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Abstract 
Artificial intelligence (AI) techniques o f fer  one possible 

avenue toward new CAD tools to handle the complexit ies 
of VLSL This paper summarizes the experience of the 
Rutgers AI/VLSI group in exploring applications of  AI to 
VLSI design over the past three years, In particular, it 
summarizes our experience in developing REDESIGN, a 
knowledge-based system for providing interactive aid in the 
functional redesign of  digital circuits. Given a desired 
change to the function of  a circuit, REDESIGN combines 
rule-based knowledge of  design tactics with its ability to 
analyze signal propagation through circuits, in order to (1) 
help the user focus on an appropriate portion of  the circuit 
to redesign, (2) suggest local redesign alternatives, and (3) 
determine side effects of possible redesigns. We also 
summarize our more recent research toward constructing a 
knowledge-based system for VLSI design and a system for 
chip debugging, both based on extending the techniques 
developed for the REDESIGN system. 

I Introduction 

Artificial Intelligence (AI) techniques of fer  one possible 
avenue toward new CAD tools to handle the complexities 
of VLSI. This paper summarizes the experience of the 
Rutgers AI/MLSI group in exploring applications o f  AI to 
VLSI design over the past three years. In particular, it 
summarizes our experience in developing REDESIGN, a 
knowledge-based system for providing interactive aid in the 
functional redesign of  digital circuits. We also summarize 
our more recent research toward constructing a 
knowledge-based system for VLSI design and a system for 
chip debugging, both based on extending the techniques 
used by the REDESIGN system. 

A. A Knowledge Based Approach to Software 
Organization 

One of the techniques which has arisen from research 
in AI is the know/edge based approach to designing a 
system which is to achieve some task. The essence of this 
approach is to ask what knowledge (i.e. what facts and 
reasoning abilities) is used by a human expert in solving this 
task, and to develop data-structures and code which 

*This material is based on work supported by the 
Defense Advanced Research Projects Agency under 
Research Contract N00014-81 -K-0394 .  The views and 
conclusions contained in this document are those of the 
authors and should not be interpreted as necessarily 
representing the official policies, either expressed or 
implied, of the Defense Advanced Research Projects 
Agency or the U.S. Government. 

represent this knowledge explicitly, rather than to have the 
knowledge present in the system only implicitly. 

Often the facts which are most useful are a collection 
of rules of  thumb, derived from the expert's experience, 
which can be represented in a natural way as IF-THEN rules 
and which can be used in a fairly simple reasoning process. 
As will be discussed below, we have found it useful to 
represent design tactics as IF-THEN rules, but to represent 
other facts about circuits in other ways. 

Researchers using the Knowledge Based approach in a 
number of areas have found it to have several interrelated 
advantages over more traditional techniques for  organizing 
software: 

• I t  is  easier to make incrementa l  
improvements.  Since the knowledge is 
represented explicitly it is easier to add 
additional pieces of knowledge and thereby 
make incremental improvements in the system's 
capability. 

• I t  is  easier for  the system to exp la i n  what i t  
is  do ing  and why. Since the facts and 
reasoning processes used parallel those used 
by a human expert, it is often feasible for a 
knowledge based system to automatically 
generate an explanation of  how it reached its 
conclusions which is understandable by a 
human domain expert who is not a computer 
scientist. For example, the program may 
indicate the chain of IF-THEN rules which was 
used to make a particular decision about the 
design of  some circuit submodule. 

• I t  is  easier for  a human expert  to de te rmine  
what is  incorrect or incomplete about the 
system's knowledge, and exp la i n  how to f i x  
it, Since the system can indicate what 
knowledge was used and how it was used, it 
is easier for  an expert to determine what is 
wrong. Since the system is already structured 
around the kinds of knowledge the expert 
uses, it is easier to translate the expert's 
description of how to f ix things into an actual 
change to the program. 

• i t  is easier to in teract ive/y  use a human 
expert 's ab i l i t ies .  Long before a system is 
capable of handling a task completely 
automatically, it may be possible to construct a 
useful interactive system, which aids the user 
as much as it can given its limited knowledge, 
and in which the user can take over and do 
things when he is dissatisfied with the 
system's recommendations. Since the system's 
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way of doing things is analogous to that of  
the user, it can be easier to coordinate the 
system and the user. This ability to interleave 
user input with the system's processing 
represents a major dif ference between 
knowledge-based approaches and other kinds 
of  approaches, for  instance, to silicon 
compilers. 

