
Using Dependency Models to Manage Complex Software
Architecture

Neeraj Sangal, Ev Jordan
Lattix, Inc.

{neeraj.sangal,ev.jordan}@lattix.com

 Vineet Sinha, Daniel Jackson
Massachusetts Institute of Technology

 {vineet,dnj}@csail.mit.edu

ABSTRACT
An approach to managing the architecture of large software
systems is presented. Dependencies are extracted from the code
by a conventional static analysis, and shown in a tabular form
known as the ‘Dependency Structure Matrix’ (DSM). A variety of
algorithms are available to help organize the matrix in a form that
reflects the architecture and highlights patterns and problematic
dependencies. A hierarchical structure obtained in part by such
algorithms, and in part by input from the user, then becomes the
basis for ‘design rules’ that capture the architect’s intent about
which dependencies are acceptable. The design rules are applied
repeatedly as the system evolves, to identify violations, and keep
the code and its architecture in conformance with one another.
The analysis has been implemented in a tool called LDM which
has been applied in several commercial projects; in this paper, a
case study application to Haystack, an information retrieval
system, is described.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE).
D.2.9 [Management]: Life cycle.
D.2.11 [Software Architectures]: Information Hiding.

General Terms
Design, Algorithms, Management.

Keywords
Architecture, Dependency, Model, Matrix, DSM.

1. INTRODUCTION
Excessive inter-module dependencies have long been recognized
as an indicator of poor software design. Highly coupled systems,
in which modules have unnecessary dependencies, are hard to
work with because modules cannot be understood easily in
isolation, and changes or extensions to functionality cannot be
contained.

This paper describes an approach to managing software systems
using dependencies. A tool extracts dependencies from code, and

displays them using a scheme that highlights potential problems.
The user enters ‘design rules’ that distinguish dependencies that
are problematic because they violate architectural assumptions
from dependencies that are expected and reasonable. As the
system evolves over time, the rules are checked in subsequent
analyses to flag deviations from the architecture, usually
introduced unwittingly during ongoing development.

The topic of this paper is the underlying dependency model, and
the scheme by which potential problems are highlighted. An
experimental application of the approach to a system of about
200,000 lines of code is described, which suggests some of the
approach’s promise, and also indicates areas needing attention.

The extraction and exploitation of dependencies has been a
subject of research since Parnas first formulated the notion of
inter-module dependency in his early papers (most notably [5]).
The particular representation that we use – a partitioned adjacency
matrix – has been widely used in the analysis of manufacturing
processes, where it is referred to as the ‘dependency structure
matrix’ or ‘design structure matrix’ or DSM. The potential
significance of the DSM for software was noted by Sullivan et al
[7], in the context of evaluating design tradeoffs, and has been
applied by Lopes et al [18] in the study of aspect-oriented
modularization. MacCormack et al [19] have applied the DSM to
analyze the value of modularity in the architectures of Mozilla
and Linux. Our approach, however, seems to be the first
application of DSM for the explicit management of inter-module
dependencies, and the tool Lattix Inc’s dependency manager
(henceforth LDM) seems to be the first publicly available
implementation of DSM analysis for software.

Our paper begins, in Section 2, with a short introduction to the
dependency structure matrix, explaining its origins in the design
for manufacturing process. Section 3 explains our application of
the DSM to software, and why it appears to be well-suited to the
problems of large-scale software design. Section 4 describes the
key elements of our process for discovering and analyzing the
architecture of existing systems. Section 5 reports on the
application of the approach to Haystack, an information retrieval
system whose codebase has evolved over several years. The paper
closes in Section 6 with a discussion of related work, in particular
the Reflexion Model Tool of Murphy, Notkin and Sullivan [3].

2. THE DEPENDENCY STRUCTURE
MATRIX
The dependency structure matrix (DSM) was invented for
optimizing product development processes. Although it has
broader applications – including, as we shall see, to software – we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010...$5.00.

shall describe it in its original context to make the discussion as
concrete as possible.

