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IElI's Patented Creativity Machine® Paradigm

Summary - An artificial neural network that has been lrained on some body of knowledge and then perturbed in a specially
prescribed way tends to aclivate into concepts and/or strategies (e.g., new ideas) derived from that original body of knowledge.
These transiently perturbed networks are called 'imagination endgines or 'imagitrons’. If another computational agent, such as a
traditional rule-based algorithm or, even better, another trained neural network is allowed to filter for the very best of these
emerging ideas, we arrive at an extremely valuable neural architecture, the patented Creativity Machine. Optional feedback
connections between this latter computational agent and the imagination engine assure swift convergence toward useful ideas
or strategies. ..This new Al paradigm is vastly more powerful than genetic algorithms (GA), efficiently generating new concepts
on mere deskiop computers rather than on the computational clusters required of GAs.

Details - Ordinary neural networks excel at leaming from raw data, cumulatively leaming to associate one pattem with another,
as when raw sensory inputs from our five senses activate mental images or feelings. Note, however, that such a direct link
between the extemnal world, and our own internal mental life is only a small part of brain activity. To produce a more faithful
emulation of human cognition, some mechanism musl be established that provides an internal genesis of thoughis and ideas
that draws upon cumulative experience, rather than what our senses are telling us at the moment.

Creativity Machines represent a new kind of neural network
paradigm that is capable of generating rather than just hopping synaptic

associating pattems. They are based upon what we believe to “CM” peeiibstion® inputs:clampud for:contaxt
be a significant scientific discovery: that a neural network A4 g ‘

exposed to any conceptual space and then intemally initated, e Imagination
in a specially prescribed way, tends to generate coherent ideas } 0040000909 I Engine
derived from its absorbed wisdom. Another neural network e (IE)
trained to filter out the very best of these notions, patrols the 000060006 -

former net's outputs, accumulating useful concepts (i.e., new feedback L EE4ERRRK Alert

drug or automobile designs) or using these outputl patterns in

real time to devise sirategies (i.e., robotics and control systems), Evaluation B | Associative
~of Ideas Center
Perhaps the most appropriate benchmark for Creativity (AAC)

Machines is the highly popularized genetic algorithm (GA) '.,_',,
wherein mathematically smulated 'genes randomly combine
and mutate to produce new potential offspring that in tum
represent new concepls, designs, or strategies. The problem with such systems is that they work on geologic lime scales relalive
to the inherent processing speed of digital computers. Furthermore, GAs fail to deliver solutions as the dimensionality of the

preblem increases and the algorithm's generative process leads to combinatorial explosion and nonsensical offspring.
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Problem dimensionality is not an issue for Creativity Machines. In a nutshell, this advantage stems from the fact that this neural
architecture emulates the thalamocortical loop of the brain (i.e., the seat of intelligence and consciousness) rather than blind,
and excruciatingly sow processes of mutation and natural selection. Furthermore, the actual time to build a Creativity Machine
is negligible to genetic programs, since the CM is a self-organizing system. GA's, in contrast are not, and require that human
experts hardwire myriad constraint relationships into their human-originated computer codes. In other words, genetic algorithms
must be written by human programmers, whereas Creativity Machines build themselves!

The benefit o you, as an IEIl customer, is that a specially tailored Creativity Machine can generate results at typically a tenth of
the cost of any other Al paradigm perceived as competilive. Furthermore, it can deal with complex problems that the other
approaches can't even touch.
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Abstract - A synaptically perturbed neural network forms an efficient search engine within and around any conceptual space upon
which it has been trained. By monitoring the tenporal distribution of concepts emerging from such a system, we discover a quantitative
agreement with the measured rhythm of human cognition, creative or otherwise. Closer examination of this transparent connectionist
search engine suggests that much of human creativity may be attributed to the failure of cortical networks to activate into known
menories as these neiworks perform vector conmpletion upon their own internal disturbances. In lieu of intact memory activation, the
networks produce a stream of degraded menories, now constituting what we commonly refer to as "ideas,"” that are filtered for utility
and interest by attendant cortical networks.

Introduction

Creativity is pernaps the most celebrated of human capacities, embraced by the human potential movement and revered in the same
light as other "folk" attibutes such as spirit, soul, and free will. In the objective analysis of creativity, however, we must recognize that
much of the grandeur and mystique of this cognitive phenomenon may be no more than a societal judgment that falls far short of
established scientific standards. No longer squinting at the reality, we must account for why human progress is so desultory and why
human intellectual activity does not take the most direct deductive path toward a final and ultimate product. Adhering to a
reductionist model, we must account for ostensibly breathtaking paradigm shifts and innovations based upon a system of cortical
neurons exchanging nothing more than matter and energy with the environment.

