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Chapter 2

AUTOMATED REUSE OF DESIGN PLANS
IN BOGART

Jack Mostow, Michael Barley, and Timothy Weinrich

Abstract

BOGART, part of the VEXED knowledge-based circuit design editor, par-
tially automates circuit (re-)design by mechanically "replaying” the recorded
history of design decisions made in a previous design. We illustrate how it
designs part of a content-addressable memory by replaying the design plan for a
comparator, and how it helps implement several specification changes for a
simple arithmetic and logic unit (ALU). We evaluate how well BOGART ad-
dresses five general issues raised by this approach to intelligent design automa-
tion. BOGART has been used by students in a VLSI course to help design
simple NMOS digital circuits, and its techniques have been applied to mechani-
cal design and algorithm design. Experimental results indicate that autornated
replay can be significantly more effective than structure-copying in reducing
user effort.

2.1. INTRODUCTION

Much of design consists of re-design, whether in the adaptation of a previous
design 10 a new context, or in the design iteration cycle. Mechanical design
databooks, software subroutine libraries, and hardware standard cell catalogs all
testify to the usefulness of reusing previous designs. However, these approaches
to reuse are somewhat inflexible: a databook entry, subroutine, or standard cell
has limited value when it is not reusable "as is," even though many of the design
decisions incorporated in it may still apply, If the stored design is 99% right for
a given task, patching it to fit often takes much more than 1% of the effort
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needed to create the design in the first place, cancelling so much of the advan-
tage of reusing it that it may be easier 10 re-design from scratch. To take 2
software example, consider the case where a procedure is needed to compute
some mathematical function with more precision than the one in the subroutine
library. Writing the procedure from scratch is likely to be easier than patching
the library subroutine, even if they use the same basic algorithm. Although
human designers sometimes modify the structure of an old design to fit a new
application, this process tends to require considerable expertise; since we arc in-
terested in qutomating the reuse of designs, we want to avoid the difficulties as-
sociated with structure-patching.

A consensus has emerged among artificial intelligence researchers investigat-
ing design that the solution to this problem is to reuse the process, not the
product, of design. In particular, if a designer’s decisions can be recorded in
rmachine-understandable form, it should be possible to "replay” the recorded
design history {1,2, 3,7, 16, 20], perhaps after editing a few decisions to fit the

new problem.
Replaying & design history is less straightforward than it sounds [8, 9]. Some

of the issues include:

1. Acquisition. How can design decisions be captured at an ap-
propriate level of description?

9. Retrieval: Given a design problem, how can relevant previous
designs be identified?

3. Flexibility: How can a previous design be profitably reused even
though it is only partially suitable?

4. Appropriateness. How is it possible to identify which decisions
made in a previous design should be replayed?

5. Correspondence: How is it possible to decide which parts of a
previous design correspond to which parts of a new problem?

This chapter presents BOGART, a facility that automatically replays "design
plans” in the VEXED system for designing digital circuits (Volume I, Chapter
). It should be emphasized that BOGART is only a proof of concept. Like
VEXED, it is a research tool, not a design tool intended for realistic tasks.
BOGART is an experimental vehicle for investigating the issues listed above.
Its purpose is 1o test the hypothesis that qutomated reuse of design plans is both
feasible and useful.

The rest of this chapter is organized as follows. Section 2.2 illustrates how
VEXED assists and records the design of a simple comparator circuit. Section
2 3 shows how BOGART uses the recorded design pian to design part of a unit
cell for a content-addressable memory. Section 2.4 describes the results of sub-
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jecting BOGART 1o a "trial by students." Section 2.5 reports on an experiment
to compare the usefulness of copying and replay in designing several vartants of
a sm_:plei AL .Secuora 2.6 analyzes the extent to which BOGART addresses
the five issues raised above. Section 2.7 describes applications of the BOGART
ig?;oﬁeclhttz mecllclanécal desigr91 and algorithm design, Section 2.8 briefly sur-
ated work. Section 2.9 conclu i ]
ments showed about our hypothesis. des, with 2 summazy of what out exper

2.2. USING VEXED TO CONSTRUCT A DESIGN PLAN

. In lthlS section we briefly introduce VEXED, a design aid for NMOS digital
circuits, a-nd show how it constructs the design plans replayed by BOGART;
VEXED 1s.described more fully in Volume I, Chapter 8. VEXED is imi
plgmeme_d in Interlisp-D on Xerox D-series machines and uses the Strobe
object-oriented programming system developed at Schiumberger-IDoll Research.

2.2.1. VEXED’s Mode! of Interactive Design

VEXED was developed to investigate the hypothesis that the design process
can usefully be modelled as top-down refinement plus constraint propagation
(see Volume I, IChapter 8). In this model, a circuit design problem is
yepr‘esented as a "black box" module with specifications on various features of
its inputs and outputs, such as their datatypes, values, timing, and encodin
Each rop-down refinement step decomposes a module into a fev:z interconnectegd.
::Plgn%dp]es, kiach of which is refined in turn until the entire circuit has been
e ;.ar &n(;rgns).own components of the target technology (e.g., transistors, gates,
‘ The purpose of top-down refinement is to factor the origi i
into mdependt?n_t subproblems, but in practice the connc{c)tifiatlaeczfjégg ggg}ﬁ?
mean ‘that decisions about how to implement one module can constrain the po ;
sibie 1mplementat-ions of another. For instance, if the output of module I}; ?-
colnnec{e.d to the input of module B, then the decision to implement module Ji
with se:l‘lal output precludes implementing module B with parallel input
Co'nstfamr propagarion is the process of inferring how decisions made at one
point in the design copstrain the options elsewhere in the design. o
t This model of design is embodied in VEXED with a division of labor be-
ween user and machine intended to exploit the strengths of each party [6]; the
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user is responsible for strategic decisions, while VEXED takes care of the
detailed manipulation and constraint propagation needed to carry out those deci-
sions and deduce their effects.