B. App ly ing  the Knowledge Based Approach to VLSI CAD 

A number of research groups are currently exploring 
knowledge based approaches to various aspects of  VLSI 

CAD (e.g., 1' 2, 3. 4). Here we describe a knowledge based 
system called REDESIGN which addresses the fol lowing 
problem of  functional redesign: Given an existing circuit, its 
functional specifications, and a desired change to these 
specifications, help the user to determine a change in the 
circuit that will al low it to meet the altered functional 
specifications without introducing undesirable s ide-ef fects.**  
During this work, it became apparent that providing 
intelligent assistance for  redesign depends on two  quite 
di f ferent types of reasoning about the given circuit 

The first essential type of  reasoning about circuits is 
causal reasoning about the interrelations among signals 
within the circuit. This is a generalization of  the notions of  
circuit simulation and symbolic simulation. It involves tasks 
such as, given a description of  the streams of data being 
input to a component, deriving a description of the output 
data streams. Or, given a specification of the required 
characteristics of  the outputs of  a component, determine 
what characteristics must be satisfied by the inputs to the 
component The subsystem of REDESIGN which has been 

developed to solve these kinds of  problems is called 
CRITTER. = 

A second type of reasoning essential to redesign 
involves reasoning about purposes of  components. For 
example, given a circuit, and its specifications, explain the 
role played by a particular component in implementing the 
overall specifications. Or, determine the range of 
components that can be substituted for  this component 
without violating the overall specifications. 

The next section describes our work on the redesign 
task, and the use of causal reasoning and reasoning about 
purpose in REDESIGN. Subsequent sections summarize our 
more recent attempts to extend these ideas and our current 
research on developing knowledge based systems for  VLSI 
design and chip debugging. 

II The Redesign Task 

In the functional redesign problem the system is given 
the schematic of  a working digital circuit (e.g., the display 
controller for  a computer terminal), and its functional 
specifications (e.g, the fact that it displays 80 characters 
per line, 25 lines per screen, displays the cursor at a 
programmable address, etc.). The system is also given a 
data structure called a design plan, which relates the 
circuit schematic to its specifications. Given a desired 
change to the functional specifications (e.g., require that the 
terminal display 72 characters per line), the task is then to 
redesign the circuit so that it will meet these altered 

**We chose the redesign problem over the design 
problem as our f irst task primarily because it raised a 
number of  important issues about representing and 
reasoning about circuits in a more tractable context than 
design f rom scratch. 

specifications ~"~. 

The formulation of the redesign problem presented 
here is very similar to planning problems in the AI literature, 
and the issues addressed in this work  are related to those 
addressed by others working in the areas of planning and 

design, such as 6. 7, 8. 9, 10. 11, 12 Our work is also 

related to that of  13, which deals with recognizing circuits 
rather than designing them, and which addresses the 
relations among circuit function, structure, and purpose. 

The next subsection discusses the representation of  
circuits, and the notions of  circuit behavior and 
specifications. The fol lowing subsection describes the two  
modes of reasoning about circuits employed by REDESIGN: 
causal reasoning and reasoning about purpose. We then 
illustrate the use of these modes of  reasoning by 
REDESIGN, by tracing its use for  a specif ic redesign 
problem. 

A. Representing Circuits, Behaviors and Specifications 

The structure of  a circuit is represented by a network 
of  modules and data-paths. A module represents either a 
single component or a cluster of  components being viewed 
as a single functional block. Similarly, a data-path 
represents either a wire or a group of  wires. The data 
f lowing on a data-path is represented by a data-stream, 
and the operation per formed by a module is represented by 

a module function. These representations are described in 
14, 5 One aspect of  this circuit representation that has 
been important in REDESIGN is that data-streams represent 
the entire time history of data values on a data-path, rather 
than a single value at a single time, as in many circuit 
simulators. This has proven to allow considerable flexibility 
in reasoning about circuit behavior over time. 