In taking this purely physical tack we must realize that just like swinging doors and molecules, the brain isa dynamical system endowed
with various degrees of freedom. For a door the single degree of freedom describing its state is the rotation angle about its hinge axis.
For a polyatomic molecule the degrees of freedom include the many allowed vibrational and rotational modes into which all
conceivable motions of constituent atoms may be resolved. For the brain the allowed states are itsneural activation patterns, each one
of which represents some memory, sensation, oridea. We note that just asin the simpler physical systems, the total number of possible
degrees of brain freedom is finite and attributable largely to the existence of electrochemical constraints (i.e., long-term potentiation)
that bar the arbitrary activation of any given neuron or group of neurons within thissizable collective system.

Recognizing that any of these dynamical systems can only evolve in a manner dictated by intemal conslraints, we anticipate that the
introduction of any random perturbation to these systems will drive them only through their allowed degrees of freedom. Therefore, the
door will only move through its hinge axis when subjected to random jaming. A water molecule will respond to impact with other
molecules by executing only its allowed translational, vibrational, and rotational modes. Likewise, when bathed in internal chaos, the
cortex can only move through its allowed manifold of electrochemical states, each encompassing some idea or notion, whether
mundane or profound. The result iswhat we commonly term stream of consciousness, a succession of thoughts, apparently from out of
the blue.

Obviously, as long asthe systems of electrochemical consfraints in the brain remain intact, there can be no more seminal thought than
the tumover of preexisting memories. One avenue toward creating new and unique activation patterns, and hence original ideas, isto
destroy electrochemical constraint relations within cortical networks. Theoretically, exercising this single option opens the door not
only to an inftriguing model of creative cognition but also to a powerful computational paradigm.

The Creativity Machine Paradigm

Rumelhart and colleaques (1986) emphasized the utility of parallel distributed processing systems as constraint satisfaction networks in
their pioneering work. Using "hand-wired" competitive networks exposed to various room schemata, they were able to demonstrate a
primitive brand of creativity in which novel, yet plausible fumiture combinations were predicted. Using the well-known principle of
vector completion, the net could accept incomplete inputs representing a parially described room and through subsequent annealing
could arrive at a fuller description of that room. Therefore, when only supplied with the inputs of a stove and a coffee cup, the net
could finally amive at a network state in which additional processing units corresponding to a refrigerator, sink, and oven could be
likewise activated. In other words, the net was prescribing a plausible room setting that it may not have "seen" within its training
experience. In thissense, such a network was inventing new room types.
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Figure 1. A Simple Creativity Machine. Here, the starbursts represent ‘hopping’ periurbations among the connection weights of the
imagination engine.

Recently | have demonstrated (Thaler, 1995, 1996 a, b, c) that a trained artificial neural network supplied no inputs whatsoever, and
driven by stochastic perturbations to its intemal architecture may generate self-consistent schemata related to the conceptual space
embodied within its training exemplars. In short, the network is perceiving something when in fact there are no presented
environmental inputs. Accordingly | have coined the term "virtual input effect" to describe the phenomenon. Contacting with
Rumelhart's work, if we were to train a simple auto-associative feedforward net on numerous examples of room schemata (hence
bypassing the tedious Bayesian statistics used to construct his net), setting the inputs of the network to values of zero and then randomly
perturbing the connection weights from their trained values, we would observe a progression of network activations corresponding to
plausible fumiture schemes. The difference in operating procedure from Rumelhait's work is significant, representing the distinction
between perception with its processing of environmental features, and intemal imagery with its inherent independence from such
external entities. In the Rumelhart's original work, an associative net isinterpreting some partial environmental vector as something it
has never seen. In the case of virtual input effect, the net isin a state tantamount to sensory deprivation, in effect hallucinating within
a silent and darkened room.

When supplied no external inputs, the production of meaningful activations by the network relies upon a different brand of vector
completion than is normally discussed. Rather than fill in incomplete or corupted input patterns, the net attempts to complete
intemal, noise-induced activation patterns within the net'sencryption layers. Therefore, any local or temporary damage to the network's
mapping isinterpreted by downstream layers as some "familiar" activation pattem normally encountered upon application of a training
exemplar to the network's inputs (Thaler, 1995). Because of the many combinatorial possibilities in perturbing connection weights
within a network, we amive at a means for generating proportionately more novel schema than is possible with input perturbations
alone. Furthemore, because the connection traces within a trained neural network generally correspond to the rules binding the
underlying conceptual space together, such stochastic perturbation schemes serve to soften these rules, in tum allowing a gradual
departure from the known space of possibilities. The result is a stiictly neurological search engine whose intemal noise level may be
parametrically increased to achieve progressively more novel concepts. | call such a chaotic network an imagination engine or |IE.

By attaching to the IE a critic network (termed an alen associative center or AAC) that has been trained by example to recognize any
emerging concept that possesses utility or value, a Creativity Machine is formed. Because the only inputs to this closed loop system
take the form of unintelligible stochastic perturbations (i.e., heat), the system is deemed autonomous. Therefore, it monitors its own
chaotically generated stream of consciousness, if you will, periodically extracting and isolating any concepts offering usefulness. The
critic net may in turn modulate the intensity of perturbation within the first net, willfully dropping the computational temperature within
the IE when that network appears to be on the right track (i.e., an attentional mechanism).

