
A KNOWLEDGE BASED APPROACH TO VLSI CAD
THE REDESIGN SYSTEM

Louis I. Steinberg and Tom M. Mitchell

AI/VLSI Project
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

Abstract
Artificial intelligence (AI) techniques o f fer one possible

avenue toward new CAD tools to handle the complexit ies
of VLSL This paper summarizes the experience of the
Rutgers AI/VLSI group in exploring applications of AI to
VLSI design over the past three years, In particular, it
summarizes our experience in developing REDESIGN, a
knowledge-based system for providing interactive aid in the
functional redesign of digital circuits. Given a desired
change to the function of a circuit, REDESIGN combines
rule-based knowledge of design tactics with its ability to
analyze signal propagation through circuits, in order to (1)
help the user focus on an appropriate portion of the circuit
to redesign, (2) suggest local redesign alternatives, and (3)
determine side effects of possible redesigns. We also
summarize our more recent research toward constructing a
knowledge-based system for VLSI design and a system for
chip debugging, both based on extending the techniques
developed for the REDESIGN system.

I Introduction

Artificial Intelligence (AI) techniques of fer one possible
avenue toward new CAD tools to handle the complexities
of VLSI. This paper summarizes the experience of the
Rutgers AI/MLSI group in exploring applications o f AI to
VLSI design over the past three years. In particular, it
summarizes our experience in developing REDESIGN, a
knowledge-based system for providing interactive aid in the
functional redesign of digital circuits. We also summarize
our more recent research toward constructing a
knowledge-based system for VLSI design and a system for
chip debugging, both based on extending the techniques
used by the REDESIGN system.

A. A Knowledge Based Approach to Software
Organization

One of the techniques which has arisen from research
in AI is the know/edge based approach to designing a
system which is to achieve some task. The essence of this
approach is to ask what knowledge (i.e. what facts and
reasoning abilities) is used by a human expert in solving this
task, and to develop data-structures and code which

*This material is based on work supported by the
Defense Advanced Research Projects Agency under
Research Contract N00014-81 -K-0394 . The views and
conclusions contained in this document are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

represent this knowledge explicitly, rather than to have the
knowledge present in the system only implicitly.

Often the facts which are most useful are a collection
of rules of thumb, derived from the expert's experience,
which can be represented in a natural way as IF-THEN rules
and which can be used in a fairly simple reasoning process.
As will be discussed below, we have found it useful to
represent design tactics as IF-THEN rules, but to represent
other facts about circuits in other ways.

Researchers using the Knowledge Based approach in a
number of areas have found it to have several interrelated
advantages over more traditional techniques for organizing
software:

• I t is easier to make incrementa l
improvements. Since the knowledge is
represented explicitly it is easier to add
additional pieces of knowledge and thereby
make incremental improvements in the system's
capability.

• I t is easier for the system to exp la i n what i t
is do ing and why. Since the facts and
reasoning processes used parallel those used
by a human expert, it is often feasible for a
knowledge based system to automatically
generate an explanation of how it reached its
conclusions which is understandable by a
human domain expert who is not a computer
scientist. For example, the program may
indicate the chain of IF-THEN rules which was
used to make a particular decision about the
design of some circuit submodule.

• I t is easier for a human expert to de te rmine
what is incorrect or incomplete about the
system's knowledge, and exp la i n how to f i x
it, Since the system can indicate what
knowledge was used and how it was used, it
is easier for an expert to determine what is
wrong. Since the system is already structured
around the kinds of knowledge the expert
uses, it is easier to translate the expert's
description of how to f ix things into an actual
change to the program.

• i t is easier to in teract ive/y use a human
expert 's ab i l i t ies . Long before a system is
capable of handling a task completely
automatically, it may be possible to construct a
useful interactive system, which aids the user
as much as it can given its limited knowledge,
and in which the user can take over and do
things when he is dissatisfied with the
system's recommendations. Since the system's

21st Design Automation Conference

Paper 26.2
412 0738-100X/84/0000/041251.00 © 1984 IEEE

way of doing things is analogous to that of
the user, it can be easier to coordinate the
system and the user. This ability to interleave
user input with the system's processing
represents a major dif ference between
knowledge-based approaches and other kinds
of approaches, for instance, to silicon
compilers.