In the development of a product, a collection of tasks is
performed. These tasks have dependencies on one another, either
because of physical objects that must flow from task to task, or
because of information that one task requires and which another
task provides. The structure of dependencies amongst these tasks
is a strong indicator of the efficiency of the process as a whole
[1]. If the tasks are tightly coupled, with many cyclic
dependencies, the pipeline will stall frequently, and tasks will
need to be repeated because of dependencies on tasks that follow
them.

The term ‘dependency structure matrix’ refers both to a particular
representation of such dependencies, and to algorithms for
reorganizing the dependencies by reordering and clustering tasks.
The matrix is a simple adjacency matrix with tasks labeling the
horizontal and vertical axes, and a mark in the ith column and jth
row when the ith task depends on the jth. Dependencies of tasks on
themselves are not considered, so there are never marks along the
diagonal. In some applications, the strength of the dependencies is

1 2 3 4

1 . X X

2 . X

3 X . X

4 .

Task B

Task C

Task D

Task A

Figure 1: A Simple DSM

1 2 3 4

1

2 X X

3 X X

4 X

Task C

Task B

Task D

Task A

Figure 2: Block Triangular DSM after Partitioning

1 2 3

1 .

2 X .

3 X .

Task D

Task A-C

Task B

Figure 3: Lower Triangular DSM

1 2 3 4

1 .

Task A 2 X . X

Task C 3 X X .

4 X .Task B

A
-C

Task D

Figure 4: Hierarchical DSM

given numerically, but we shall first consider only binary values,
writing an ‘X’ for the presence of a dependency, and nothing for
its absence.

One important criterion that is used to evaluate the matrix is that
the dependency relation should be acyclic. This means, in matrix
terms, that the tasks can be permuted so that the matrix is lower
triangular – that is, with no entries above the diagonal.

Figure 1 shows a simple DSM. Examining column 1 we note that
task A depends on task C; examining column 3 we note that task
C depends on tasks A and B. Because tasks A and C are mutually
dependent, the tasks cannot be reordered to make the matrix lower
triangular. However, if A and C are regarded as a single
composite task, the cycle can be eliminated. This transformation
is known as partitioning, and its result is shown in Figure 2, with
the composite tasks indicated by shading. Such a DSM, which has
been rearranged so that all dependencies either fall below the
diagonal or within groups, is said to be in block triangular form.

The grouping of tasks can be shown in different ways. A new
compound task can be formed [2] as in Figure 3; in this case, the
matrix becomes lower triangular. Alternatively, the identities of
the basic tasks can be retained, by introducing some hierarchical
structure, as in Figure 4, in which the grouping of A and C is
shown by their indentation.

Algorithms have been developed to optimize the ordering of tasks
and their aggregation into groups. Such algorithms are known as
partitioning algorithms, and include those of Warfield [10] and of
Gebala and Eppinger [9]. A different class of algorithms,
described by Hartigan [11], and known as clustering algorithms,
optimizes the ordering and aggregation to reduce the number of
off-diagonal dependencies. Their purpose is not merely to
eliminate cycles, but to reduce the incidence of any dependencies
between task clusters. Clustering has been used for architectural
decomposition [13], and to optimize the organization of product
development teams [14][15][22].

3 APPLYING THE DSM TO SOFTWARE
The application of the DSM to software, with modules playing the
role of tasks, is straightforward and yet appears to have several
advantages over more widely used dependency representations:

• The matrix representation itself scales better than box-and-
line diagrams; the inclusion of hierarchy, as shown in
Figures 4 through 10, is particularly helpful.

• The criteria that motivate partitioning in product
development workflow have analogues in the structure of
software systems. Parnas discussed the elimination of cyclic
dependencies in his early paper [5]. The term ‘layered’ is
often used approvingly of systems in which modules can be
partitioned into layers, with each module having
dependencies only on modules within the layer or belonging
to the layer below [17]. Partitioning finds layers and
highlights cycles.

• The partitioning algorithms provide an automatic mechanism
for architectural discovery in a large code base. Partitioning
eliminates cycles by forming subsystems. The groupings and
orderings recommended by these algorithms can be applied
straightforwardly to reorganize the code base so that its

inherent structure (evident, in Java for example, in the
package namespace hierarchy) matches the desired structure.