2.2.2. Problem Specification

Design in VEXED starts with a top-level specification provided by the user in
a somewhat unreadable syntax resembling the programming language LISP.
Figure 2-1 paraphrases the specification for the output value of a one-bit com-
paraior circuit. (The figure omits specifications for the inputs and for other fea-
tures of the output, such as datatype, encoding, and timing.) No circuit
schematic is shown yet because the specification does no! say how it is to be im-
plemented. In fact, several different circuits could be designed to realize this
specification.

{input-1 AND input-2) OR ((NOT input-1) AND (NOT inpui-2))

Figure 2-1: Qutput Value Specification for COMPARATOR-CELL

2.2.3. Refinement Rules

VEXED has a catalog of "if-then" refinement rules, one of which is shown in
Figure 2-2. The "if" part of a rule tests whether the rule can be used to correctly
refine a given module. The “then" part refines the module into one or more sub-
modules and their interconnections. A rule states that any module satisfying the
"if" part can be refined by the “then" part, not that it necessarily should be; dif-
ferent rules can represent alternative ways to refine the same module.

2.2.4. VEXED’s Interactive Design Cycle

VEXED is based on an interactive cycle in which some parts are done by
VEXED and others by the user. At the start of each cycle, VEXED displays a
menu of the modules remaining to be refined, and the user selects which one to
refine. VEXED finds all the rules that can refine the module, that is, those
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If the specified output vaiue of module :M has the form ";FN1 OR :FN2,"
then it can be refined into & circuit of the following form:

‘M
-»)-+ -

where :F outputs :FN2 and :G outputs (:G;;, OR :EN1).

Figure 2-2: Paraphrase of the OR-DECOMP rule;
Rule variables, e.g. :M, are prefixed by a colon.

whose "if parts" match the module specifications, and displays them in a menu,
The user chooses which one to apply, based on what kind of design it will even-
tually lead to. Thus the user is responsible for choosing what part of the design
to work on next and what implementation strategy to try.

2.2.5. Rule Application

VEXED applies the selected rule to the selected module, refining it into sub-
modules and automatically propagating the effects of this decision to other
modules affected by it. VEXED’s constraint propagator, named CRITTER, is
described in Chapter 8, Volume L ’

Tt'le. OR—DECOMP rule refines COMPARATOR-CELL, whose cutput value
spec:lflcanon is shown in Figure 2-1, into modules F:A0025 and G:A0029
Figure 2-3 shows the result, with some of the connections omitted for simplicity'
F:AQOQS computes the second part of the specified expression and outputs it t{;
the input port of G:AQ029, which does the rest of the work.

2.2.6. Manual Refinement

What if no rules apply to a given module, or the user doesn’t like any of the
ones that do? In this case, the user can use VEXED’s graphical editor to decom-
pose the module manually into submodules and their interconnections, and type
in their specifications in VEXED's specification language. VEXED uses con-
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COMPARATOR-CELL

[ Autes oA

F:A0025 outputs (NOT input-1) AND (NOT input-2)

G AD029 outputs G AQ029,, OR {input-1 AND input-2}

i ie
i .3: Result of Applying OR-DECOMP Ru
Figure 2 to COMPARATOR-CELL

i i ition correctly implements the
traint propagation 10 check that the fiecompqm n .
fnrc?cllrtllle? II; ?act, VEXED has a learning facility r}gm&d LEAP (for Leém;ft
Apprentice”) that generalizes the manual decpmposmon step into a new T
tly refines an module to which it applies [5]. _ . '
Coi?:ery; t:m{muaal ¥eﬁncmem step, VEXED's normal Cllnl;:ractwe tdfisiagnacglflf
i | i had been created by .
, treating the new submodules just as if they hac -
fﬁiﬁ?fhen VE)%{ED lacks a rule capabie of decomposing a module as decsllred,
the user is not forced t0 design the module the rest of the way down by hand.

2.2.7. Resulting Design

VEXED's interactive cycle repeats until the entire design has been rgfir}ed
down to the level of primitive components. Figure 2-4 shows the final design

i 1e structure omitted. The circuit con-
for COMPARATOR-CELL, with the modu
tains four inverters, two transistors used as AND gates, and one NAND ‘gatel._telé
ks as follows. The input signals are fed to one ANI) gate, anf:l the inver
b i The resulss of these two conjunctions arc wired

input signals are fed to another. o ;
togetherg to compute the desired output value. The additional inverters and

NAND gate are used 10 amplify the signal, which is attenuated by the transis-

tcjr(Sl“ircuit design experts may notice that this Idesign could bc ix:nproved}.] In p?-Irl:
ticular, the output signal could be amplified simply by passing 1t th:oug, twg
’ o inating o NAND gate. Although VEXED's refine-

verters in series, thereby € ' e s the user
esion is functionally correct, v eave i
ment rules ensure that the desig e saer of cir

responsible for minimizing the consumption of resources
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cuit components. As this example illustrates, choosing the wrong decomposi-
tion can lead to a sub-optimal design. Reference [19] describes a system called
SCALE that learns optimal decompositions.