B. App ly ing the Knowledge Based Approach to VLSI CAD

A number of research groups are currently exploring
knowledge based approaches to various aspects of VLSI

CAD (e.g., 1' 2, 3. 4). Here we describe a knowledge based
system called REDESIGN which addresses the fol lowing
problem of functional redesign: Given an existing circuit, its
functional specifications, and a desired change to these
specifications, help the user to determine a change in the
circuit that will al low it to meet the altered functional
specifications without introducing undesirable s ide-ef fects.**
During this work, it became apparent that providing
intelligent assistance for redesign depends on two quite
di f ferent types of reasoning about the given circuit

The first essential type of reasoning about circuits is
causal reasoning about the interrelations among signals
within the circuit. This is a generalization of the notions of
circuit simulation and symbolic simulation. It involves tasks
such as, given a description of the streams of data being
input to a component, deriving a description of the output
data streams. Or, given a specification of the required
characteristics of the outputs of a component, determine
what characteristics must be satisfied by the inputs to the
component The subsystem of REDESIGN which has been

developed to solve these kinds of problems is called
CRITTER. =

A second type of reasoning essential to redesign
involves reasoning about purposes of components. For
example, given a circuit, and its specifications, explain the
role played by a particular component in implementing the
overall specifications. Or, determine the range of
components that can be substituted for this component
without violating the overall specifications.

The next section describes our work on the redesign
task, and the use of causal reasoning and reasoning about
purpose in REDESIGN. Subsequent sections summarize our
more recent attempts to extend these ideas and our current
research on developing knowledge based systems for VLSI
design and chip debugging.

II The Redesign Task

In the functional redesign problem the system is given
the schematic of a working digital circuit (e.g., the display
controller for a computer terminal), and its functional
specifications (e.g, the fact that it displays 80 characters
per line, 25 lines per screen, displays the cursor at a
programmable address, etc.). The system is also given a
data structure called a design plan, which relates the
circuit schematic to its specifications. Given a desired
change to the functional specifications (e.g., require that the
terminal display 72 characters per line), the task is then to
redesign the circuit so that it will meet these altered

**We chose the redesign problem over the design
problem as our f irst task primarily because it raised a
number of important issues about representing and
reasoning about circuits in a more tractable context than
design f rom scratch.

specifications ~"~.

The formulation of the redesign problem presented
here is very similar to planning problems in the AI literature,
and the issues addressed in this work are related to those
addressed by others working in the areas of planning and

design, such as 6. 7, 8. 9, 10. 11, 12 Our work is also

related to that of 13, which deals with recognizing circuits
rather than designing them, and which addresses the
relations among circuit function, structure, and purpose.

The next subsection discusses the representation of
circuits, and the notions of circuit behavior and
specifications. The fol lowing subsection describes the two
modes of reasoning about circuits employed by REDESIGN:
causal reasoning and reasoning about purpose. We then
illustrate the use of these modes of reasoning by
REDESIGN, by tracing its use for a specif ic redesign
problem.

A. Representing Circuits, Behaviors and Specifications

The structure of a circuit is represented by a network
of modules and data-paths. A module represents either a
single component or a cluster of components being viewed
as a single functional block. Similarly, a data-path
represents either a wire or a group of wires. The data
f lowing on a data-path is represented by a data-stream,
and the operation per formed by a module is represented by

a module function. These representations are described in
14, 5 One aspect of this circuit representation that has
been important in REDESIGN is that data-streams represent
the entire time history of data values on a data-path, rather
than a single value at a single time, as in many circuit
simulators. This has proven to allow considerable flexibility
in reasoning about circuit behavior over time.