3.1 LDM’s Dependency Notion
The LDM tool uses a standard notion of dependency, in which a
module A depends on a module B if there are explicit references
in A to syntactic elements of B. Currently, a module is a Java
class, but a more fine-grained analysis is possible. This simple but
effective notion of dependency works well for understanding
design dependencies, in which modifications to one module might
affect another. It is less well suited to determining runtime
properties (such as how failures can propagate between modules),
which require a deeper static analysis.

As in other dependency tools (such the Reflexion Model Tool
[3]), the extraction of dependences can be decoupled from their
analysis, so the techniques we describe here would apply equally
well on top of more sophisticated static analyses.

In the LDM tool, the DSM can be configured to display an ‘X’ for
a dependency or to display a dependency strength representing the
number of references between two modules that is responsible for
their dependence.

LDM offers DSM algorithms for partitioning; it does not
currently offer automatic clustering. The default decomposition
used by LDM is based on the code organization: the Java package
structure. The matrix presented is hierarchical (as in Figure 4),
and the algorithms and manual intervention can be applied at
different levels.

Users can edit the systems structure. They can reorder modules
and partition by hand, and create, delete, and move subsystems to
reflect their understanding of the architecture. Dependencies are
automatically recalculated and re-aggregated as the structure is
changed.

3.2 Architectural Patterns
A DSM can readily reveal an underlying architectural pattern in
an existing system, and highlight deviations from it. For example,
Figure 5 shows layering, in which each layer depends on the
layers underneath but not on the layers above. Figure 6 shows a
strictly layered system [20] in which each layer depends only on
the layer immediately below it.

Figure 7 shows a change propagator: a subsystem that depends
on a large number of subsystems and in turn has many subsystems
depending on it. Change propagators make systems brittle because
they increase the likelihood that the effect of a change will
propagate to a disproportionately large portion of the system. In
this case, the propagator is Project because, as shown in column
9, it depends on a large number of subsystems, and as shown in
row 9, a large number of subsystems depend on it. A change in
Services could affect nearly the entire system, because
ProjectLoader depends on Services, Project depends on
ProjectLoader, and every subsystem depends on Project.

Baldwin and Clark argue that the value of modular systems
comes, in large part, from hidden subsystems [2]. Hidden
subsystems can be replaced easily, and are easier to maintain
because they have a limited and well-defined interface to the
system and are therefore unaffected by most modifications.

Figure 5: Layered System

Figure 6: Strictly Layered System

Figure 7: DSM with a Change Propagator

Figure 8: Hidden Subsystems

Figure 9: Imperfectly Layered System

Figure 8 shows two subsystems comp-1 and comp-2, which are
regarded as hidden within the subsystem domain, because no
other subsystem depends on them.

A key advantage of matrix over graph representations is that the
preponderance of dependencies in the lower triangular part of a
matrix makes it easy to see the layering pattern even when the
layering is itself imperfectly pattern even when the layering is
itself imperfectly implemented. Figure 9 shows a system that is
not completely layered because of dependencies in column 5.
Module util depends on application and model, but dependency
strengths suggest that this dependency is not as strong as the
reverse dependency of application or model on util.

Note that an approach based on DSMs does not imply that every
software architecture should have a layered, acyclic structure. The
merit of the DSM approach is simply that it highlights those
aspects of the architecture that deviate from these norms. This
allows a succinct characterization of a system’s architecture in
terms of which deviations are acceptable. Some simply represent
flaws: violations of the architectural design that can be corrected
by modifying the code. Others, however, result from conscious
design tradeoffs, in which the software architect has decided with
good reason to deviate from a pure layered architecture.

3.3 Examples
Figure 10 shows a DSM for JUnit version 3.8.1, an open source
regression testing framework. This DSM was created by loading
the JUnit jar file into LDM and then applying the partitioning
algorithm. The DSM shows that JUnit is a layered system with
clean separation of the user interface layers from the underlying
core logic.

Figure 11 shows the DSM (created by the same process) for jEdit
version 4.2, an open source editor with about 800 classes. Its
layering, unlike JUnit’s, is not immediately apparent. The large
number of dependencies in column 151 shows that there are a
number of classes in the top level package jedit that reference
most of the other subsystems. It also shows that most of the other
subsystems also reference these classes. This suggests that a
refactoring might be in order to reduce the coupling.