In reasoning about redesign, REDESIGN must distinguish 
between what happens to be true of  the circuit (we refer 
to this as the circuit behavior), and what must be true for  
that circuit to work correctly (we refer to this as the 
circuit specifications). Therefore, for  each module function 
and data-stream, both behavior and specifications are 
recorded. For example, the behavior of  a particular module 
may state that its output will be the sum of its inputs, 
delayed by 100 nanoseconds, while the specifications for  
that module may simply require that the output be delayed 
by less that 500 nanoseconds. 

B. Two  Modes of Reasoning about Circuits 

A variety of  types of questions arise when redesigning 
a circuit. REDESIGN uses two  separate modes of reasoning 
to answer these questions - -  one to analyze circuit 
operation based on a causal model of  the circuit, and one 
to reason about the purposes of circuit submodules (i.e. 
their roles in implementing the global circuit specifications). 
These two  modes of reasoning are combined to provide 
assistance at various stages of the redesign process. 

1. Causal Reasoning 

Causal reasoning answers questions such as "If input X 
is supplied to the circuit module, what wil l  the output be?" 

***I t  should be noted that the example circuits used in 
the work on REDESIGN were not actually VLSI. Rather they 
were board-level circuits built f rom standard TTL MSI parts. 
However, we believe that the same techniques apply 
directly to VLSI circuits designed with the standard cell 
approach. 
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and "If output Y is desired, what must be provided as 
inputs to the module?" X and Y here may be either 
complete descriptions or partial descriptions giving, e.g., just 
the start time or just the value; of  course if the question 
gives only a partial description the answer may also be a 
partial description. 

The question where a completely described input is 
given is the type of question answered by standard circuit 
simulators. However, redesigning a circuit requires 
answering the other kinds of  questions as well. For 
example, if the circuit specifications call for  the circuit 
output to have a certain duration, it is important to be able 
to determine which properties of  the upstream signals will 
assure this duration. The CRITTER system answers these 
kinds of questions by a process of  propagating full and 
partial descriptions of  data-streams through the circuit, and 
can test whether a given data-stream's specifications are 
satisfied by its behavior. CRITTER also maintains a 
Dependency Network that records, for  each specification, 
both its source and the path in the circuit through which it 
was propagated. 

2. Reasoning about Purpose 

A second kind of reasoning important in redesign 
concerns the roles, or purposes, of  various circuit modules 
in implementing the overall circuit specifications. Questions 
of this sort that arise during redesign include "What is the 
purpose of circuit module M?" and "How are the circuit 
specifications decomposed into subspecifications to be 
implemented by separate sections of  the hardware?". 
Questions of  this sort can be answered by REDESIGN, by 
examining the Design Plan of  the circuit 

The Design Plan is a data structure that shows how 
circuit specifications are decomposed and implemented in 
the circuit, as well as the conflicts and subgoals that arise 

during design. It contains enough information to allow 
"replaying" the original design, and is characterized in terms 
of a set o f  implementation rules that embody in 
executable form general knowledge about circuit design 
tactics. This Design Plan must be provided as input to 
REDESIGN, as part of  the characterization of the circuit 
which is to be redesigned. 

In order to illustrate the form of the Design Plan, 
consider the simple Character Generator Module (CGM) 
circuit shown in figure I1-1. This circuit is similar to a 
standard circuit used in most video computer terminals 
- -  it is the part of  the terminal that translates the ASCII 
character codes into the corresponding dot matrix to be 
displayed on the screen. This circuit accepts as input (1) a 
stream of  ASCII encoded Characters, (2) a stream of binary 
encoded integers, called Slice-Indices that specify which 
horizontal slice of the character dot matrix is to be 
displayed, and (3) several clock signals used for  
synchronization. The circuit must produce a stream of  
Character-Slices, each of which is a bit string 
corresponding to the dots to be displayed on the terminal 
screen for the selected horizontal slice of  the input 
Character. 