In reasoning about redesign, REDESIGN must distinguish
between what happens to be true of the circuit (we refer
to this as the circuit behavior), and what must be true for
that circuit to work correctly (we refer to this as the
circuit specifications). Therefore, for each module function
and data-stream, both behavior and specifications are
recorded. For example, the behavior of a particular module
may state that its output will be the sum of its inputs,
delayed by 100 nanoseconds, while the specifications for
that module may simply require that the output be delayed
by less that 500 nanoseconds.

B. Two Modes of Reasoning about Circuits

A variety of types of questions arise when redesigning
a circuit. REDESIGN uses two separate modes of reasoning
to answer these questions - - one to analyze circuit
operation based on a causal model of the circuit, and one
to reason about the purposes of circuit submodules (i.e.
their roles in implementing the global circuit specifications).
These two modes of reasoning are combined to provide
assistance at various stages of the redesign process.

1. Causal Reasoning

Causal reasoning answers questions such as "If input X
is supplied to the circuit module, what wil l the output be?"

***I t should be noted that the example circuits used in
the work on REDESIGN were not actually VLSI. Rather they
were board-level circuits built f rom standard TTL MSI parts.
However, we believe that the same techniques apply
directly to VLSI circuits designed with the standard cell
approach.

Paper 26.2
413

and "If output Y is desired, what must be provided as
inputs to the module?" X and Y here may be either
complete descriptions or partial descriptions giving, e.g., just
the start time or just the value; of course if the question
gives only a partial description the answer may also be a
partial description.

The question where a completely described input is
given is the type of question answered by standard circuit
simulators. However, redesigning a circuit requires
answering the other kinds of questions as well. For
example, if the circuit specifications call for the circuit
output to have a certain duration, it is important to be able
to determine which properties of the upstream signals will
assure this duration. The CRITTER system answers these
kinds of questions by a process of propagating full and
partial descriptions of data-streams through the circuit, and
can test whether a given data-stream's specifications are
satisfied by its behavior. CRITTER also maintains a
Dependency Network that records, for each specification,
both its source and the path in the circuit through which it
was propagated.

2. Reasoning about Purpose

A second kind of reasoning important in redesign
concerns the roles, or purposes, of various circuit modules
in implementing the overall circuit specifications. Questions
of this sort that arise during redesign include "What is the
purpose of circuit module M?" and "How are the circuit
specifications decomposed into subspecifications to be
implemented by separate sections of the hardware?".
Questions of this sort can be answered by REDESIGN, by
examining the Design Plan of the circuit

The Design Plan is a data structure that shows how
circuit specifications are decomposed and implemented in
the circuit, as well as the conflicts and subgoals that arise

during design. It contains enough information to allow
"replaying" the original design, and is characterized in terms
of a set o f implementation rules that embody in
executable form general knowledge about circuit design
tactics. This Design Plan must be provided as input to
REDESIGN, as part of the characterization of the circuit
which is to be redesigned.

In order to illustrate the form of the Design Plan,
consider the simple Character Generator Module (CGM)
circuit shown in figure I1-1. This circuit is similar to a
standard circuit used in most video computer terminals
- - it is the part of the terminal that translates the ASCII
character codes into the corresponding dot matrix to be
displayed on the screen. This circuit accepts as input (1) a
stream of ASCII encoded Characters, (2) a stream of binary
encoded integers, called Slice-Indices that specify which
horizontal slice of the character dot matrix is to be
displayed, and (3) several clock signals used for
synchronization. The circuit must produce a stream of
Character-Slices, each of which is a bit string
corresponding to the dots to be displayed on the terminal
screen for the selected horizontal slice of the input
Character.

