets, and user interfaces. The
ASSISTment Builder is only concerned with a specific
portion of the CTOP, but whenever new widgets or
functionality is added all that needs to be done is adding
new controllers and views. Sharing code between the
ASSISTment Builder and CTOP means less code to write as
well as swift benefit from improvements to the CTOP. The
decoupled nature of the ASSISTment Builder also makes it
easy to change or update the web forms that are presented
to users.

Features
 The initial view presented to users of the ASSISTment
Builder is a top level problem. The view has been
redesigned based on user input. At the very top of the
screen are several links to help manage ASSISTments. The
problem is blank and users can enter answers, buggy
messages, question text and/or images as well as selecting
the interface widget they wish. A content creator can also
add hints. However, hints and scaffolds are mutually
exclusive in the top level problem, and a user must select
either one for the top level problem. Each section in the
problem view is collapsible to allow users to conserve
screen space.
 The question section is the first section that content
creators will usually use. This section allows a user to
specify a problems question text using html and/or images

as well as select the interface widget they wish to use and
the ordering method used to sort the answers. There are
currently three ways to order answers: random, alphabetic,
or numeric. This interface is shown in figures 3 and 4.

Figure 3: Text from a scaffolding question.

Figure 4: Adding media to a scaffolding question.

 The answer section of the problem view allows a content
creator to add correct answers and expected incorrect
answers. Users can map buggy messages to a specific
incorrect answer. Users can also edit answers or toggle
their correct or incorrect status. The answer section is
shown in figure 5.

Figure 5: Adding answers to a scaffolding question.

 The hint section allows users to enter a series of hints to
the applicable problem. Hints can be reordered. This
section contains an option to create a bottom out hint for
the user that just presents the student with the solution to
the problem. This is shown in figure 6.

Figure 6: Adding a hint to a scaffolding question.

 A typical ASSISTment will contain scaffolds and after a
user is finished creating the top level problem they will
proceed with adding scaffolds. The view for a scaffolding
problem is exactly the same as that for the top level
problem, only slightly indented to mark it as a scaffold.

Knowledge Component Tagging

 The ASSISTment Builder supports others applications
besides content creation. One of these applications is the
mapping of knowledge components, which are organized
into sets known as transfer models. Knowledge
components are a means to map certain skills to specific
problems to specify that a problem involves knowledge of
that skill. This mapping between skills and problems allows
the reporting system to track student knowledge over time
using longitudinal data analysis techniques [3]. In a
separate paper accepted to WWW2006, we report on the
ability to track the learning of individual skills using a
coarse-grained model provided by that state of
Massachusetts that classifies each 8

th
 MCAS math item in

one of five categories (i.e. knowledge components in our
project): Algebra, Measurement, Geometry, Number Sense,
and Data Analysis [3].
 The current system has more than twenty transfer models
available, each with up to three hundred knowledge
components. In order to more efficiently manage transfer
models, the ASSISTment Builder makes use of the
preference architecture, allowing users to specify the
transfer models they will use. Once those are specified, the
user is allowed to browse the knowledge components
within each transfer model and to map the ones they select
to the problem.

Figure 7: Tagging an ASSISTment with skills

Evaluation Methods

 We present two types of results. First we investigated
the usability of the Builder by non-programmers.
Secondly, we investigated the amount of time it takes to
build these types of tutors. To capture the time it takes to
build these types of tutors, we need to capture the time it
takes to create the content (i.e., write scaffolding questions,
hint messages and bug messages) as well as the time it
takes to tag items with knowledge components that can be
used to do intelligent problem selection as well as reporting