The heart of  the CGM design is a read-only memory, 
the ROM6574. This ROM6574 stores the definition of the 
character font (the dot matrix to be displayed for  each 
character), one Character-Slice per byte of memory. To 
retrieve the Character-Slice corresponding to a given 
Character and Slice-Index, the ASCII code for the character 
is concatenated with the binary representation of the Slice- 
Index, and used to address the ROM6574. The other 
components in this circuit are used to interface the 
ROM6574 to the desired input and output formats. For 
example, the CGM specifications require serial output while 
ROMs produce parallel output Therefore, a shift register 
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Figure I1-1: The Character Generator Module Figure 11-2: Design Plan for the CGM 
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(SHIFT-REGISTER~74166) is used to convert the output 
data to serial. Also, because the address inputs to the 
ROM6475 must be stable for  at least 500 nsec. while the 
input Characters are stable for only 300 nsec., a latch 
(LATCH74175) is used to capture the input Characters, and 
hold these data values stable for  an acceptable duration. 

The above paragraph summarizes the purpose of each 
circuit component and the conflicts and subgoals that 
appear during design. This is precisely the k ind of 
summary that must be captured in the Design Plan, in 
order to a l low the REDESIGN program to reason 
ef fect ive ly about the design and about the purposes of 
ind iv idua l  c i rcui t  components. 

Figure 11-2 illustrates the Design Plan used to describe 
the CGM circuit to REDESIGN. Each node in the Design 
Plan corresponds to some abstracted circuit module whose 
implementation is described by the hierarchy below i t  The 
topmost node in this Design Plan represents the entire 
CGM, and its functional specifications. The bottom most 
nodes in the Design Plan represent individual components in 
the circuit Each solid vertical link between modules in the 
Design Plan corresponds to some implementation choice in 
the design, and is associated with some general 
implementation rule which, when executed, could recreate 
this implementation step. For example, the vertical link 
leading down from the topmost module in the figure 
represents the decision to use a Read-Only Memory (ROM) 
to implement the CGM. This implementation choice is 
associated with the implementation rule which states "IF the 
goal is to implement some finite mapping between input and 
output data values, then use a ROM whose contents store 
the desired mapping" (note this leaves open the choice of 
the exact type of ROM.) 

Each dashed link in the Design Plan represents a 
conflict arising from some implementation choice or 
choices, and leads to a design subgoal, represented by a 
new circuit module with appropriate specifications. For 
example, a conflict fol lows from the implementation choice 
to use a ROM, and leads to the subgoal module labelled 
"Parallel-to-SeriaI-Subgoal". The conflict in this case is the 
discrepancy between the known output signal format of  
ROMs (i.e., parallel) and the required output signal format of 
the CGM (i.e., serial). The specifications of the new subgoal 
module are therefore to convert the parallel signal to serial. 
In a similar fashion, the implementation choice to use the 
specific ROM6574 leads to another conflict, and to the 
resulting subgoa[ to extend the duration of  the input data 
elements. 

Not shown are the links between the Design Plan and 
the Dependency Network, giving the specifications for the 
various data-streams. 

By examining the Design Plan of a circuit, REDESIGN is 
able to reason about purposes of various circuit modules, 
and about the way in which the circuit specifications are 
implemented. The general implementation rules used to 
summarize the design choices can be used to "replay" the 
Design Plan for the similar circuit specifications, and thus 
allow for a straightforward kind of  design by analogy. 

C. Redesigning a Circuit 

This section illustrates the use of both causal reasoning 
and reasoning about purpose in redesigning a circuit It 
traces the actions of  the REDESIGN program as it took part 
in a particular redesign of the Video Output Circuit (VOC) 

of  a computer terminal. The Video Output Circuit (which 
contains the Character Generator Module discussed earlier) 
is shown in figure 11-3. It is the part of  the computer 
terminal that produces the composite video information to 
be displayed on the terminal screen. It produces this 
output f rom its combined inputs, which include the 
characters to be displayed, the cursor position, 
synchronization information for blanking the perimeter of 
the terminal screen, and special display commands (e.g., tc 
blink a particular character). 

In this example, we consider redesigning the VOC to 
display characters in an italics font rather than its current 
fon t  Given a redesign problem, REDESIGN guides the user 
through the fol lowing sequence of five subtasks: (1) focus 
on an appropriate portion of the circuit, (2) generate 
redesign options to the level of  proposed specifications 
for  individual modules, (3) rank the generated options, (4) 
implement the selected redesign option, and (5) detect and 
repair side effects resulting from the redesign. 