The heart of the CGM design is a read-only memory,
the ROM6574. This ROM6574 stores the definition of the
character font (the dot matrix to be displayed for each
character), one Character-Slice per byte of memory. To
retrieve the Character-Slice corresponding to a given
Character and Slice-Index, the ASCII code for the character
is concatenated with the binary representation of the Slice-
Index, and used to address the ROM6574. The other
components in this circuit are used to interface the
ROM6574 to the desired input and output formats. For
example, the CGM specifications require serial output while
ROMs produce parallel output Therefore, a shift register

Slice
Indices

74175 ---- 4 ~ REGISTER
Charactersj . ~ 74166

Timing 1] Signals

REGISTER

I Cha r

Cha ract e r s CHARACTER
Slice-lndices GENERATOR

Timing Signals MODULE

USE [

1

' ~ ~ USE
.. j

-- Character
Slices

_SHIFT
-- REGISTER

74166

Slice Indices

I .

USE
SHIFT
REGISTER
74i66

Character
-- Slices

Figure I1-1: The Character Generator Module Figure 11-2: Design Plan for the CGM

Paper 26.2
414

(SHIFT-REGISTER~74166) is used to convert the output
data to serial. Also, because the address inputs to the
ROM6475 must be stable for at least 500 nsec. while the
input Characters are stable for only 300 nsec., a latch
(LATCH74175) is used to capture the input Characters, and
hold these data values stable for an acceptable duration.

The above paragraph summarizes the purpose of each
circuit component and the conflicts and subgoals that
appear during design. This is precisely the k ind of
summary that must be captured in the Design Plan, in
order to a l low the REDESIGN program to reason
ef fect ive ly about the design and about the purposes of
ind iv idua l c i rcui t components.

Figure 11-2 illustrates the Design Plan used to describe
the CGM circuit to REDESIGN. Each node in the Design
Plan corresponds to some abstracted circuit module whose
implementation is described by the hierarchy below i t The
topmost node in this Design Plan represents the entire
CGM, and its functional specifications. The bottom most
nodes in the Design Plan represent individual components in
the circuit Each solid vertical link between modules in the
Design Plan corresponds to some implementation choice in
the design, and is associated with some general
implementation rule which, when executed, could recreate
this implementation step. For example, the vertical link
leading down from the topmost module in the figure
represents the decision to use a Read-Only Memory (ROM)
to implement the CGM. This implementation choice is
associated with the implementation rule which states "IF the
goal is to implement some finite mapping between input and
output data values, then use a ROM whose contents store
the desired mapping" (note this leaves open the choice of
the exact type of ROM.)

Each dashed link in the Design Plan represents a
conflict arising from some implementation choice or
choices, and leads to a design subgoal, represented by a
new circuit module with appropriate specifications. For
example, a conflict fol lows from the implementation choice
to use a ROM, and leads to the subgoal module labelled
"Parallel-to-SeriaI-Subgoal". The conflict in this case is the
discrepancy between the known output signal format of
ROMs (i.e., parallel) and the required output signal format of
the CGM (i.e., serial). The specifications of the new subgoal
module are therefore to convert the parallel signal to serial.
In a similar fashion, the implementation choice to use the
specific ROM6574 leads to another conflict, and to the
resulting subgoa[to extend the duration of the input data
elements.

Not shown are the links between the Design Plan and
the Dependency Network, giving the specifications for the
various data-streams.

By examining the Design Plan of a circuit, REDESIGN is
able to reason about purposes of various circuit modules,
and about the way in which the circuit specifications are
implemented. The general implementation rules used to
summarize the design choices can be used to "replay" the
Design Plan for the similar circuit specifications, and thus
allow for a straightforward kind of design by analogy.

C. Redesigning a Circuit

This section illustrates the use of both causal reasoning
and reasoning about purpose in redesigning a circuit It
traces the actions of the REDESIGN program as it took part
in a particular redesign of the Video Output Circuit (VOC)

of a computer terminal. The Video Output Circuit (which
contains the Character Generator Module discussed earlier)
is shown in figure 11-3. It is the part of the computer
terminal that produces the composite video information to
be displayed on the terminal screen. It produces this
output f rom its combined inputs, which include the
characters to be displayed, the cursor position,
synchronization information for blanking the perimeter of
the terminal screen, and special display commands (e.g., tc
blink a particular character).