Table 1. Some Recent Creativity Machine Successes (1996)

http://www.imagination-engines.com/mind2.htm

Application Qutcome Reference
Area
musical copyrighting  of u.s. Copyright
composition 11,000 novel PAu-1-920-845
musical ‘hooks'
"Musical Themes From
Creativity Machine"
materials autonomous Autonomous Materials
discovery generation of a Discovery via
materials Spreadsheet-
database, Implemented  Neural
including Network Cascades,
potentially new JOM-e, 49(4) (1997)
ultrahard http://www.tms,org
materials  and | /pubsfjournals
high-temperature | /JOM/9704/Thaler
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superconductors
beverage a dynamic http://iwww.imagination-
invention database of over engines.com/NeuralBar
15,000 mixed /Nbar.htm
drinks
personal 20% anonymous u.s.
hygiene improvement in Corporation
product performance
design over existing
designs
control successful U.S. Air Force SBIR
system construction and contract AF96-152,
testing of thin Automated Data
film coating Acquisition For In Situ
reactor control Material Process
system that Modeling
invents recovery
paths.

The practicality and successs (see Table 1 for a few examples) of the Creativity Machine paradigm stem from the fact that all
networks involved are trained by example. Therefore, as long as historical data exist within any conceptual space, backpropagation or
any other neural network learning paradigm may be used to rapidly train the required Creativity Machine networks. This ease of
construction has allowed the building of a wide variety of Creativity Machines focused on diverse knowledge spaces, ranging from
music composition, to ultrahard materialsdiscovery, to the invention of personal hygiene products.

Common to the operation of most Creativity Machines built to date is a perturbation scheme in which small disturbances stochastically
"hop" among the connection weights of the network. To parametrize the intemal chaos within the IE, the governing algorithm parcels
out n perturbations, usually of fixed or average magnitude s, then randomly and cyclically distributes them among the N total
connection weights of the IE. In Figure 2, for instance, when network inputs are clamped, the governing algorithm places four
perturbations (represented by starbursts) of fixed magnitude at time fo, resulting in a distinct activation pattern at the network's outputs
that represents some idea or concept. On every half cycle, fo + di/2, the perturbations are removed, restoring the net to its trained-in
state. Finally, in initiating a new cycle at time to + dt, the algorithm randomly places the n perturbations of magnitude s on newly
chosen connection weights. \When viewed as a rapid graphical succession, the hopping motion resembles a boiling liquid, hence
suggesting the term "cavitation" to describe this specific agenda of stochastic network perturbation.

L +61/2 1+l

Figure 2. "Cavitation" of the Imagination Engine.

Therefore, during operation the Creativity Machine may be run under a whole range of operating conditions governed by the
parameters n, s, and dt that collectively specify the level of cavitation applied to the |IE. Obviously, applying no perturbation at all (n =
0 or s = 0) to the IE will result in no activation turover and hence no idea generation. Altemnatively, applying large perturbations n and
s will produce such significant degradation to the network mapping that all constraints are destroyed within the captured knowledge
domain. The result of severe perturbation is therefore to produce totally unconsrained activation patterns containing little, if any,
information content. The former regime consists of vanishingly small perturbations and is regarded as "Neo-Lamarckian" in nature
(Rowe and Partridge, 1993), representing a highly condrained and hence inefficient discovery mechanism. The latter unconstrained
search regime, at high valuesof n and s, isconsidered "Neo-Darwinian” and is likewise inefficient due to the extensive sifting required
by the critic network to find meaningful information ameng the multitudes of unconstrained concepts produced.

Obviously the ideal regime for Creativity Machine operation lies somewhere between the Neo-Darwinian and Neo-Lamarckian search
regimes. To achieve the necessary level of intemal perturbation, the parametersn and s are adjusted so that the quantity ns/N (where
Nisthe total number of connection weightsin the IE) is approximately 0.05-0.06, representing the mean perturbation per connection

weight in the IE. Dividing through by dt, the perturbation time constant depicted in Figure 2, we obtain a parameter called the
"cavitation rate,"

r = ns/Ndt, (1)

representing the mean rate of perturbation for any connection weight in the IE and the primary controlling parameter behind the

3 of 11 01/11/2011 02:57 PM



A Quantitative Model of Seminal Cognition: The Creativi...

4 of 11

imagination engine.

Analytically, the choice of mean perturbation ns/N = 0.06 generally defines a cusp in network behavior that separates a regime of
perturbation level corresponding to intact memory recall from that of increasingly corrupted memory generation (i.e., confabulation).
This transition in the fidelity of network activations is a generally observed pattern among all IEs used to date and is exemplified in
Figure 3, where we see this behavioral transition in a plot of the probability of intact memory production versus cavitation rate within a
small intemally perturbed network with constant inputs. The net has been trained to contain the memory of 16 binary vectors. This
distinct separation between intact memory and confabulation persists even within more abstract conceptual spaces that may include

subjective areas such asmusical compaosition or more objective problems asin the discovery of new high-temperature superconductors
(asdiscussed in Figure 4).