2.2.8. The Design Plan

VEXED records the successive refinement steps in a tree-like design plan like
the one shown in Figure 2-5, which shows the final design plan for the com-
parator. The plan has a node for each module in the circuit. The step that
refined a module into its submodules is shown as a thin box labelled with the
name of the rule. For instance, the top step used the OR-DECOMP rule to
refine COMPARATOR-CELL into submodules F:A0025 and G:A0029. {Other
aspects of Figure 2-5 will be explained as needed.} Although not shown, the
design plan also includes the "bindings" for each refinement step, which indicate
the module or expression corresponding to each rule variable. In the top step,
variable :M was bound to COMPARATOR-CELL, ‘F to module F:A0025, and
:G to module G:A0025,

Because the user cannot always tetl the right rule to choose at each step, it is
sometimes necessary to retract a design decision. VEXED provides a backtrack-
ing command that returns the design to a user-selected past state, retracting all
the refinement steps made since then and erasing them from the design plan.
Thus the final design plan is an idealized history that omits steps that were taken
but later retracted [71.

2.3. HOW BOGART REUSES A DESIGN PLAN

In this section we try to indicate what it is like to use BOGART to help design
circuits. Specifically, we will show how BOGART uses the COMPARATOR-
CELL design plan shown in Figure 2-5 to automate much of the design of a one-
bit key-test unit for a cell in a content-addressable memory. Each cell stores a
key and a data item. To retrieve the data item associated with a given key, the
key is broadcast to afl the cells. Each cell tests the broadcast key against its
stored key. If they match, the cell returns its data item on a commaon bus. The
key is tested by combining the outputs of several one-bit key-test units, one for
each bit in the key. Figure 2-6 specifies the output value for such a unit. The
unit holds one bit of the key. The unit compares the stored bit against the cur-
rent value of input-1 and outputs TRUE if they match. If the control input Load
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i ] key. The specification is
TRUE, the value of input-1 gets stored as the new key.
:xprcssed ratner unusually because VEXED's specification language lacks a

more conventicnal way 10 describe memory.

i i R
t-1 AND (input-1 when 1.0ad was last TRUE) O
(NO}II‘jiP;]put-l) AND (NOT input-1 when Load was last TRUE}

Figure 2-6: Output Value Specification for KEY-TEST-UNIT

i i D in the same interactive
“KEY-TEST-UNIT could be implemensed m'V.EXE :
fasliion as COMPARATOR-CELL. However, IL1S possible to automate most of
its design by reusing the design plan for COMPARATOR—CELL.Esﬁe Ur;.?l\;‘
describe how a VEXED user would use BOGART to refine KEY-T -

most of the way down into primitive components.

2.3.1. Deciding What to Replay

Our scenario begins with the user decjding to jmplement K_EY‘TES;I?‘-ENIT
by replaying a previous design and invoking th}a Replay option ms::;r;a o % 01051;
ing a refinement rule 10 apply. BOGART displays a menu of ‘ow111 es %d
plans, including the design currently in progress as well as previous ),rlsav.t
designs. A design doesn’t have to be complete for BOGART to reg ti)iyfl S
design plan. Designs are saved when completed, but can also be saved before
backtracking, to allow retracted decisions to be replayed later. .

The user selects a design plan that seems relevant, gnd chooses wha} subtree
of it to replay. In our example, the user selects tl?e dgmgn plan shown mrrl‘:;?:rg
2.5, The user can designate any subtree by selecting its root angl leaves. ccxl E
the part of the previous design that resembtes the module to be unPlemente , ! e
user can use VEXED's display facilities to brow‘se thro_ugh various piarts 3 la
circuit and adjust the level of desail displayed. Since 1t 18 the top-leveYrE}% ;Te
in Figure 2-5, COMPARATOR-CELL, thas most resembles tl}e KEY- -
UNIT to be implemented, the user selects it as the root of the desired subtrﬁe.1

In Figure 2-5, the heavily boxed moduleg represent how far down to rep ?}31/.
Here the user has accepted the default, which is to try to replay down tg e
leaves of the original design plan. However, the user could have mpvfe the
boundary, thereby instructing BOGART to stop short of the leaves. This eatn.flre
allows reuse of an abstracted version of the plan, in that the overall strategy (for

B e
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how to decompose the high-level modules) is retained while the low-level
details are dropped, as in the ARGO system (Chapter 3.

2.3.2. BOGART’s Automatic Design Cycle

Once the user has selected what part of the design plan to replay, BOGART
starts the replay process, which consists of repeatedly selecting the next step to
replay and refining the corresponding module. The replay cycle is entirely
automatic, relieving the user of the responsibilities required in VEXED's inter-
active design cycle; this lessening of the user’s burden is BOGART's
raison-d’étre.

The first step of the replay cycle chooses which module to refine next.
BOGART maintains an agenda of unrefined modules that correspond to nodes
in the design plan, listed in the same order in which the originals were created.
BOGART picks the first module in the agenda and refines it, using the rule
recorded in the design plan. Thus the user is spared from choosing which
module to refine next and which rule to apply. The rule is applied as described
in Section 2.2, by matching the "if part” against the module specification, creat-
ing the submodules and interconnections prescribed by the "then part,” and per-
forming constraint propagation.