to teachers (described in the Knowledge Component
Tagging Section above.) Because tagging the knowledge
components should come before writing the content, we
first discuss that. In the ASSISTment system, we built our
content based upon a group of 280 released items from the
state of Massachusetts Department of Education test. Two
subject matter experts spent 6 hours tagging each of the
280 items with up to three skills. At the end of the 6 hours,
the subject matter experts had created 93 skills and tagged
all 280 items with, at most, 3 skills per question. It then
took another of 12 hours of data entry to put the results in
the computer. So the total time spent tagging the items and
putting the result in the computer was 24 hours, or about 5
minutes per item. But how much time does it take to create
the content? In 2004-2005, we created ASSISTment for
these 280 items, and in [11] we report results that showed
that these 280 ASSISTment led to real student learning.
 Unfortunately, when these 280 items were built the
ASSISTment Builder was not logging the time it was used,
so we asked had to rely on self-reports. Our 4 most prolific
authors estimated an average time of between 1 and 2 hours
[which means that the 5 minutes to tag an item is not a very
significant piece of the time required so to build a tutor].
We wanted to get more accurate results so we engineered
the ASSISTment Builder log user actions while building
ASSISTments, and will report on the latest usage of the
ASSISTment Builder below. Each log message contained
the action logged (e.g. editing a hint, adding an incorrect
answer, uploading an image, etc.) the user who performed
the action, as well as a timestamp. We logged the creation
and editing of various types of ASSISTments. Some
ASSISTments were simply a single MCAS problem entered
into the system with no scaffolds, hints, or bug messages.
Others were more typical ASSISTments that contained
multiple scaffolds so report the number of scaffolds. Some
were already built ASSISTments that were now being
modified with different numbers, otherwise known as
morphs. Given that a significant portion of user time is
spent outside of the ASSISTment Builder planning out
content and creating images we performed a survey with
content creators and asked them to estimate how much time
they spent building specific items in the logs. They were
asked to break down the times according to time spent on
each task.

Results

 Before reporting out timing results, we pause to report
on the results relating the reducing the cost by making it
possible for non-programmers to use the tool. A university
class at an education school with nine teachers was able to
use the ASSISTment Builder as part of a University course.
These teachers received about 4 hours of training by the
first author. Various user-interface bugs were discovered,
but at the end of the session, these teachers were creating
content. At least two of these teachers are still making
content for 6 months after the end course. One of these
teachers surprised us by using the builder to make items for

a French course. In another University setting, we had two
WPI students that were secondary math teachers in local
public schools, create content. In one 1.5 hours section, we
observed in our lab the teacher creating 3 ASSISTments.
In the past a high-school mathematics teacher was able to
create 15 items and morph each one, resulting in 30
ASSISTments over several months. Her training consisted
of approximately four hours spread over two days in which
she created 5 original ASSISTments under supervision. No
logging was implemented at the time so we don’t know
how long she spent to build the rest of the 30 ASSISTment.
Nevertheless, these anecdotal reports suggest that we have
achieved the main goal of making a tool that non-
programmers can use to create content.
 This then bring up the next major questions, which is
how long does it take to create this content, and is it faster
that the 200:1 ratio suggested in the introduction of this
paper? After we implemented logging by the builder, we
obtained data for four authors who created a combined total
of 25 ASSISTments that were deemed of sufficient quality,
that Prof Heffernan allowed them to be released to
students. Each of these users has a WPI student and had
created several ASSISTments and was familiar with the
system. These users self-reported timing data was also
collected. The data is presented in table 1. The columns in
the table are identified as follows: S is the number of
scaffolds in the problem, I is the author estimated time
spent creating images outside of the ASSISTment Builder, P
is author estimated time spent planning the ASSISTment
outside of the ASSISTment Builder, B is the time the author
estimated time inside the ASSISTment Builder to create the
item, and L is the time spent on the ASSISTment Builder
according to the computer log records.
 It can be seen from the table most users also spend a
non-trivial amount of time outside of the ASSISTment
Builder creating images and planning the structure of the
ASSISTment. If we count only the time in the builder, they
spend only about 20 minutes to build an item, but if we add
on the self-reported planning and image creation time, we
get an average time of about 1 hour to build an item. This
is inline with self-reports from the authors that build the
content for 280 ASSISTments reporting in [11]. To find
the average time an ASSISTment provided content for, we
looked at the 600+ students that used the ASSISTment
System reported on in [11]. We found that an
ASSISTment provided an average of 2 minutes of
instruction. The ration of 60 minutes to build an
ASSISTment to provide 2 minutes of content results in a
ratio of 30:1 which compares very favorably to the 200:1
ration reporting in [1,9].