P_(a)lo = probability of an intact memory
3 F 3 b
between o and o+do

P (o)do

na/N =0.06 & i
» - ‘\"‘\.f,\l\.‘l

intact memories sl confabulations
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P =na’/Not
Figure 3. The Probability of the Noise-induced Activation of an Intact Network Menory as a Function of the Cavitation Rate, r. Note the
cusp near ns/N=0.06 dividing intact from conrupted memory recall. The plot is the resuft of 1,000 cavitation cycles applied to the sinple
auto-associative net shown in the inset, trained on 16 binary veciors, subjected to n=4 perturbations of variable magnitude s and a time
constant dt of 0.3 sec. Inputs of the net were clanped atf the binary menoiy (1,0,0,0).
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Figure 4. The invention of a plausible concept by the imagination engine takes place within a membrane surrounding the ns/N = 0.06

surface, corresponding to the cusp region in Figure 3. Excursions in mean connection weight perturbation significantly beyond this
regime produce noise.

We find in general that the most fertile cavitation regime comresponds to mean connection weight perturbations near 0.06. At lower
perturbation levels the IE revisits largely training exemplars and their generalizations. At progressively higher levels of connection
weight perturbation, the IE producesless constrained and hence more nonsensical possibilities (i.e., noise).

Realizing that the connection weights of a neural network implicitly contain the rules and schema that bind together any given
conceptual space, the perturbation scheme embodied within cavitation effectively experiments with these rules by softening them
either individually or in parallel while the AAC judges the utility of the resulting concepts. A mean connection weight perturbation of
approximately 0.06 appearstc be a universal amount by which to soften these internal rules without producing nonsensical or known
concepts. Symbolically representing the constraint relations within any given neural network as the unit sphere, coherent concepts that
embody most of the useful ideas emerging from an IE fall within a thin membrane surrounding the ns/N = 0.06 surface, no matter what

the conceptual space involved. Excursions too far beyond this surface, where ns/N >> 0.06, generally produce nonsense, asintimated
in Figure 4.

The Choice of Objective Observables in the Scientific Modeling of Creative Cognition

Qualitatively, the Creativity Machine constitutes a compelling model of how both novel and mundane concepts may both nucleate
within any parallel distributed system. Accordingly, it represents a strongly competitive functional metaphor for how the similady
connectionist brain creates. To search for a closer equivalence between the two systems, it is necessary to establish quantifiable
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observablesand then compare them. Having reduced the description to the most canonical level, we sidestep any top-down subjective
description that is generally embellished by human cortical networks.

Within the quantitative dynamical system analogy, physics routinely recruits conjugate observables, such as position and momentum
or energy and time, to describe the evolution of almost everything. Assuming no special physical status for the brain, its behavior may
be adequately described by similar quantities describable by phase spaces whose axes correspond to these conjugate quantities. In
the most rigorous of portrayals, cortical activation pattems would be described by a huge multidimensional space whose axes would
cormespond to the on—off status of each of the roughly 100 billion cortical neurons, along with a similardy immense space of rates of
change of each of these neuron activations. In essence, this description represents a dichotomy, distinguishing what is being thought
(i.e., the exact activation pattem in the former subspace) and how those activations are evolving in time (the laiter subspace).
Presently surrendering all hope of understanding exactly what is being thought, we may readily monitor and model the temporal
pattern of cognitive turnover.

Accordingly, the first clue of a temporal link between the Creativity Machine and human cognition comes when an audible tone is
attached to each Creativity Machine discovery. Listening to the resulting stream of alarms one detects a clustered distribution, with
discoveries generally clumped together. Run at high noise levels, the stream attains the rhythm or prosody (Kosslvn and Koenig, 1992)
of human speech, sounding much like a garbled conversation. To quantitatively examine the suggested correspondence to the human
cognitive rhythm, we first calculate temporal distributions experimentally for both the Creativity Machine and cognitive streams for
human test subjects. The measured temporal behaviors of both neurobiological and computational neural systems are shown to be
identical, with both turover rates derivable from the theory of fractal Brownian motion (fBm).

Measurement of Concept Generation Prosody Through Mandelbrot Measures

Intuitively we are well aware of the fact that the temporal distribution of thought shows similar clustering behavior over different
temporal regimes. For instance, the musical output of a great composer may show a clustering over time, consigting of lull periods of
inactivity peppered with spasms of creative turnover over months or years (Jamison, 1994, in the context of manic-depressive illness).
Within the course of a single day, that composer's musical output may display similar surges and lulis. Likewise, in speaking we tend to
produce a grouping of words as some main theme or idea appears to us followed by a noticeable lag as a new train of thought
emerges. Similar clustering then appears at the level of sentences and individual words within those sentences. Therefore, to ariive at
some convention for measuring temporal distribution, we not only require some means to measure the probability that any thought will
accompany any other thought within a given time frame, but we also require some measure of any time-scale invariance involved.
The natural way of approaching this problem is in the context of fractal theory where we are accustomed to examining spatial
invariance (i.e., the coastline of Great Britain at various levels of magnification, where a satellite view is gatistically indigtinguishable
from a view from several feet).