If the rule condition is not satisfied, BOGART skips over the agenda item and
tries it again on the next cycle, since it is possible for the rule condition to be-
come satisfied by information filled in later by the constraint propagator, based
on subsequent decisions made elsewhere in the design.

2.3.3. Identification of Corresponding Modules

When BOGART replays a step, thereby creating new modules, it uses a
simple correspondence heuristic to identify the original module cormresponding
to each new one. Consider the top step in Figure 2-5, which used the OR-
DECOMP rule to refine COMPARATOR-CELL, binding the rule variables :F
and :G to COMPARATOR-CELL’s submodules F:A0025 and G:AO029, respec-
tively, as shown earlier in Figure 2-3.

When this step is replayed to refine KEY-TEST-UNIT, the OR-DECOMP
rule binds :F and :G to KEY-TEST-UNIT's new submodules I®A(0022 and
G:A0026, respectively. KEY-TEST-UNIT’s output value specification is shown
in Figure 2-6; F:AQ022 computes the second half of this expression, and outputs
its value to G:A0026, as sketched in Figure 2-7.
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KEY-TEST-UNIT
E:Aoozz }—>FG:A0026 |- —

F:A0022 cutputs
(NOT input-1) AND (NOT input-1 when Load was last TRUE)

G:A0026 outputs
G:A0026,, OR (input-1 AND input-2)

Figure 2-7: Result of Replaying the OR-DECOMP step for KEY-TEST-UNIT

As Figure 2-1 shows, BOGART's correspondence heuristic assumes that.a
new module corresponds to an old module if they are createcl‘by the same step in
the design plan and bound to the same rule variable. According to this heur1§t10,
F:A0022 corresponds to F:A0025 and G:A0026 corresponds to G:A9029. Since
F:A0022’s specification, shown in Figure 2-7, resembles F:A0025 s shown in
Figure 2-3, the design plan for F:AQ0025 can be replayed to help mel_ement
F:A0022. Similarly, the design plan for G:A0029 can be replayed to help imple-
ment G:A0026. Thus the heuristic works well in this example.

Table 2-1: BOGART’s Bound-to-same-variable Correspondence Heuristic

Design: :FN1 JFN2 :F.G
COMPARATOR | input-1 AND input-2 (NOT input-1) AND F:A025, G:A0029
(NOT input-2)
(NOT input-1) AND
(MNOT input-1 when

KEY-TEST-UNIT | input-1 AND F:A0022, G:A0026

(input-1 when

Load was fast TRUE) Load was last TRUE}

TRANSPOSED | (NOT input-1) AND input-1 AND F:AD022, G:ADO26
(NOT input-1 when (input-1 when
Load was last TRUE} Load was last TRUE}

However, the "bound-to-same-variable” correspondence heuristic is not infal-
lible. For exampie, suppose the two AND clauses in Figure 2-6 are transposed
as follows:

(NOT input-1) AND (NOT input-1 when Load was last TRUE)
OR (input-1 AND (input-1 when Load was last TRUE))
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Then the result of replaying the OR-DECOMP step is as indicated in Figure 2-8.
F:A0022's specification no longer resembles F:A0025's as closely, so
F:A0025's design plan gives less help in implementing F:A0022. The AND-1Q
step used to decompose F:A0025 (see Figure 2-5) still works, but the rest of the
subplan for F:A0025 cannot be replayed: since F:A0022's output specification
has no NOTs, the NOT-DECOMP steps are no longer applicable. The subplan
for G:A0029 cannot be replayed as far as before, either,

KEY-TEST-UNIT

F:AQ022 [—{G:A0026 |[— {—

F:A0022 outputs input-1 AND (input-1 when Load was Iast TRUE)

G:A0026 outputs G:A0026;, OR
(NOT input-1) AND (NOT input-1 when Load was last TRUE)

Figure 2-8: When the Correspondence Heuristic Fails: Result of
OR-DECOMP for Transposed KEY-TEST-UNIT Specification

2.3.4. Replay of Non-refinement Steps

While BOGART’s correspondence heuristic depends on the top-down decom-
position nature of VEXED’s rules, there are some exceptions. In particular, the
Refinement-Get-Signal rule implements a specified data value by "stealing” it
from a point where it i already computed somewhere else in the circuit. To un-
derstand how much VEXED’s top-down model really restricted BOGART, we
decided to see if we could find a way to replay Get-Signal steps.

It marned out to be easy, but in a restricted sense. When Refinement-Get-
Signal is invoked, it asks the user to identify which signal to "steal.” It then per-
forms a Get-Signal operation that inserts the actual conmection in the circuit
design. More precisely, it refines the module into a wire whose source is the
signal. When BOGART replays a Refinement-Get-Signal step, it simply asks
the same question, and lets the user identify the appropriate signal in the new
circuit. A more sophisticated replay mechanism would auntomatically guess
which new signal corresponded to the old one.
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2.3.5. Results of Replay

The replay cycle repeats until the agenda is empty or none of the items left
can be replayed, because their rule conditions are not satisfied, If a step in the
design plan remains inapplicable, the subplan that stasts with that step is not
replayed, but this does not stop BOGART from replaying other branches of the
design plan.