3.4 Design Rules
The distinction between acceptable and unacceptable
dependencies is expressed using design rules, which are provided
by the user, and applied to the displayed DSM, in order to
highlight the dependencies that violate the intended architectural
design. A design rule may require, for example, that a library
subsystem has no dependencies on the rest of the application, or
that only certain parts of a core subsystem may depend on GUI
modules.

Continuous checking of design rules, akin to regression testing,
can be used to keep a code base in sync with its design.
Architectural creep becomes less of a problem, and flaws
(especially those introduced by new team members) are caught as
soon as they are introduced.

1 In the displayed DSM and in design rules, the symbol * refers to
immediate components of a package; in design rules, ** refers to
all direct or indirect descendants.

Figure 10: DSM for JUnit

Figure 11: DSM for jEdit

The very expression of design rules has benefits that go beyond a
shared articulation of design intent. When current design rules are
violated for good reasons, it forces the revision of design rules
thereby making architectural evolution explicit.

The DSM itself provides a convenient way to input design rules,
by having the user click on cells to identify allowed or forbidden
relationships. Design rules exploit the hierarchical structure too,
since a rule specified for a subsystem can apply to all its
constituents.

3.4.1 Specifying Design Rules
Design rules come in two forms

S1 can-use S2
S1 cannot-use S2

indicating that S1 can and cannot depend on S2. In their simplest
form, the specifiers S1 and S2 are names drawn from the program’s
namespace (such as Java packages or classes). More generally,
they can be lists of arbitrary path names with wildcards.

The user can also define specifiers to use as an orthogonal
classification of program elements; for example, subsystems that
access a database might be classified as persistence, and
subsystems that are web-based servlets or Java server pages as
presentation, allowing rules such as:

presentation cannot-use persistence

Classification can be manual, or can be computed automatically
(for example, according to which external libraries a subsystem
uses).

Rules are by default inherited, so that a rule for a subsystem
applies to its components. They are interpreted in order, so that
one rule can override another to handle exceptions. Rules can be
applied equally to external systems; the rule:

S can-use org.apache.**

for example, permits dependences on all external libraries whose
names start with org.apache. This provides a technique to
control the proliferation of external library usage.

3.4.2 Using a DSM to Represent Design Rules
In LDM, design rules are shown visually (Figure 12) by marking
the corners of a cell with green and black to indicate whether a
dependency is permitted. For a can-use rule, the cell has a green
triangle in the upper left corner; for a cannot-use rule, the cell has
a black triangle in the lower left corner. A dependency in a cell
governed by a cannot-use rule is a design rule violation, indicated
by a red triangle in the upper right corner.

Note that often we turn off the display of the green triangle. This
makes the display easier to read by enabling the user to focus on
dependencies which are not permitted. In subsequent figures, a
triangle in the lower left-hand corner of a cell shows where a
dependency is prohibited, except for Figure 18, in which the
triangles highlight violations.

3.4.3 Example of Design Rules for Patterns
Architectural patterns can be expressed with design rules. For
example, the following rules, shown visually in Figure 13, express
layering (where $root refers to the top-level node in the
hierarchy):

$root can-use $root
model cannot-use application
domain cannot-use application, model
framework cannot use application, model,

domain
util cannot-use application, model,

domain, framework

A strictly layered system might be specified thus:
$root cannot-use $root
application can-use application, model
model can-use model, domain
domain can-use domain, framework
framework can-use framework, util
util can-use util

In this case it was more convenient to specify the top-level rule as
a cannot-use, and override it. The rules are shown visually in
Figure 14.

A system with independent components might be specified thus:
comp-1 cannot-use comp-2, comp-3
comp-2 cannot-use comp-1, comp-3
comp-3 cannot-use comp-1, comp-2

and shown as in Figure 15.

Figure 12: DSM with Rule View

Figure 13: Design Rules for a Layered System

Figure 14: Design Rules for a Strictly Layered System

Figure 15: Design Rules for Independent Components

4. AN APPROACH TO MANAGING
DEPENDENCIES
In this section, we give a brief overview of how LDM is used in
the context of a development project to manage dependencies.