Linear, N = 1

Clustered. N= tbo D, - |

Figure 5. Fractal Dimension Calculation for Two Distinctive Temporal Distributions.

Consider for ingance the generic temporal stream of events pictured at the top of Figure 5 where we see a distribution of equally
separated events occurring at regular intervals. Randomly moving statistical sampling boxes of different durations t over the distribution
we will find that the average number of captured events scales as t'. Because of the unitary exponent, we say that this distribution
possassas both a Euclidean and a fractal dimension of 1. In contrast, the lower event stream of Figure 5 depicts a nonlinear distribution
that yields a fractal dimension of less than 1 through the same statistical sampling process. Generally in fractal studies the fractal
dimension D isdetermined by what hasgenerally become known as Mandelbrot measures (Mandelbrot and van Ness_1982).

In the Mandelbrot analysis, P(m, t) is defined as the probability of statistically measuring m points within a sampling time of duration t.
A computer code may calculate this quantity by "dropping” sampling boxes of progressively larger time frames t onto the resulting
distribution and then counting the number of bracketed events. For each sampling box of time (, the algorithm may perform multiple
random samplings of the distribution. P(m, t) isthen normalized such that

N
21 P(mt) = 1, W)

m=

for all t, where N is the total number of points within the sampled system. The distribution P{m,t) is then used to define the mass
moments
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MYt) = 2 m'P(m.p), Q@)

m=1
where q assumes positive integer values. The fractal dimension, D, isthen estimated from the logarithmic derivatives,

_13log [MY®))
R =

or from linear plots as shown in Figure 3. Generally, if the same fractal dimension Dq applies to a range of ¢ values, we say that a
fractal interpretation applies over a range of event cluster sizes. If the calculated fractal dimension is identical for values of g=1to 3
{asin Figure 6), then individual events are statistically distributed in the same way as clusters containing 2 or 3 events.

o=
& =2

¢ =3 ;‘/’}

log [Ma(t}?]

&

7

logt
Figure 6. Graphical determination of the fractal dimension fromthe sfope of the fogarithm of mass moment versus the logarithmof time, t.

Mandelbrot Analysis Applied to Cognitive Experiments

Twelve volunteers contacted by telephone were asked to name 20 items as quickly as possible for each of the series of topics listed in
Table 2, while digitally recording their responses. Test subjects thereby tacitly assumed that the objective of the experiment was to
note speed, rather than the sought distribution of their thought stream. The desired effect was then to minimize the latent period
between idea formation and concept articulation to approximate as closely as possible the amival times of consecutive thoughts. The
resulting digital strip-chart recording (as exemplified in Figure 7) was then used to quantify the cognitive event stream by noting the
start of each word or phrase on a millisecond time scale. Stuttering, which was rare within this sudy, was considered the leading edge
to any voiced concept. Subsequent analysis of this event stream, by the methods of Mandelbrot analysis, yielded both a total
observation time Dt and a fractal dimension D, The combination of the fractal characteristics along with the total time scale required
to complete the cognitive task congtituted a complete statistical, temporal description of the cognitive event stream. Because the
calculated fractal dimension is intrinsically time-scale independent and measured total time Dt is explicitly time-scale dependent, the
two parameters form a complementary set of temporal observables.
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Figure 7. A Representative Strip Chart Recording for the "Foods" Cognitive Task.

In retrospect, it is noteworthy to mention that within the context of these cognitive experiments, the resulting fractal calculations
appeared independent of any foreknowledge by the test subject of the intent of the experiment. This observation may be testament to
inability of human cognitive faculties to store a large number of thoughts while simultaneously counterfeiting a bogus pattern of
articulation. Only in well-rehearsed casesorin reading from written lists could test subjects attain arbitrary speech rhythms.
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Table 2. Topic Areas for the Cognitive Tasks

Rote Cognitive Tasks Creative Cognitive Tasks

Invent 20 nonsense words

Name 20 numbers, beginning with the letter "r."

Name 20 ways to enter a

Name 20 foods.
house.

Name 20 Mexican foods.

Name 20 states.

Name 20 words
beginning with the letter
e

Mandelbrot Analysis of Creativity Machine Activation Turnover

An auto-associative network was trained by the standard methods of backpropagation (Rumelhart, Hinton, and Williams, 1986) by
exposing it to identical binary input-output vectors. The network contained four layers of 10 processing unitseach, all fully connected
between layers, for a total of 300 connection weights. Input and output training exemplars for the network consisted of generic binary
memories, ranging from (0,0,0,0,0,0,0,0,0,0)to (1,1, 1,1,1,1,1, 1,1, 1). Once trained, this net was embedded within a C code
that cyclically supplied perturbations of fixed magnitude s to n randomly chosen connection weights, as described above and
depicted in Figure 2.