Table 1: Time spent on 25 ASSISTments

User ASSISTment S I P B L

C 1 5 3 10 30 60

A 2 3 3 0 45 18

A 3 5 3 0 25 19

C 4 3 3 0 30 33

A 5 4 3 0 35 37

A 6 3 3 60 10 17

A 7 3 3 0 45 14

A 8 4 3 0 30 36

A 9 3 3 60 10 7

A 10 3 3 0 25 17

A 11 4 3 60 10 16

A 12 3 3 60 10 8

B 13 3 40 5 15 17

B 14 3 40 20 10 7

B 15 3 0 7 5 27

B 16 3 50 15 15 13

B 17 3 30 10 10 11

B 18 6 150 40 30 25

B 19 4 60 15 10 14

B 20 5 40 15 10 6

B 21 4 60 20 15 10

D 22 11 0 5 50 40

D 23 1 0 10 10 15

D 24 3 0 10 40 30

D 25 8 0 10 30 20

Avg. 4 21 17 22 21

Conclusions

 To discuss the limitation of our methods, we do not
know if these ASSISTments it produces are as effective at
increasing student learning as intelligent tutoring produced
the more traditional approach. Our timing estimates could
have been better with more complete computer logging
data but given that it appears that using the builder is
maybe a third of the average time it takes to build an item,
we will still be left with accounting for the time outside of
the tools. Another limitation to our approach is that will
hundreds of small ASSISTments, we now have imposed
upon ourselves more organizational overhead to be able to
keep track of all these ASSISTments, and that additional
time is not well accounted for in these analyses, but we
think it’s probably small.
 This paper focused on reducing the costs to build
intelligent tutoring systems. In this paper we describe our
web-based system that we have used to create intelligent
tutors that have been shown in lead to real learning [11].
We reported evidence to suggest that it took only about 5
minutes to tag ASSISTments with the needed knowledge-
components, and only another 60 minutes or so to create
the rest of the tutor. Using the average of 2 minutes of
student use per ASSISTment gives us a very favorable
speed up compared to the 200:1 ratio from the literature
[1,9]. We also presented anecdotal data that normal
teachers, not just rule-based AI programmers could create
these tutors, thus “Opening the door to non-programmers’.

References

[1] Anderson, J. R. (1993). Rules of the mind.
Hillsdale, NJ: Erlbaum.

[2] Anderson, J. R., Corbett, A. T., Koedinger, K. R.,
& Pelletier, R. (1995). Cognitive tutors: Lessons
learned. The Journal of the Learning Sciences, 4
(2), 167-207.

[3] Feng, M., Heffernan, N.T, Koedinger, K.R.,
(2006) Addressing the Testing Challenge with a
Web-Based E-Assessment System that Tutors as it
Assesses, WWW2006, Edinburgh, Scotland.

[4] Jackson, G.T., Person, N.K., and Graesser, A.C.
(2004) Adaptive Tutorial Dialogue in AutoTutor.
Proceedings of the workshop on Dialog-based
Intelligent Tutoring Systems at the 7th
International conference on Intelligent Tutoring
Systems. Universidade Federal de Alagoas,
Brazil, 9-13.

[5] Jarvis, M., Nuzzo-Jones, G. & Heffernan. N. T.
(2004) Applying Machine Learning Techniques to
Rule Generation in Intelligent Tutoring Systems.
Proceedings of 7th Annual Intelligent Tutoring
Systems Conference, Maceio, Brazil. Pages 541-
553

[6] Koedinger, K. R., Aleven, V., Heffernan. T.,
McLaren, B. & Hockenberry, M. (2004) Opening
the Door to Non-Programmers: Authoring
Intelligent Tutor Behavior by Demonstration.
Proceedings of 7th Annual Intelligent Tutoring
Systems Conference, Maceio, Brazil. Page 162-
173

[7] Koedinger, K. R., Anderson, J. R., Hadley, W. H.,
& Mark, M. A. (1997). Intelligent tutoring goes to
school in the big city. International Journal of
Artificial Intelligence in Education, 8, 30-43.

[8] Macasek M.A., Heffernan, N.T., Towards
Enabling Collaboration in Intelligent Tutoring
Systems, Submitted to ICLS2006, Indiana, USA
(2006).

[9] Murray, T. (1999). Authoring intelligent tutoring
systems: An analysis of the state of the art.
International Journal of Artificial Intelligence in
Education, 10, pp. 98-129.

[10] Nuzzo-Jones., G. Macasek M.A., Walonoski, J.,
Rasmussen K. P., Heffernan, N.T., Common
Tutor Object Platform, an e-Learning Software
Development Strategy, Submitted to WWW2006,
Edinburgh, Scotland (2006).

[11] Razzaq, L., Feng, M., Nuzzo-Jones, G.,
Heffernan, N.T., Aniszczyk, C., Choksey, S.,
Livak, T., Mercado, E., Turner, T.E., Upalekar. R,
Walonoski, J.A., Macasek. M.A., Rasmussen,
K.P. (2005) The ASSISTment Project: Blending
Assessment and Assisting. Submitted to the 12

th

Annual Conference on Artificial Intelligence in
Education 2005, Amsterdam.