Although the dependencies that underlie the DSM are extracted
automatically, establishing the right hierarchical structure – which
we call the conceptual architecture – relies on guidance from the
user. As mentioned above, the tool by default uses the program’s

own package structure as an initial hierarchy, but this usually does
not reflect the important architectural structure fully.

Not surprisingly, an iterative process seems to work best,
combining an understanding of the problem domain and the
system itself with information obtained from the tool’s DSM
analyses.

Once the conceptual architecture has been defined and the
corresponding DSM obtained, the design rules are developed.

Our experience so far in using this approach has been as
consultants applying the LDM tool to projects for our clients.
Typically, we progress as follows:

1. Understand Application. We obtain a working knowledge of
the function and use of the application, by reading user
documentation and, when possible, running the application.

2. Create Preliminary DSM. We run LDM to create a preliminary
DSM using the hierarchical structure of the code’s own
namespace.

3. Create Conceptual Architecture. We interview the architects
and senior developers who have an understanding of how the
entire application is structured. We then create a conceptual
architecture, usually in diagrammatic form as a directed graph.
The DSM is then updated to reflect this hierarchical structure, and
we examine the resulting dependencies, as aggregated by this
structure. The structure is refined by removing irrelevant
subsystems, moving subsystems, and adding new levels in the
hierarchy.

5. Audit Dependencies. With the hierarchy in place, we now
embark on a careful analysis, using LDM, of the dependencies.
We identify dependencies that appear to violate the intended
layering or modularity.

6. Define Design Rules. A set of design rules is then developed to
explain the dependencies generated. Dependencies that are
considered acceptable even though they violate the overall
architectural intent are permitted by creating exception rules. For
each rule, a rationale is recorded.

7. Architectural Remediation. Once a conceptual architecture has
been defined and a corresponding dependency model obtained,
architectural violations are highlighted by the tool. Initial
remediation generally involves package reorganization so that the
package and file hierarchy corresponds to the subsystem hierarchy
that was created in the DSM. Other remediation may require more
substantive code changes so that the dependencies conform to the
design rules, for example, by creating new interfaces, or adopting
patterns such as Factory and Listener.

8. Ongoing Dependency Management. By this point, the code has
been brought into conformance with the architectural intent, as
articulated in the hierarchical structuring and in the design rules.
As the code is developed further, LDM is applied to flag
deviations from this intent. In most cases, we expect the
deviations to represent flaws that should then be fixed, but in
some cases, the deviations will represent evolving changes to the
architecture which should be accommodated by changes to the
hierarchy and design rules themselves.

This process does vary for each application since the quality and
quantity of system documentation differs greatly, as does the
availability of key architects with critical insights. Steps may be
repeated simply to reconcile conflicting information from
different sources.

5. A CASE STUDY: A DEPENDENCY
MODEL FOR HAYSTACK
In order to determine whether our approach meets its goals, we
undertook a case study with the following questions in mind:

• Can the dependency model capture the architecture and scale
of a program with significant complexity?

• Can the dependency model help in the management of the
program’s architecture? Is the dependency model useful for
extracting the architecture of the program? Does the model
help in reengineering the software architecture?

• Can the dependency model ease future maintenance of the
architecture? Can design rules capture the extracted
architecture of the program? Are they able to provide support
for architectural exceptions?

Our choice for this case study was Haystack [12], a research
prototype of a tool for managing personal information. The
current incarnation of the tool has been under development for 4
years, with the core application consisting of 196,707 lines of
Java code (as measured by Unix wc, which includes comments
and whitespace). Being a test-bed for research ideas, the program
has portions whose current use is different from the original
intent, as well as small portions of code that are not currently
used.

Although the code was developed by a team, the original design
was the work of a single developer who has since left. There is
very little documentation of the architectural structure – not even
a high-level architectural diagram. The reengineering task
therefore reflected the challenge faced in many software projects,
in which the architectural descriptions, if they ever existed, are no
longer in sync with the code.