To normalize the output of this network to that of the cognitive study, the perturbation time constant dt was adjusted to a value of 300
msec to comespond to the fastest enunciation rate of ideas (i.e., the recall of 20 numbers, invariably in ordinal fashion). Therefore, the
maximum rate at which the network could produce its own activation turnover was adjusted to correspond to the fastest possible
cognitive rate measured experimentally. So normalized, the net wasrun at the optimal mean connection weight perturbation of 0.057,

yielding a cavitation rate of r= 0.057/0.3 sec = 0.19 sec™ A variety of network perturbation schemes (i.e., different combinations of n
and s) were used so that the cavitation rate of 0.19 sec”! was maintained constant.

Following each distinct redistribution of perturbations among the N weights, fixed inputs of 1/2 were fed through the network with the
controlling algorithm noting whether a transition (i.e., 50% change in any output vector component) had occurred. These transitions
then constituted the activation tumover of the net. Simulation halted after 20 such transitions, at which time the algorithm applied
fractal dimensional analysisto the recorded network output transitions using the same algorithm to determine Mandelbrot measures as
was used in the cognitive study.

Comparison of Cognitive and Creativity Machine Prosodies

Having amassed roughly 100 cognitive experiments and a similar number of experiments on IE activation turnover, a number of curve
fitting experiments were carried out to invedigate whether any simple pattem existed between the calculated fractal dimension and
measured time scales for either data base. For both sets of experiments it was found that Do, the calculated fractal dimension for either
event stream, was inversely proportional to the logarithm of the total time scale required to complete the task In Figure 8 we see the
striking similarity between the two characterizations. We find that the full temporal characterizations are equivalent to within the
expetimental error of the study.

Empirically, we find that both cognition and the chaotic ANN both obey the same |aw of event turnover given by
Do = 1.62 / In(Dt), “)

where Dt is expressed in seconds and the proportionality constant represents the mean between the cognitive and ANN result of Figure
8 and all previous studies (Thaler, 1996b). Recasting Equation 2 into exponential form, we obtain the relation

DtP0 = 0.19, {5)

indicating that for both the sampled cognition and the Creativity Machine, there exists a trade-off between the time scale required for
a set number of distinct transitions and the inherent clustering of events within the resulting transition sequence.

7ofll 01/11/2011 02:57 PM



A Quantitative Model of Seminal Cognition: The Creativi... http://www.imagination-engines.com/mind2 . htm

cogmbive ANN
P2 P
S ; "7
gt i) &
e 1
F‘ ¥
D - :;’k.' 4ot
i Fd
-‘..: 'y
1/In(Atl) 1/In(At)

Figure 8. Full Tenporal Characterization of Both Cognitive and Creativity Machine (ANN) Event Streams. Cognitive data points represent
as many as 5 repetitions of the same cognitive task. The ANN data points represent 5 repetitions of the same conputer experiment. Dt is
in units of seconds.

In the case of human speech, this result is intuitively familiar: a speaker who is familiar with his or her presentation material tends to
speakin a relatively linear fashion. In contrast, with more ad lib delivery the speakers articulated words tend to be more clustered. In
thissense, the relationship embodied in Equation 5 is a quantitative expression of thisall too familiar phenomenon of hesitancy.

In the plot for the cognitive study, some of the specific tasks were overlaid to display their relative positions along this curve. Within this
plot at low fractal dimension (to the left) we find the fairly demanding cognitive tasks of inventing nonsense words beginning with the
letter "r* or ways of entering a house. At high fractal dimension (to the right) we find the more rote tasks such as naming 20 numbers or
recalling various foods. Similardy, within the temporal characterization of the Creativity Machine output we find a similar dichotomy
between data points falling on the rightmost and leftmost extremes of the plot, where ns/N was maintained constant and equal to 0.06.
Leftmost points occuring at a low fractal dimension represent extremes in either sorn (e, n =2 and s=9orn =9 and s = 2).
Alternately, the rightmost points on the plot at the high fractal dimension cormespond to intermediate values of both sand n (i.e., n =4
and s = 4.5).

To illustrate this relationship between fractal dimension of the network's output stream and its intemal perturbations, | have trained a
small feedthrough net on the results of 100 computer experiments to map both n and s to the resulting fractal dimension, Dy.
Propagating the n-s amay through this trained net | have obtained the plot of Figure 9. There we may observe an asymmetric response
between n and s, perhaps indicating the reduced likelihood of smaller perturbations all randomly clustering on the same connection
weight to produce an equivalent effect to a large perturbation centered there. Also visible is a central plateau at higher fractal
dimension, corresponding to nearly equal, intermediate valuesof n and s.

Therefore, literally equating the two processes of human cognition and cavitation within the Creativity Machine paradigm, simple tasks
such as counting and rote memory recall seem to involve the distribution of many intermediate strength perturbations among many
different connection weights of the system. By contrast, more inventive cognitive forays appear to involve the spontaneous appearance
of large perturbations localized to just a few connection weights. Admittedly, it will be harder for the cortical or synthetic network to
perform intemal vector completion on a large, local spike in connection weight perturbation than on smaller distributed disturbances.
For a dramatic internal perturbation, the network cannot easily fall into an attractor basin representing a known training exemplar (i.e.,
a memory). Such a large perturbation can only disrupt and transform the local attractor basin structure to create new and unique
attractors. It isthese newly formed attractor basins derived from the established memories that now constitute corrupted memories that
may or may not be of utilitarian value to connected associative networks.