For the KEY-TEST-UNIT specification, BOGART replays 13 steps of the 15-
step design plan shown in Figure 2-5. The two steps that were not replayable,
shown below the lower boundary in the figure, implemented the two instances
of input-2 in COMPARATORs specification simply as wires. The expression
corresponding to input-2 in KEY-TEST-UNIT’s specification is

(input-1 when 1oad was last TRUE)

This expression does not satisfy the "if" part of WIRE-RULE; it must be im-
plemented as a memory rather than a simple wire, Even though the user asked
BOGART to replay the entire COMPARATOR-CELL design plan, BOGART
refrains from replaying steps that are no longer applicable. If the specification
of KEY-TEST-UNIT is transposed as discussed above, BOGART replays only 9
of the 15 steps, down to the upper boundary in Figure 2-5.

After BOGART replays as much of the requested portion of the design plan
as it can, the automatic mode ends and VEXFED’s interactive design cycle
resumes. At this point, the design of KEY-TEST-UNIT is not guite completed;
in particular, the storage of input-1 remains to be implemented. The user con-
tinues by choosing another design plan for BOGART to replay, selecting an in-
dividual rule for VEXED to apply, refining a module by hand, or backtracking
to retract decisions whose results turned out to be unsatisfactory. A completed

version of the partial KEY-TEST-UNIT design produced by replay is shown in
Figure 2-9,

2.4. BOW BOGART IS USED

So much for theory; how weli can BOGART assist the design process in prac-
tice? To get a preliminary answer to this question, we subjected BOGART to a
“trial by students.” In Fall 1986, a graduase-level class on "Introduction to VLSI
Systems,” taught by Dr. Don Smith in the Computer Science Department at Rut-
gers, used VEXED and BOGART to design simple circuits. Each team of two
students designed one circuit, with roughly the complexity of a one bit full ad-
der. Without previous designs to replay, the students were restricted to replay-
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Key-Test-Unit

l : output

PEOJON ] [

>}

prO i

o>

Input-1 '

Figure 2-9: Final Circuit Design for KEY-TEST-UNIT

1
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ing portions of their own design. Even with this restriction, they reported find-
ing several uses for replay.

2.4.1. Replicated Designs

The simplest use was for designing replicated structures. Given two modulqs
with identical specifications, students could implement one of them automati-
cally by using BOGART to replay the design p_lan for the other. Although a
simple structure-copying mechanism could achlgve much the same effect,_ it
wouldn’t solve the problem of interfacing the copied structure 10 1ts surrounding
environment, or verifying that the structure satisfies its specification (especially
timing constraints) in that environment.

2.4.2. Design by Analogy

Design by analogy is a generalized form of replication. Although the students
lacked previous design plans to reuse, we t}_wv:zght they might use BQGART to
design part of a circuit by analogy with a similar part of the same circuit. Ap-
parently this kind of "internal analogy” did not arise very qften, partly because
the design plans were so small. We did hear of one unmte'nuqna{ case wher.e the
student tried to use BOGART to replicate a module, but it didn’t work quite as
expected, because the specification for the new module was a transl?osed version
of the old one. BOGART replaved as much of the module’s design plan as it
could, and the student used VEXED to complete the rest. If the stuglent h_ad in-
tentionally used BOGART in this manner, we would certainly call it design by

analogy.

2.4.3. Design Iteration

The most common use of BOGART occurred in conjunction with backtrack-
ing. We added a feature to VEXED’s backtrack mcchanigm to allow' the user to
save (and name) the current design plan before backtracking so tlllat it 'v\‘zoulcl be
available for BOGART to replay. Students found two uses for this facility, con-
sistent with the following derivational model of design iteraticn [8]:

BOGART: AUTOMATED REUSE OF DESIGN PLANS 73

1. Successively refine the design,

2. Decide to modify a previous decision,

3. Save the current design plamn.

4. Backtrack to the decision point and make the modification,
5. Replay the relevant portion of the saved plan.

6. Go back 1o 1 and repeat until satisfied.

One kind of design iteration cccurred when the specification was found to be
flawed. The student would save the current design plan, backtrack to the begin-
ning, fix the specification, and then replay the design plan to salvage whatever
design decisions were still relevant.

Another kind occurred when the student decided to retract a refinement step
in order to try something else, either because it had led to a dead end, or because
the student wanted a better solution. VEXED's backtracking mechanism cannot
retract a refinement step without retracting all subsequent steps, which might
represent a considerable number of decisions on the part of the user. By saving
the design plan before modifying the decision, and then replaying as much as
possible of it afterwards, students avoided having to make the same decisions
over again. A more sophisticated dependency-directed backtracking mechanism
[15, 17, 18} might achieve the same effect more efficiently by eliminating the
expense of re-executing each step, but constraint propagation complicates the
problem of adding such a mechanism to VEXED.

2.4.4. Design Exploration

In theory, BOGART also supports a more systematic form of design explora-
tion. The user could compare alternative designs by developing and evaluating
a (perhaps partial) design, saving its design plan, backtracking to a "crossroads”
in the plan where an altemative strategy seems worth investigating, and trying it.
If the second design proves inferior, the user could restore the first design by
backtracking to the crossroads and replaying the saved plan, Although this
scenario is possible in principle, it is not feasible in practice, becanse VEXED
and BOGART are, like many experimental Al systems, painfully slow: a single
refinement step and the ensuing constraint propagation can take several minutes,
Design exploration might be performed without backtracking if VEXED had &
version management facility for representing more than one design at a time.