Our plan in conducting this study was to develop a conceptual
architecture with the help of LDM, then identify violations, and
determine what code changes and refactorings would be needed to
make the code conform.

The study was conducted by one of the authors of this paper, a
graduate student with 5 years’ experience in system programming
in Java and C++. He had been a developer of some extensions to
Haystack, but was not familiar with the entire codebase, and had
not worked with DSM’s or LDM prior to the study.

5.1 Defining the Architecture
The code base was loaded into LDM which created a DSM
(shown in Figure 16) based on the package structure. This
revealed the contrast between previous architectural decisions
(embedded in the directory structure) and the exceptions to those
decisions (shown by dependencies above the diagonal in the
matrix). It quickly became clear that the hierarchical package
structure did not reflect the architecture well, although the
individual packages grouped classes reasonably well.
Using the approach described in Section 4, the conceptual
architecture of Figure 17 was created. The corresponding DSM

Figure 16: Initial DSM for the Haystack code base

for the conceptual architecture is shown in Figure 17. LDM’s
partitioning algorithm was a great help in discovering layering.
The rapid recomputation of aggregated dependencies as the
hierarchy is changed was found to be essential, because it allowed
us to experiment with different structurings and examine their
consequences in terms of dependencies. The progress we made in
understanding the architecture is apparent in a comparison of
Figures 16 and 18 – in particular, the elimination of many
dependencies in the upper right portion of the matrix.

5.2 Leveraging the Architecture
Having developed a conceptual architecture, we then used LDM
to reveal extra dependencies. An unexpected benefit of building a
DSM with a cleaner architecture was that by going over the extra
dependencies and expanding the hierarchy in the matrix, it was
possible to very quickly to find the cause of the extra
dependencies. In fact, in the DSM in Figure 18, four regions
(numbered 1-4) are supposed to be free of dependencies; regions
1-3 because they are in the top-right diagonal and would represent
cycles, and region 4 because (as shown in the architectural
diagram) it represents the independence of the UI from the Server.

Analysis of the dependencies in these regions suggests the
remediation necessary in order to clean up the architecture:

• Region 1 represents dependencies from what is known as the
project’s data-model. These modules form the building
blocks of the entire system and therefore are not supposed to
depend on any other modules. Examining the extra
dependencies shows that they are caused mainly due to static
methods. These dependencies show the practice in Haystack
of not using any particular criteria in placing non-instance
based helper methods. While these methods should ideally be
in another module, they are in the data model for ease in
finding and using them.

• Region 2 represents dependencies from the project’s
inference engines. These engines have resulted from the
evolution and extension of two smaller inference engines one
primarily used in the server and the other in the UI. Over
time, they had evolved to have different strengths and are
being used inconsistently in the code. A redesign of this
component was already being contemplated. The extra
dependencies in the grid highlight this need.

• Region 3 and 4 dependencies represent minor project
inconsistencies. Examining these extra dependencies shows
that resolving each one needs a small and local design
decision, and have likely been caused because of the absence
of an architectural diagram in the past.

Beyond helping identify these regions of extra dependencies, the
rearchitected DSM yielded significant benefits. Just from the
DSM it is apparent that subsystems for server extensions and user
interface (ozone) extensions have no major dependencies on the
rest of the system. This means that they can be changed or newer
extensions added without significant risk to the system. In fact, a
large number of these components are now hidden subsystems of
the server and the user interface.

Similarly, we were able to create a new abstraction for inference
engines (region 2) with the DSM without actually writing code.
While we still needed to refactor the code so that the new
abstractions would be properly layered and easily available, the
DSM allowed us to define the details of the new abstraction by
allowing us to examine all dependencies that would arise from
creating the abstraction.

Figure 17: Haystack - Conceptual Architecture

5.3 Maintaining the Architecture
In order to maintain the discovered architecture while re-
architecting and for future development, we described the
architecture using design rules. Three types of rules were defined:

1. Rules to reflect the layering (as shown by regions 1-3). For
example, the rules for region 1 were:

data-model cannot-use $root
data-model can use edu.mit.lcs.haystack.*

2. Rules to indicate the key design decision of the independence
of server and the user-interface::

ozone cannot-use server

3. Rules to characterize the usage of external libraries. This
included defining how the base system and extensions use
external libraries, and were similar to examples shown
before.