Figure 9. Neural Network Fit to Do As a Function of n and s for the Cavitating Antificial Neural Network.
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We are accordingly drawn to the conclusion that what the common parlance calls memories and ideas are derivatives of one another
that fall at opposite extremes of network perturbations. In short, inventive thought may be no more than intemally generated
confabulations nucleated upon large synaptic noise spikes, and deemed valuable or interesting by the surrounding cortical networks,

The Apparent Origin of Cognition and Creativity Machine Output in Fractal Brownian Motion

In view of the sfriking result that both cognitive and Creativity Machine conceptual streams obey the same empirically determined law,
it may be worthwhile to develop an ab initio theory, at least for the computational model, to account for the simple, yet
all-encompassing relationship contained in Equation 5. Viewed from the perspective of an average neuron embedded within the
cavitating IE, the mean activation is essentially performing a random walk, occasionally and sporadically passing through the "all or
nothing" activation threshold that toggles the computational neuron into itson or off state. This random walk may be imagined to take
place in a seriesof infinitesimally small steps, each of which isindependent of the previous one, thus qualifying the system for analysis
via the theory of fBm (Voss, 1988).

A general result from the theory of fractal Brownian motion states that if some time-dependent function Fu{t) is the sum of independent
increments or jumps, then the typical change in F, DF = F(tz)-F(t1), in the time interval Dt = 2 - 4, is given by the simple scaling law

DF = kot (6)

where Hisin the range 0<H<1 and kis a unitary dimensional constant. The fractal dimension, D, of the resulting functional trace, Fu(t),
isgiven by the simple relationship,

D=2-H. @)

Furthermore, the intersection of this fractal curve with the time axis generates a set of points, known as the "zeroset," with a fractal
dimension Dg=D-1. We may then recast Equation 1 in termsof the functional trace’s zeroset fractal dimension,

DF = kpt!™ P0), ®)

(Do-1)

where the unitary constant k has the dimensions of sec if Dt is expressed in seconds.

Similarly, if the chaotic net input to the representative mean neuron also performs a random walk, in a series of small independent
steps, then the RMS variation in that net input, Dnet, varies as

Dnet = ko'’ P9, (@)

where Dt is the observation time and Do is the fractal dimension of net input's zeroset. Assuming a bias level of zero to the mean
neuron, the zeroset dimension, Do, takes on the significance of the fractal dimension of mean neuronal on-off transitions. Reamranging
Equation 7, we obtain

In(Dnet /Dt) = - Doln{KkDL). (10)

Assuming that the average activation for all computational neurons is effectively % (i.e., the computational neurons may only activate
within the range from 0 to 1), and noting that over any half cycle portrayed in Figure 2, the average change in net input is ns/N within
a time frame dt/2, the average net input transition rate for a mean neuron is given by 2*2ns/Ndt = ns/Ndt. Substituting this value for
Dnet/Dt in Equation 10, we obtain the empirically obtained functional form of Equation 4.

In{n/Ndt) = -Dgln (kDL). (11)

Hence for a fixed level of internal network perturbation (ns/Ndt = constant) the product of the mean neuron's output zeroset dimension
and the logarithm of the observation time should likewise be constant. We note that the right side of Equation 11 is related to the
logarithm of the total number of network transitions, No observed, by the definition of fractal dimension contained in Figure 5.
Therefore, Dt may then be thought of as the time required to observe Ng mean neuron transitions, or an equivalent number of distinct
activation transitions within the network as a whole. We note that because this analysis has been fractal, and hence time-scale
invariant, any piece of the event stream should yield the same fractal dimension. Hence, the analysis would lead to identical results
should there appear some systematic excursion in the midst of the event stream (i.e., the intentional application of inputs to the net)
where we might observe a vertical discontinuity in the example fractal traces of Figure 10.

Exponentiation of both sides of Equation 11 and omitting the dimensional constant kleads to

Dt R0 = ng/Ndt (12)
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reproducing Equation 5, with substitution of the optimal cavitation rate ns/Ndt = 0.19 sec' = 1.

t >

Fy(t)

>

Fy(t)

Figure 10. Two Traces of Fractal Brownian Motion. In the upper trace, incremental jumps are scaling as Equation 4, with H = 0.9. Its
fractal dimension is therefore 1.1, making it nearly linear. The lower trace corresponds to H = 0.1 and hence a fractal dimension of 1.9,
meking it nearly a two dimensional object in the Euclidean sense. H=0.5 would comespond fo the classic random walk in one
dimension. The zersoset is represented as the intersection of each trace with the t-axis. Note the higher the fractal dimension of the
trace, the higher the fractal dimensionality of the zeroset with accordingly more intercepts with the time axis..