Even with such a facility, replay could still help the user develop one design by
borrowing useful ideas from another.
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2.5. EXPERIMENTAL MEASUREMENTS

While our experience with student use of BOGART indicated that they found
it useful, we wanted to test it more systematically, The students’ experience
raised the question of whether BOGART was providing much more than a
simple module-copying faoility. This capability is found in standard circuit
editors but was lacking in VEXED at the time. It is not surprising if replay is
easier than designing from scratch, but is it significantly better than copying?
Also, how does the work performed by BOGART compare with the effort re-
quired to invoke it? How do the relative benefits of copying and replay depend
on the relationship between the old and new designs?

2.5.1. Experimental Methodology

To address these questions, we performed an experiment in which we com-
pared the amount of user effort required using both approaches. To design a
meaningful experiment, we had to define suitable experimental conditions and
measures. This task turned out to be less straightforward than it might at first
appear. It required some simplifying assumptions which we shall now attempt
to make explicit.

2.5.1.1. What to compare

An ideal experiment would measure the "natural” use of copying and replay,
including dead ends and backtracking. However, the results would depend on
the individual user’s familiarity with the problem and the tool. To obtain statis-
tically significant results, one would have to test many different users on dif-
ferent tasks -- an experimental luxury we did not have. Instead, we factored out
these confounding effects by finding the number of decisions required to
produce a correct design without backtracking. Thus the applicability of our
results to predicting the performance of copying and replay in practice depends
on the assumption that their relative usefulness would stay the same when nor-
mal trial and error are added in.

We used the same target design in both cases, to factor out any differences be-
tween copying and replay that might affect the correctness or quality of the
design. Thus our experiment avoided any errors caused by copying a module
for a function it does not correctly perform. Replay prevents such errors by re-
testing rule preconditions. Relying on this feature, we let BOGART decide how

BOGART: AUTOMATED REUSE OF DESIGN PLANS 75

far to replay the plan, rather than choosing leaves ourselves. This mode is the
default, and reflects typical use of BOGART.

. Next, we had to decide exactly what to compare. That is, what design opera-
tions would the user be allowed to perform under the two conditions? For ex-
ample, wl'-xat kind of copying would we provide? To test the usefulness of replay
conservatively, we decided to provide a copy command capable of copying any
mo@u]e. To clarify further the differences between copying and replay, and to
avoid the complications of trying to replay Copy-Module steps, we excluded the
use of gopying when we allowed replay. Thus our experiments compare copy-
ing against replay without copying.

2.5.1.2. How to measure user effort

‘ To measure user effort, we assumed that it is the sum of the effort required to
rhake each decision leading 1o a design. Since BOGART has a well-developed
menu-based graphic interface, each decision corresponds to selecting an item
frr:)m a menu or graphical display. We ignored any other decisions that the user
might be making, such as what to think about next, or where to look on the
screen.

Since some user decisions are harder than others, one would ideally want to
measure the effort required for each one. However, this effort depends on
sever_al irreproducible factors, including differences among individual users, so
we 'dl_d not try to measure it directly. Instead, we estimated the difficulty of a
d'ccmor} according to the number of options available. If the user spends some
time thinking about each option before choosing one, we would expect the
amount of effort involved in a decision to increase with the number of options.
On the other hand, decisions where all the options are familiar can require less
cff.ort, especially if one of them is the normal choice. Also, every decision re-
quires a certain mental effort to process, even if the right choice is obvious, We
ther(?fore classified the various types of decisions as follows, in decreasing order
of difficulty,

Mlarzy options: Decision made when many (over 20) options existed. Ex-
amples:

e Choosing one port out of all those in the circuit, as when choosing a
port from which to obtain a Get-Signal.

e Choosing from a large menu.

F(;w options: Decision made when few (20 or fewer) options existed. Ex-
amples:
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« Selecting a module to refine.
o Selecting a rule to fire.
e Choosing to refine a module by Replay or Copy-Module.

¢ Selecting 2 plan to replay.

Notice that sclecting a module, rule, or plan would become more diff‘icult in a
larger design or knowledge base, but in our experiment there were relatively few

options to choose from. . _
pOne sensible option: Decision made which any user familiar with VEXED

could recognize as the sensible, workable choice. Examples:

¢ Selecting a rule to fire when the only alternatives are poof, unneces-
sarily strange, OT equivalent to the one chosen.

e Connecting inputs to the ports of a module that computes 2 ‘functlon
like AND which is symmetric in its inputs, $0 that 1t doesin’t matter
which input signal is connected to which input port, fI'he need to
hand-wire signals to ports arises when Copy-Module 1s invoked.

Usual option chosen: Decision made that is “al{nost always" made in th1§
context, or could have been made by the machine, with a small cost to correct 1t

if the machine chose poorly. Examples:

¢ Decision to refine the already-chosen module with rules (instead of
by replay).

» Decision to execute the already-chosen rule,

e Decision to connect signals to ports after invoking Copy-Module.

» Decision to wire the only two remaining ports to each other.

e Confirmations (saying "Y" to "Do you really want to do that?"")

e Decision to replay the design plan all the way down to the leaves
(the default) instead of specifying a tenmination point.

No real choice: Decision that could have been made by the machine in t}lis
context if there had been no user, and definitely would have been the right thing
to do. Examples:

e Refining the only unrefined moduie.
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o Invoking the command for selecting a signal to connect to the input
port of a wire created by the Refinement-Get-Signal rule.