The red triangles in the top right corner of cells in Figure 18
highlight the conflicts once the above design rules are entered.
These rules allow for the periodic automatic checking of the code
base for design violations.

5.4 Evaluating DSMs
By and large, the approach worked well on the case study.
Although we have not yet been able to assess the efficacy of
design rules in ongoing development, we found the tool very
helpful in extracting the architecture, identifying problems and
checking the results of refactoring. Our experience confirmed the
value of the two key features of DSM's: the hierarchical structure,
and the partitioning algorithm. Without these features, we would
not have been able to handle a code base even of this size; a box-
and-line diagram extracted directly from the code is
unintelligible.

We had two kinds of problems. First, matrices, such as the DSM,
while inherently more scalable a representation of relations than
graphs, are not always easy to read. In particular, finding the cell
that corresponds to a relationship between two elements has a
greater cognitive overhead, and following the edges of a relation
transitively requires going back and forth between row and
column indices rather than simply following arrows along a path.
With time, however, our proficiency at reading DSM's increased.
Second, there were limitations of the underlying dependency
model. Haystack's design involves two orthogonal classifications;
while we could have constructed two separate DSM's, we would
have liked to have been able to use the tool to understand the
interplay of dependencies between the two views. Also, we
occasionally wanted a more refined notion of dependency, which
maps a client class to the class it uses at runtime rather than to the
class it declares as a use in its code. There seems to be no
fundamental reason why a richer dependency model (such as [6])
could not be incorporated into the tool.

Figure 18: DSM for Haystack after Hierarchy Reorganization (triangles indicate design rules violations)

6. RELATED WORK
The importance of understanding dependencies between modules
has also been understood and emphasized by other researchers.
Our work is perhaps most similar to the work on the Reflexion
Model Tool (RMT)[3]. Our design rules combine the reflexion
map and the idealized model. When there are multiple, orthogonal
views of the architecture this will make our design rules less
succinct than the idealized model of RMT; on the other hand,
when a single hierarchy is dominant, our design rules are likely to
be simpler to express than the model and map of RMT together.
We believe that our hierarchical matrix representation scales
better than the graphical representation of RMT. The use of DSM
algorithms for architectural discovery is a major benefit of our
approach; it would be interesting to see how it might be
incorporated into RMT.

Hierarchical representations are, of course, not new. Tran et al. [4]
examines systems in terms of their hierarchical decomposition,
using Harel’s higraphs.

Heuristic algorithms for organizing a system into layers have been
investigated in the context of the reverse engineering tool Rigi
[16]. Rigi seems to be less flexible than LDM in allowing a
mixture of manual and automatic organization, and in terms of its
ability to scale. We have not been able to evaluate the

effectiveness of Rigi’s algorithms in comparison to the DSM
algorithms, but such a study would be worthwhile.

A number of tools are available for extracting dependencies from
code, such as sa4j from IBM, OptimalJ from Compuware and
JDepend from Clarkware Consulting. These do much the same as
the frontend of LDM.

Jackson [6] has proposed a more elaborate notion of dependence,
in which interfaces are not treated as modules in their own right,
but rather mediate dependencies. We plan to explore whether this
notion might be useful in our context.

A dependence-based view of software is, of course, only one of
several useful views. In Kruchten’s “4+1” model of software
architecture [8], our representation of the system corresponds
roughly to the ‘development view’.

7. CONCLUSION
The approach we have described seems to be lightweight enough
to be usable in practice, and yet offers benefits that have not been
available in previous approaches. It seems to scale well, and
provides, with little effort from the user, a view of the system that
is valuable, especially during ongoing development, or when

1

2

3

4

reengineering. The approach we have described does not disrupt
standard development processes, and seems to offer a notion of
architecture and architectural conformance that is compatible with
the intuitions of practicing software engineers.

In future work, we plan to explore more refined notions of
dependence and the role they might play. We are also
investigating the impact of design rules on the evolution of the
architecture of software systems, which we believe will be
especially valuable in distributed organizations where
architectural intent is harder to communicate and maintain.