Focus attent ion on appropriate section(s) of the 
circuit, In many cases, the most diff icult step in functional 
redesign is determining which portions of the circuit should 
be ignored. Focusing on relevant details in one locality of 
the circuit while ignoring irrelevant details in other localities 
can greatly simplify the complexity of redesign. In order 
to determine an appropriate focus, REDESIGN "replays" the 
Design Plan by reinvoking the recorded implementation rules 
with the changed circuit specifications. During this replay 
process, whenever an abstract circuit module is produced 
by some implementation step, its purpose is compared with 
the purpose of the corresponding module in the original 
Design Plan. If the purpose is unchanged, then the original 
implementation of this module will be reused without 
change in the new design***~. If the new module has a 
different purpose than the corresponding module in the old 
Design Plan, (e.g., the new CGM must implement a different 
character font), an attempt is still made to apply the same 
implementation rule as in the original design (e.g., still try to 
use a ROM). If this implementation rule is not useful in the 
new design (as with the rule that suggests using the 
specific ROM6574), then REDESIGN stops expanding this 
portion of  the Design Plan, and marks the corresponding 
portion of the circuit as a portion to be focused on for 
further redesign. The use of the Design Plan as sketched 
above leads in the current example to a focus on 
redesigning the abstract ROM module within the CGM within 
the VOC circuit This abstract ROM module is implemented 
in the current circuit by two components as shown in 
figure 11-2 (the ROM6574 and LATCH74175). A second 
method of focusing is possible, by using the Dependency 
Network produced by CRITTER. This method involves 
isolating those points in the circuit that possess 
specifications derived from the changed specification on 
the output data-stream. The resulting focus is generally 
broader than that determined from the Design Plan, because 
out of the many places in the circuit that can impact any 
given output specification, only a small proportion of  these 
involve circuitry whose main purpose is to implement that 
specification. 

=-"==One must still make certain that changes elsewhere in 
the design do not interact dangerously with the 
implementation of this module. In REDESIGN, this is 
accomplished without having to directly examining the 
implementation of the module. Instead, design changes 
elsewhere in the circuit are checked for consistency with 
the constraints recorded in the Dependency Network 
produced by CRITTER. 
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Generate redesign options to the level of proposed 
specifications for individual circuit modules. Once an 
initial focus for the redesign has been determined, redesign 
options are generated which recommend either altering the 
specifications of  individual modules, or adding new modules 
with stated specifications. In both cases, only the new 
functional specifications are determined at this point - -  the 
circuitry to implement these specifications is determined 
later. The constraint propagation capabilities of CRITTER 
provide the basis for  generating these redesign options. In 
the current example, once REDESIGN has focused on the 
section of the VOC including the ROM6574 and 
LATCH74175, it considers the new output specification for  
this circuit segment, and propagates it back through this 
segment. Before each propagation step, REDESIGN 
considers the option of breaking the wire at that point and 
inserting a module to transform the values on that wire to 
values satisfying the required specification. In addition, it 
considers the option of altering the module immediately 
upstream, so that it will provide the required signal at that 
point. For each of the generated options, the new 
functional specifications are defined in terms of (1) the new 
specification to be achieved, and (2) a list of  unchanged 
specifications found in the original Dependency Network, 
which are to be maintained. In the current example, the 
option generation process produces a list of  five candidate 
redesign options. This list includes redesign options such 
as "replace the ROM6574 by a module which stores the 
new character font", and "introduce a new module at the 
output of the ROM6574, which will transform the output 
values into the desired font" (these options are described 
by the program in a formal notation, and the above are 
only English summaries). 