Rather than attermnpt to assign arbitrary numerical weights to these different
types of decisions, we report the number of decisions of each type separately.
The total number of mouse clicks constitutes an unweighted measure of effort.

Tt should be noted that this measure is somewhat sensitive to certain decisions
incorporated in the design of VEXED's user interface. In particular, many deci-
sions in the last category could in principle be automated. However, an objec-
tive estimate of user effort required a systematic analysis of all the input the user
actually had to provide, even if we wished that some of it could be eliminated.

As a coarser-grained but less implementation-dependent measure, we also
counted the number of steps in the old and new design plans, and how many of
the latter were performed by replaying the former. Since Refinement-Get-
Signal steps require some user effort to replay, we kept a separate count of them,

2.5.1.3. Choice of benchmark task

To compare replay and copying, we measured the effort required to imple-
ment several variants of a two-bit-wide ALU (arithmetic and logic unit). The
ALU’s actual output value specification in VEXED is shown in Figure 2-10, the
design plan we developed in VEXED is shown in Figure 2-11, and the
schematic for the resulting circuit is shown in Figure 2-12. It computes PLUS,
AND, or OR of its two data inputs DATA-1 and DATA-2, depending on the
value of the 2-bit control input INSTR to the case statement represented by the
(SELECTQ ...) expression. For example, if the value of INSTR is 3, the ALU
computes the logical OR of its two data inputs. VEXED’s specification lan-
guage uses 2 prefix notation similar to the language LISP for easier parsing, but
the details of the notation do not matter here. Suffice it to say that the expres-
sion (DATA-VALUE DATA-1 I) denotes the value of the signal DATA-] at
time I,

We chose this problem for several reasons. First, it is about as large as
VEXED can handle -- 76 transistors. The exact number depends on the im-
plementation of certain components like half-adders and selectors, which are
marked as primitive in VEXED’s knowledge base. By treating these modules as
primitive components whose implementations can be retrieved from a library,
VEXED is able to represent the 2-bit ALU design using only about 25 medules.

Besides the complexity of the ALU, its n-bit-wide character tests the useful-
ness of copying and replay in designing iterated structures. Finally, data-sharing
among the operations tests the ability to replay Get-Signal steps.

A more thorough empirical evaluation might use several diverse design tasks.
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{VALUE
FEATURES
(DATA-VALUE
NTL
(I (RLL I))
(EQUAL (DATA-VALUE OUT I)
{SELECTQ
(DATA-VALUE INSTR T)
{1 {+ (DATA-VALUE DATA-1 I) (DATA-VALUE DATA=2 I1}}}
(2 (AND (DATA-VALUE DATA-1 I) (DATA-VALUE DATA-2Z 1))}
(3 (OR (DATA-VALUE DATA-1 I) (DATA-VALUE DATA-Z I}})
NIL})
NIL)
(ENCODING
NIL
(1 (ALL I))

{EQUAL (ENCODING QUT I)
(INTEGER (WIRES 2}
(BITS 2}
{(FIRST-BIT LSB)

{BIT-ENCODING (BIT (0 LOW} (1 HIGHY) )

NIL}
{TYPE
WIL
(I (ARLL T))
(EQUAL ({TYPE CQUT I) INTEGER) NIL))

Figure 2-10: Specification of a Two-Bit ALU

However, VEXED can only handle small designs, so it is not possible to test
BOGART across any realistic distribution of design tasks. Nonetheless, we con-
sider the ALU task indicative of some of the ways in which replay might be
used. Moreover, we expect that the usefulness of replay would increase with the

size of the design.

2.5.2. Experimental Results

The results of our experiments are summarized in Figures 2-16 and 2-17.
Figure 2-16 compares the total user effort required, with copying versus with
replay, to implement the two-bit ALU from scratch and then to implement four
variations of i, ranging from simply renaming the inputs to doubling the data
width. This figure is intended to facilitate several comparisons of user effort:
designing from scratch versus implementing a specification change; specifica-
tion changes of different kinds; and the usefulness of replay compared to copy-
ing. The fewer decisions required, the less effort required. Figure 2-17 breaks
down user effort into the number of decisions of each type, ranging from the
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Figure 2-11: Design Plan for a 2-bit ALU
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The multiplexer decades a two-bit contrel input to select the PLUS, AND,

or OR of Data-1 and Data-2.
PLUS is computed by four half-adders, each with outputs for Sum and Carry.

AND is taken from the Carry output, which is 1 iff both inputs are 1.
OR is computed by inverting the NOR of the two inputs.

Figure 2-12: Circuit Schematic for the Original 2-bit ALU
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casiest ("no real choice”) to the hardest {"many choices"). Reduced effort is
reflected not only by a reduction in the number of decisions, but also by a shift
from harder to easier types of decisions. We now explain each experiment in
turn.

2.5.2.1. Implement from scratch

In the first part of the experiment, we measured the effort required to design
from scratch the ALU shown in Figure 2-12. It takes only 12 steps (applications
of VEXED rules) to completely refine the ALU specification into a circuit,
Even so, it does provide some opportunity for copying or replay, since the two
bits are computed by similar circuitry, so that one bit (BOOLFN2:A0738 in
Figure 2-11} can be implemented by replaying the plan used for the other
(BOOLFN1:A0734) -- a small example of "intemnal analogy” within one design.
Also, the number of refinement steps does not include the many additional types
of decisions listed in Section 2.5.1.2 that are made in the course of producing a
design.