In this example, we consider redesigning the VOC to
display characters in an italics font rather than its current
fon t Given a redesign problem, REDESIGN guides the user
through the fol lowing sequence of five subtasks: (1) focus
on an appropriate portion of the circuit, (2) generate
redesign options to the level of proposed specifications
for individual modules, (3) rank the generated options, (4)
implement the selected redesign option, and (5) detect and
repair side effects resulting from the redesign.

Focus attent ion on appropriate section(s) of the
circuit, In many cases, the most diff icult step in functional
redesign is determining which portions of the circuit should
be ignored. Focusing on relevant details in one locality of
the circuit while ignoring irrelevant details in other localities
can greatly simplify the complexity of redesign. In order
to determine an appropriate focus, REDESIGN "replays" the
Design Plan by reinvoking the recorded implementation rules
with the changed circuit specifications. During this replay
process, whenever an abstract circuit module is produced
by some implementation step, its purpose is compared with
the purpose of the corresponding module in the original
Design Plan. If the purpose is unchanged, then the original
implementation of this module will be reused without
change in the new design***~. If the new module has a
different purpose than the corresponding module in the old
Design Plan, (e.g., the new CGM must implement a different
character font), an attempt is still made to apply the same
implementation rule as in the original design (e.g., still try to
use a ROM). If this implementation rule is not useful in the
new design (as with the rule that suggests using the
specific ROM6574), then REDESIGN stops expanding this
portion of the Design Plan, and marks the corresponding
portion of the circuit as a portion to be focused on for
further redesign. The use of the Design Plan as sketched
above leads in the current example to a focus on
redesigning the abstract ROM module within the CGM within
the VOC circuit This abstract ROM module is implemented
in the current circuit by two components as shown in
figure 11-2 (the ROM6574 and LATCH74175). A second
method of focusing is possible, by using the Dependency
Network produced by CRITTER. This method involves
isolating those points in the circuit that possess
specifications derived from the changed specification on
the output data-stream. The resulting focus is generally
broader than that determined from the Design Plan, because
out of the many places in the circuit that can impact any
given output specification, only a small proportion of these
involve circuitry whose main purpose is to implement that
specification.

=-"==One must still make certain that changes elsewhere in
the design do not interact dangerously with the
implementation of this module. In REDESIGN, this is
accomplished without having to directly examining the
implementation of the module. Instead, design changes
elsewhere in the circuit are checked for consistency with
the constraints recorded in the Dependency Network
produced by CRITTER.

Paper 26.2
415

CC

CC
Character s ~

1]
CC I

Slice-IND _ . ,
DC

LCO

LCI

L,PLI

LBLO

~ 74'
I

Blink

HV

CV-O[T£

Figure 11-3: Video Output Circuit

Generate redesign options to the level of proposed
specifications for individual circuit modules. Once an
initial focus for the redesign has been determined, redesign
options are generated which recommend either altering the
specifications of individual modules, or adding new modules
with stated specifications. In both cases, only the new
functional specifications are determined at this point - - the
circuitry to implement these specifications is determined
later. The constraint propagation capabilities of CRITTER
provide the basis for generating these redesign options. In
the current example, once REDESIGN has focused on the
section of the VOC including the ROM6574 and
LATCH74175, it considers the new output specification for
this circuit segment, and propagates it back through this
segment. Before each propagation step, REDESIGN
considers the option of breaking the wire at that point and
inserting a module to transform the values on that wire to
values satisfying the required specification. In addition, it
considers the option of altering the module immediately
upstream, so that it will provide the required signal at that
point. For each of the generated options, the new
functional specifications are defined in terms of (1) the new
specification to be achieved, and (2) a list of unchanged
specifications found in the original Dependency Network,
which are to be maintained. In the current example, the
option generation process produces a list of five candidate
redesign options. This list includes redesign options such
as "replace the ROM6574 by a module which stores the
new character font", and "introduce a new module at the
output of the ROM6574, which will transform the output
values into the desired font" (these options are described
by the program in a formal notation, and the above are
only English summaries).