REFERENCES
 [1] Steven D. Eppinger, “Innovation at the Speed of

Information”, Harvard Business Review, January 2001.

 [2] Baldwin, C.Y. and Clark K.B., The Power of Modularity
Volume 1, MIT Press, Cambridge, MA, 2000.

[3] Murphy, G.C., Notkin D., and Sullivan, K.J., “Software
Reflexion Models: Bridging the Gap between Design and
Implementation”, IEEE Transactions on Software
Engineering, Vol.27, No. 4, April 2001

[4] Tran, J.B., Godfrey M.W., Lee E.H.S., Holt, R.C.,
“Architectural Repair of Open Source Software”, Proc. of
2000 Intl. Workshop on Program Comprehension (IWPC-
00), Limerick, Ireland, June 2000.

[5] Parnas, D.L., “Designing Software for Ease of Extension and
Contraction”, Transaction on Software Engineering, SE-
5(2), 1979

 [6] Jackson, D., “Module Dependences in Software Design”,
Post-workshop Proceedings of the 2002 Monterey
Workshop: Radical Innovations of Software and Systems
Engineering in the Future (Venice, Italy October 7-11,
2002). Springer Verlag, 2003.

 [7] Sullivan K., Cai Y., Hallen B., Griswold W., “The Structure
and Value of Modularity in Software Design”, Proceedings
of the 8th European Software Engineering Conference held
jointly with 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2001

[8] Kruchten, P., “The 4+1 View Model of Architecture”, IEEE
Software 12(6): 42-50, 1995

 [9] Gebala, David A. and Eppinger, Steven D., "Methods for
Analyzing Design Procedures", Proceedings of the ASME
Third International Conference on Design Theory and
Methodology, pp. 227-233, 1991.

[10] Warfield, John N., "Binary Matrices in System Modeling"
IEEE Transactions on Systems, Man, and Cybernetics, vol.
3, pp. 441-449, 1973.

[11] Hartigan, John A., "Clustering Algorithms," John Wiley &
Sons, New York, 1975

[12] The Haystack Project. MIT Computer Science and Artificial
Intelligence Laboratory. http://haystack.lcs.mit.edu/.

[13] Browning, T. “Applying the Design Structure Matrix to
System Decomposition and Integration problems: A Review
and New Directions”. IEEE Transactions on Engineering
management, Vol. 48, No. 3, August 2001.

 [14] Pimmler, Thomas U. and Eppinger, Steven D., "Integration
Analysis of Product Decompositions", Proceedings of the
ASME Sixth International Conference on Design Theory and
Methodology, Minneapolis, MN, Sept., 1994.

[15] Fernandez, CIG, “Integration Analysis of Product
Architecture to Support Effective Team Co-location”,
Master’s Thesis (ME), MIT 1998.

[16] H. A. Müller, K. Wong, and S. R. Tilley. "Understanding
software systems using reverse engineering technology." The
62nd Congress of L'Association Canadienne Francaise pour
l'Avancement des Sciences Proceedings (ACFAS 1994).

[17] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall, 1996.

[18] Cristina Videira Lopes and Sushil Bajracharya, “An
 Analysis of Modularity in Aspect-Oriented Design," Proc.

Aspect-Oriented Software Development (AOSD'05), Chicago,
March 2005.

[19] Alan MacCormack, John Rusnak and Carliss Baldwin,
“Exploring the Structure of Complex Software Designs: An
Empirical Study of Open Source and Proprietary Code”,
Harvard Business School Working Paper Number 05-016.

[20] Clemens Szyperski, “Component Software - Beyond Object-
Oriented Programming”, ACM Press/Addison- Wesley, 1997.

[21] R. Kazman, S. J. Carriere, “Playing Detective:
Reconstructing Software Architecture from Available
Evidence”, Journal of Automated Software Engineering, 6:2,
April, 1999, 107-138.

[22] Yassine, Ali, "An Introduction to Modeling and Analyzing
Complex Product Development Processes Using the Design
Structure Matrix (DSM) Method", Quaderni di Management
(Italian Management Review), www.quaderni-di-
management.it, No.9, 2004.