Retuming to the equivalent cognitive result, empirically discovered through the cumulative plot of Figure 8, we must conclude that
the cognitive event streams sampled within this study display the signature of fractal Brownian motion by their adherence to Equation
12. This result strongly suggests a dominant mechanism behind all forms of cognition, namely the stochastic perturbation of synaptic
connections between biological neurons (or in an equivalent circuit sense, perturbations within the neuron itself). Furthermore, the
quantitative applicability of Equation 12 to human cognition, as well as the universality of this result for all artificial neural network

structures, indicates that similar levels of network perturbation, ro = 0.19 sec”™, separate regimes of straightforward memory recall from
those of novel thought generation within the human cortex.

Conclusions

The rhythm of concept generation within both hurnan test subjects and the Creativity Machine have been shown to be identical for all
data gathered within this study. These results substantiate earlier investigations (Lhaler, 1996b) probing the temporal behavior of
diverse cavitating neural networks spanning a wide range of sizes, complexities, and connectivities. The remainder of the comparison
with hurman cognition, the singularity and significance of Creativity Machine discoveries and inventions, will always be open to
debate, as is the case with any human innovator who must battle against a variety of societal forces (i.e., consensus opinion) and
competitive pressuresno matter how inherently valuable hisor her conceptsmay be.

Nevertheless, the temporal and fractal equivalence between Creativity Machine concept generation and human cognition is griking,
strongly suggesting that stream of consciousness, both mundane and novel, follows the same empirically discoverable laws. The fact
that the prosody of cortical concept formation shows the signature of fractal Brownian motion, strongly suggests that sochastic, and
perhaps chaotic phenomena within biological neural networks are at the heart of all cognition.

Since the all-neural Creativity Machine demonstrates identical time evolution with human cognition, and because it is capable of
producing both incremental and paradigm shift thinking, we may consider this canonical system to be a potential functional model of
human cognition. By analogy with the computationally transparent Creativity Machine, rote memory recall appearsto be the result of
a relatively uniform distribution of small perturbations spread across many connection weights. Alternatively, novel concept formation
is tied to the sporadic appearance of relatively large and localized perturbations. Because of their significant effect on the attractor
landscape of the network, these larger perturbations may readily alter, merge, and separate specific attractor basins, representing
distinct memories and concepts, into modified or perhaps hybridized notions.

Further, because the connections weights within an artificial neural network constitute the statistical rules and corelations that bind
together any conceptual space, we may view the process of cavitation as a stochadic experiment within the net in which each of the
underlying rules and conventions are randomly softened, singly or in parallel, to produce derivative concepts beyond those
experienced within network training. Viewed in the context of hopping perturbations, weight disruptions may sporadically congregate
on specific connection weight traces constituting what we would nomally consider symbolically represantable rules. When such
disruptions occur, the singled-out conventions are modified, for better or for worse, as judged by the critic network's response to the
emerging concepts. Improvement in the search efficiency of such a system comesin the ability of the policing network to identify and
selectively soften those connection traces cumulatively leamed by that critic to be essential to the emergence of useful concepts.
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In spite of its smplicity, Equation 12 may broadly describe the gamut of human cognition with the perturbation rate of ng/Ndt = rp =
0.19 sec™, representing a fairly universal constant within neurobiology. Since observed "bubble" formation in cortex takes place on a
time scale of roughly 300 msec (Taylor, 1996), such concept nucleating events may be tantamount to the cavitation cycle described
in Figure 2. Following this analogy to its conclusion, a similar mean perturbation rate per synapse may apply within neurobiology,
pernaps qualifying ro as the dividing line between mundane and creative thought. Within the latter creative regime, the random
release or diffusion of various neuromodulators and neuroharmones could easily provide the intense local perturbations necessary for
novel concept formation. Perhaps, this observation accountsin broad sense for the observed correlation between artistic creativity and
various neurochemical imbalances such as manic-depressive illness (Jamison). Viewed in this sense, creativity may represent a talent
or, altematively, an unwelcome propensity for the cortex to biochemically 'spike’ itself beyond this threshold perturbation level, on
demand or otherwise.

Placed on the same continuum of perturbation, all cognition may be viewed as acts of creativity. Even at the lowest levels of synaptic
disruption one idea issupplanted by another in a display of low-level originality, asin everyday stream of consciousness, conversation,
or movement planning. The noblest invention, scientific discovery, or artistic inspiration lies at the opposite extreme of this spectrum,
where the Creativity Machine model implicates large localized perturbations as the nucleating events. Within either of these regimes,
consciousness itself may be no more than the spontaneous invention of significance by associative cortical networks to the endless
noise-driven activations of their brethren. Qur search for an objective truth regarding the basis of creativity and consciousness alike

may be blinded by the capacity of such networks to overwhelm and distract us with multiple drafts (i.e., Dennett, 1991) of the actual
underiying processes. Thisdynamical systemsapproach isan attempt to circumvent an inevitable philosophical cul-de-sac.
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