Rank the generated redesign options. Heuristics for
ranking redesign options can be based on a variety of
concerns: (1) the estimated difficulty of implementing the
redesign option (e.g, components with zero delay cannot be

built), (2) the likely impact of the implemented redesign on
global criteria such as power consumption and layout area,
and (3) the likelihood and severity of side effects that
might be associated with the redesign=====. In the current
example, the heuristic that selects the appropriate redesign
option suggests "Favor those redesign options that replace
existing modules whose purpose has changed." In this
case, since the purpose of the ROM6574 has changed, the
option of replacing this component is recommended. The
recorded Dependency Network and Design Plan also
provide very useful information for estimating the relative
severity of various changes to the circuit. Because the
Design Plan shows the dependencies among implementation
decisions (e.g., the purpose for the LATCH74175 is derived
from the decision to use the specific ROM74175) it
provides a basis for ordering the importance of
components and associated constraints in the overall design
(e.g., if the ROM6574 is removed, the LATCH75174 may no
longer have a purpose for existing), This ordering of
circuit modules, and of the data-stream constraints that
they impose, provides an important basis for estimating the
relative extent of side effects associated with their change.

Implement the selected redesign option. The above
steps translate the original redesign request into some set
of more local (and hopefully simpler) specification changes.
While the implementation rules that REDESIGN possesses
might be used for design====::, the REDESIGN system does
not make use of this potential. Thus, the user is left to
implement the redesign option.

-~-~-~x-"The current REDESIGN system has only a primitive
set of heuristics for ranking redesign options.

******In fact they are used this way in the design
consultant. See below.

Paper 26.2
416

Detect and Repair Side Effects Arising from the
Redesign Once the redesigned circuit is produced,
REDESIGN checks the new circuit segment to try to
determine (a) that it does achieve the desired new purpose,
and (b) that it does not lead to undesirable side effects.
Undesirable side ef fects are detected as violations of the
Dependency Network specifications at the inputs and
outputs of the altered circuit segment. If a specification is
violated, the new circuitry might be redesigned, or the
specification might itself be modif ied or removed by
redesigning a di f ferent portion of the circuit. The
Dependency Network can be examined to determine the
source of the violated specification, and to determine the
locus of circuit points at which the specification could be
altered.

D. Conclusions from the Work on REDESIGN

REDESIGN is a research prototype system that
demonstrates the feasibility of providing intelligent aids for
redesign and design of digital circuits. While the current
REDESIGN system has many limitations (e.g., in the size of
circuits it can handle, its inability to help with certain
classes of redesigns, shortcomings of its causal reasoning
methods, incompleteness of its knowledge base of
implementation rules, etc.), it demonstrates clearly the
importance of reasoning about causality and purpose in
circuits when attempting to automate various subtasks
involved in redesign and design.

Several features of REDESIGN have been important to
its success. The most apparent of these are the means of
combining reasoning about causality in the circuit, and
reasoning about the purposes of parts of the circuit to
assist in various subtasks of redesign. There are also some
important aspects to how REDESIGN reasons about causality
and purpose. In reasoning about causality, REDESIGN
describes both the behavior and the specifications for a
data stream, in a way that allows it to describe entire
histories, rather than data stream values at single time
instants. CRITTER can propagate these descriptions through
the circuit, to build a Dependency Network showing how
the specifications for each data stream are derived f rom
the behaviors of the modules arid the specifications for the
circuit as a whole. In reasoning about purposes, we have
viewed the original design process essentially as a planning
problem, with subgoals derived both f rom the
decomposit ion of parent goals and f rom conflicts between
other subgoals. The Design Plan provides REDESIGN with
an explicit summary of this planning process, with detail
enough to replay the process, and to examine the particular
relationships among design goals and subgoals.