Rank the generated redesign options. Heuristics for  
ranking redesign options can be based on a variety of 
concerns: (1) the estimated difficulty of implementing the 
redesign option (e.g, components with zero delay cannot be 

built), (2) the likely impact of the implemented redesign on 
global criteria such as power consumption and layout area, 
and (3) the likelihood and severity of  side effects that 
might be associated with the redesign=====. In the current 
example, the heuristic that selects the appropriate redesign 
option suggests "Favor those redesign options that replace 
existing modules whose purpose has changed." In this 
case, since the purpose of the ROM6574 has changed, the 
option of replacing this component is recommended. The 
recorded Dependency Network and Design Plan also 
provide very useful information for estimating the relative 
severity of  various changes to the circuit. Because the 
Design Plan shows the dependencies among implementation 
decisions (e.g., the purpose for  the LATCH74175 is derived 
from the decision to use the specific ROM74175) it 
provides a basis for ordering the importance of  
components and associated constraints in the overall design 
(e.g., if the ROM6574 is removed, the LATCH75174 may no 
longer have a purpose for existing), This ordering of 
circuit modules, and of the data-stream constraints that 
they impose, provides an important basis for  estimating the 
relative extent of side effects associated with their change. 

Implement the selected redesign option. The above 
steps translate the original redesign request into some set 
of more local (and hopefully simpler) specification changes. 
While the implementation rules that REDESIGN possesses 
might be used for design====::, the REDESIGN system does 
not make use of  this potential. Thus, the user is left to 
implement the redesign option. 

-~-~-~x-"The current REDESIGN system has only a primitive 
set of heuristics for  ranking redesign options. 

******In fact they are used this way in the design 
consultant. See below. 
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Detect and Repair Side Effects Arising from the 
Redesign Once the redesigned circuit is produced, 
REDESIGN checks the new circuit segment to try to 
determine (a) that it does achieve the desired new purpose, 
and (b) that it does not lead to undesirable side effects. 
Undesirable side ef fects are detected as violations of  the 
Dependency Network specifications at the inputs and 
outputs of the altered circuit segment. If a specification is 
violated, the new circuitry might be redesigned, or the 
specification might itself be modif ied or removed by 
redesigning a di f ferent portion of the circuit. The 
Dependency Network can be examined to determine the 
source of the violated specification, and to determine the 
locus of circuit points at which the specification could be 
altered. 

D. Conclusions from the Work on REDESIGN 

REDESIGN is a research prototype system that 
demonstrates the feasibility of  providing intelligent aids for  
redesign and design of digital circuits. While the current 
REDESIGN system has many limitations (e.g., in the size of  
circuits it can handle, its inability to help with certain 
classes of redesigns, shortcomings of  its causal reasoning 
methods, incompleteness of its knowledge base of 
implementation rules, etc.), it demonstrates clearly the 
importance of reasoning about causality and purpose in 
circuits when attempting to automate various subtasks 
involved in redesign and design. 

Several features of  REDESIGN have been important to 
its success. The most apparent of  these are the means of 
combining reasoning about causality in the circuit, and 
reasoning about the purposes of parts of the circuit to 
assist in various subtasks of redesign. There are also some 
important aspects to how REDESIGN reasons about causality 
and purpose. In reasoning about causality, REDESIGN 
describes both the behavior and the specifications for  a 
data stream, in a way that allows it to describe entire 
histories, rather than data stream values at single time 
instants. CRITTER can propagate these descriptions through 
the circuit, to build a Dependency Network showing how 
the specifications for  each data stream are derived f rom 
the behaviors of  the modules arid the specifications for  the 
circuit as a whole. In reasoning about purposes, we have 
viewed the original design process essentially as a planning 
problem, with subgoals derived both f rom the 
decomposit ion of  parent goals and f rom conflicts between 
other subgoals. The Design Plan provides REDESIGN with 
an explicit summary of  this planning process, with detail 
enough to replay the process, and to examine the particular 
relationships among design goals and subgoals. 