III An Intelligent Aid for VLSI Design

To fo l low up on the work on REDESIGN, we are
presently developing an interactive intelligent consultant,

called VEXED, 15' 5. 16 to aid in designing cells and arrays
of cells for VLSI circuits. VEXED begins with the
functional specifications of the cells, and constraints on the
placement of their interconnections, and is intended to
produce a design at the sticks or perhaps layout levels. As
an intelligent aid, VEXED is designed to o f fe r advice about
alternative methods o f decomposing and implementing the
desired function, about how to choose among such
alternatives, and about detecting and handling interactions
and confl icts among implementation choices. By running in
background mode inside a graphics-oriented circuit editor,
VEXED is intended to provide much the same kind of aid

as that provided by a human expert watching over the
shoulder of a designer during an editing session. The user
has the ability to focus on a particular portion of the
design, and to edit it as he pleases. However, the program
may o f fe r advice as it fo l lows the tasks pursued by the
user, provided its knowledge base contains expertise
appropriate to the task at hand. In such cases, the user
may elect to fo l low the consultant's advice, or to ignore it
and implement the portion of the circuit as he wishes.

The design of the VEXED system builds upon our past
experience with REDESIGN in several respects. Its design
expertise is represented using the same type of If-Then
rules used to characterize design steps in REDESIGN, and
the two main modes of reasoning about circuits used by
REDESIGN are also to be employed by VEXED. However,
there are many new issues that must be addressed by
VEXED, due to its focus on design rather than redesign,
and due to our desire to develop it to the point of a
practical tool for VLSI design. One of the major issues
lies in building up and managing the knowledge base of
design expertise. We expect that, as with many recent
expert systems, in order to achieve high levels of
performance VEXED may required several thousand If-Then
rules. One interesting direction that we intend to pursue is
to have VEXED acquire its own rules by observing the
user's design steps, much as an apprentice assistant would
learn f rom experience. In particular, in those instances in
which the user disregards the advice of VEXED, the system
should note the design step that the user takes, and
attempt to form a general rule to characterize this step.
For example, suppose that the current task is to implement
a module that converts parallel to serial signals, and that
based on its rule set VEXED suggests using a shift register
f rom its component library. If the user ignores this advice,
and instead uses the editor to construct his own circuit,
then the system should note the circuit, verify that it
accomplishes the desired function, and formulate a new rule
that summarizes this new design tactic. Of course the task
of formulating new rules in this way can be quite difficult,
because such rules should be formulated with an
appropriate degree of generality. We plan to base the
method fo r generalizing rules on our previous work on

learning heuristics and generalizing f rom examples 17, and
believe that such a capability for acquiring knowledge f rom
interactive problem solving is a crucial direction for
research on knowledge based systems during the 1980s.

IV An Intelligent Aid for Chip Debugging

A second current thrust of the AI/VLSI group involves
the development of an intelligent aid to assist in debugging
VLSI circuits. In particular, we are concerned with the
situation faced when the first samples of a newly designed
circuit are tested. In the event that the circuit does not
per form correctly, the task is to determine whether the
failure is due to a design or manufacturing error, and to
attempt to localize the cause of the failure. Our goal in
this case is to provide an intelligent assistant that is able to
generate and rank hypotheses regarding possible sources of
the circuit failure, reasoning back f rom output failure
symptoms to plausible internal faults. We find that the
kinds of reasoning about the circuit that are essential for
providing this kind of assistance in debugging overlap a
great deal with the kinds of reasoning essential to design.
in particular, the CRITTER system provides one mechanism
for tracing output failure symptoms back through the circuit
to generate candidate failure hypotheses, and the

Paper 26.2
417

hierarchical description of the circuit provided by the
design plan is essential to controlling the combinatorics of
the debugging process (i.e., the circuit is viewed
hierarchically, so that the bug is first localized in terms of
a small number of possible circuit modules, whose details
are then examined in order to further localize the failure
within the suspected module).

One thesis of this research is that debugging is best
approached by considering design and debugging as
interrelated problems. Not only is information from the
design plan useful for constraining the debugging process,
but the way in which the design is accomplished influences
the difficulty of subsequent debugging. One
straightforward example of this is the importance of
designing VLSI circuits to allow internal signals to be
observable at the output pads of the circuit. Furthermore,
the result of the debugging process should certainly
influence the redesign of the circuit. As our research on
design and debugging progresses, we hope to develop
ways of assuring closer coupling between these two
processes.

References

[1] Kowalski, T.J. and Thomas, D.E. "The VLSI Design
Automation Assistant Prototype System." In 20th
Design Automation Conference. IEEE, August, 1983,
479-483.

[2'1 Stefik, Mark and Conway, Lynn "Towards the
Principled Engineering of Knowledge." The AI
Magazine. 3:3 (1982) 4-16.

[3'1 Zipple, R., "An Expert System for VLSI Design", MIT
VLSI Memo 83-134

[4] Kim, J. and J. McDermott "TALIB: An IC Layout
Design Assistant." In Proceedings of the 1983
National Conference on Art i f ic ia l Intelligence.
AAAI, 1983, 197-201.

[5,1 Kelly, V. "The CRITTER System: Automated Critiquing
of Digital Hardware Designs", Technical
report WP-13, Rutgers AI/VLSI Project, November
1983, to appear in Design Automation Conference,
1984.

E6,1 Green, C., et al. "Research on Knowledge-Based
Programming and Algorithm Design", Research
Report KES.U.81.2, Kestrel Institute, September
1982.

[7,1 J. McDermott "Domain Knowledge and the Design
Process." In Proceedings of the 18th Design
Automation Conference. IEEE, Nashville, 1981.

[8] Mostow, D.J., and Lam, M. "Transformational VLSI
Design: A Progress Report", Technical report, USC-
ISl, November 1982.

E9,1 Rich, Charles; Shrobe, Howard E.; Waters, Richard
C. "Computer Aided Evolutionary Design For
Software Engineering", AI Memo 506, Massachusetts
Institute Technology, January 1979.

[10"1 Stefik, Mark Jeffrey, Planning With Constraints,
PhD dissertation, Stanford University, January 1980.

[11,1 Sussman, Gerald Jay; Holloway, Jack; Knight, Jr.,
Thomas F. "Computer Aided Evolutionary Design For
Digital Integrated Systems", AI Memo 526,
Massachusetts Institute Technology, May 1979.

[12,1 Wile, David S. "Program Developments as Formal
Objects", Technical report, Information Sciences
Institute, July 1981.

[13] de Kleer, Johan, Casual And Teleological Reasoning
In Circuit Recognition, PhD dissertation,
Massachusetts Institute Technology, January 1979.

E 14,1 Kelly, V., Steinberg, L. "The CRITTER System:
Analyzing Digital Circuits by Propagating Behaviors
and Specifications." In Proceedings of the National
Conference on Ar t i f ic ia l Intelligence, August,
1982, 284-289, Also Rutgers Computer Science
Department Technical Report LCSR-TR-30, and Re-
Design Project Working Paper #6

[15,1 Roach, J. "The Generalization of Symbolic Layout",
Technical report WP-12, Rutgers AI/VLSl Project,
November 1983, to appear in Design Automation
Conference, 1984.

[16,1 Steinberg, L and Mitchell, T. "Artificial Intelligence
Aids for VLSr', Technical report WP-9, Rutgers
AI/VLSI Project, June 1983.

[17,1 Mitchell, T.M., Utgoff, P.E. and Banerji, R.B.,
"Learning by Experimentation: Acquiring and Refining
Problem-Solving Heuristics," in Machine Learning,
Michalski, R. S., Carbonell, J. G. and Mitchell, T. M.,
eds., Tioga, 1983.

Paper 26.2
418