III An Intelligent Aid for VLSI Design 

To fo l low up on the work on REDESIGN, we are 
presently developing an interactive intelligent consultant, 

called VEXED, 15' 5. 16 to aid in designing cells and arrays 
of cells for  VLSI circuits. VEXED begins with the 
functional specifications of the cells, and constraints on the 
placement of  their interconnections, and is intended to 
produce a design at the sticks or perhaps layout levels. As 
an intelligent aid, VEXED is designed to o f fe r  advice about 
alternative methods o f  decomposing and implementing the 
desired function, about how to choose among such 
alternatives, and about detecting and handling interactions 
and confl icts among implementation choices. By running in 
background mode inside a graphics-oriented circuit editor, 
VEXED is intended to provide much the same kind of aid 

as that provided by a human expert  watching over the 
shoulder of  a designer during an editing session. The user 
has the ability to focus on a particular portion of  the 
design, and to edit it as he pleases. However, the program 
may o f fe r  advice as it fo l lows the tasks pursued by the 
user, provided its knowledge base contains expertise 
appropriate to the task at hand. In such cases, the user 
may elect to fo l low the consultant's advice, or to ignore it 
and implement the portion of the circuit as he wishes. 

The design of the VEXED system builds upon our past 
experience with REDESIGN in several respects. Its design 
expertise is represented using the same type of If-Then 
rules used to characterize design steps in REDESIGN, and 
the two  main modes of reasoning about circuits used by 
REDESIGN are also to be employed by VEXED. However, 
there are many new issues that must be addressed by 
VEXED, due to its focus on design rather than redesign, 
and due to our desire to develop it to the point of  a 
practical tool for  VLSI design. One of the major issues 
lies in building up and managing the knowledge base of  
design expertise. We expect that, as with many recent 
expert systems, in order to achieve high levels of  
performance VEXED may required several thousand If-Then 
rules. One interesting direction that we intend to pursue is 
to have VEXED acquire its own rules by observing the 
user's design steps, much as an apprentice assistant would 
learn f rom experience. In particular, in those instances in 
which the user disregards the advice of  VEXED, the system 
should note the design step that the user takes, and 
attempt to form a general rule to characterize this step. 
For example, suppose that the current task is to implement 
a module that converts parallel to serial signals, and that 
based on its rule set VEXED suggests using a shift register 
f rom its component library. If the user ignores this advice, 
and instead uses the editor to construct his own circuit, 
then the system should note the circuit, verify that it 
accomplishes the desired function, and formulate a new rule 
that summarizes this new design tactic. Of course the task 
of  formulating new rules in this way can be quite difficult, 
because such rules should be formulated with an 
appropriate degree of generality. We plan to base the 
method fo r  generalizing rules on our previous work on 

learning heuristics and generalizing f rom examples 17, and 
believe that such a capability for  acquiring knowledge f rom 
interactive problem solving is a crucial direction for  
research on knowledge based systems during the 1980s. 

IV An Intelligent Aid for Chip Debugging 

A second current thrust of  the AI/VLSI group involves 
the development of  an intelligent aid to assist in debugging 
VLSI circuits. In particular, we are concerned with the 
situation faced when the first samples of  a newly designed 
circuit are tested. In the event that the circuit does not 
per form correctly, the task is to determine whether the 
failure is due to a design or manufacturing error, and to 
attempt to localize the cause of the failure. Our goal in 
this case is to provide an intelligent assistant that is able to 
generate and rank hypotheses regarding possible sources of 
the circuit failure, reasoning back f rom output failure 
symptoms to plausible internal faults. We find that the 
kinds of reasoning about the circuit that are essential for  
providing this kind of  assistance in debugging overlap a 
great deal with the kinds of  reasoning essential to design. 
in particular, the CRITTER system provides one mechanism 
for  tracing output failure symptoms back through the circuit 
to generate candidate failure hypotheses, and the 
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hierarchical description of the circuit provided by the 
design plan is essential to controlling the combinatorics of 
the debugging process (i.e., the circuit is viewed 
hierarchically, so that the bug is first localized in terms of 
a small number of possible circuit modules, whose details 
are then examined in order to further localize the failure 
within the suspected module). 

One thesis of this research is that debugging is best 
approached by considering design and debugging as 
interrelated problems. Not only is information from the 
design plan useful for constraining the debugging process, 
but the way in which the design is accomplished influences 
the difficulty of subsequent debugging. One 
straightforward example of this is the importance of 
designing VLSI circuits to allow internal signals to be 
observable at the output pads of the circuit. Furthermore, 
the result of the debugging process should certainly 
influence the redesign of the circuit. As our research on 
design and debugging progresses, we hope to develop 
ways of assuring closer coupling between these two 
processes. 
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