Results: Even for designing this simple circuit from scratch, replay proved
slightly more useful than copying. As the table shows, it required only 61 total
mouse clicks, instead of 70, because 2 of the 12 steps were replayed. Replay
reduced the number of decisions in three categories, though it did increase one
category by a single click. Of course this difference is neither substantial nor
conclusive, since it is based on a single rather small design.

2.5.2.2. Rename input signals

As a bascline, it makes sense to compare the effort required to reimplement
the identical circuit. In this case, the specification may be unchanged, or the in-
put signals may be renamed. Renaming does not affect Copy-Module, since the
user is responsible for deciding whether the old circuit fits the new specification.
It does not affect BOGART either, because the correspondence heuristic relies
on positional information rather than on the names of the input signals.
However, a replay mechanism that relied on such information would have trou-
ble reimplementing a specification with renamed inputs. )

Results: As before, the circuit takes 12 steps t0 refine, but this time with
much less user effort, since all of them are replayed. However, two of the
replayed steps invoke the Refinement-Get-Signal rule, which requires the user to
specify the signal source. These two many-option decisions are not required by
Copy-Module. On the other hand, Copy-Module requires the user to specify the
correspondence between the ports of the copied circuit and those of the new
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module. Overall, copying and replay come out about even in this case.
Hovaever, it is important to point out that this comparison omits the effort of
deciding whether the old circuit is an appropriate implementation of the new
module. In the case of Copy-Module, the user is entirely responsible for this
decision, while in the case of replay, BOGART checks that each refinement step
is still applicable. This difference could make a substantial difference in the ac-
tual relative effort required.

2.5.2.3. Change functionality to compute NOT instead of OR

To test the effort required to implement a change in specified functionality,
we perturbed the specification so that when the INSTR input is 3, the ALU com-
putes‘the value of (NOT DATA-1) instead of (DATA-1 OR DATA-2). The
resulting design, shown in Figure 2-13, requires a total of 10 refinement steps.

Results: Replacing one of the ALU operations is nearly twice as easy (33
clic.:ks) with replay as implementing the same change using copy (58 clicks), or
as implementing the original circuit from scratch (61 clicks). The number of all

«but the casiest type of decision is roughly halved, because 7 of the 10 design

steps -involved are done by replay (although two of them invoke Refinement-
Get-Signal, which requires some many-option decisions).

2.5.2.4, Introduce memory

To test the effect of further perturbation, we replaced one of the inputs with
an accumulator, still computing (NOT DATA-1) when INSTR is 3. In
VEXED’s specification language, changing the second input signal to the stored
value of the first input is expressed by replacing "DATA-2" with "previous
v‘alue 'of DATA-1." This specification takes 14 refinement steps to implement,
since implementing the memory to store the value of DATA-1 takes 4 additional
steps. The resulting circuit is shown in Figure 2-14.

Results: The combined specification changes cancelled the advantage of
{"eplay relative to copying. Either way, it took about half as many decisions as
implementing the original circuit from scratch. While replay took care of 10 of
the 14 steps needed here (counting two Refinement-Get-Signal steps), copying
did just as well. This is somewhat surprising, since we expected the advantage
of replay over copying to increase with the magnitude of the specification
chz}nge. We attribute the absence of such an advantage to the user effort re-
quired for replaying the Refinement-Get-Signal steps.
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2.5.2.5, Increase data width

! ili i ificatl hanges in the size of
To test BOGART’s ability to implement specification ¢ : :
itera(:ec? structures, we changed the data width of the original ALU spemﬁcaut(l)ln
from 2 bits to 4 bits. In VEXED, this change is e;pressed by changing only the
ENCODING feature of the output value specification:

(ENCODING

NIL

(I (ALL I))

(EQUAL (ENCODING OUT I}

{INTEGER (WIRES 4;

(BITE &) .
FIRST-BIT L
iBIT—ENCODING (BIT {0 LOow) (1 HIGHI)I)))

NIL)
The resulting larger circuit, shown in Figure 2-15, incorporates 20 refinement
i f12. ‘ _
Stel%i?!ﬁi?dgsing BOGART to implement the increase 11 data wu‘i;_h tqok ogyé
about half the effort (35 clicks) as implementing tt}e original s%ecx lce‘lalt;nﬁsmg
barely a quarter of the effort (132 clicks) needed to increase thethata ;:114 D usng
Copy-Module, because all 20 steps were performed }:)y repla)f, thoug gl
invoked the Refinement-Get-Signal rule. The resultmg circuit 1$ nei:ir y o e
large as the original 2-bit version; it uses 144 transistors, and takes abou

modules to represent in VEXED.

2.5.3, Analysis of Results

In each case we tested, using replay to irnplfar{lcnt a spjcc}fic'atlon change \:{f:e}xls
significantly easier than implementing the oqglnal spec1f'1(f‘anon fromdisgriat in;
On average, the number of every type of decision halved; in 1o case
Cre’fa‘}sl?é observation did not hold for copying. Regiac'mg OR w1t‘h .NO”I.' us;ng the:
copy command took about as much effort (58 clicks) as the ongmﬁl grf’:p Tm;;
tation, replacing an input with a memory tOO?( about half as mucl_ (k c 1?: Dn:
and doubling the data width took about twice as much (132 clic 5). on
sequently, using replay required about ‘hz‘ﬂf the effort as copymg,brimg g
anywhere from a quarter as many total decisions to about the same r;l_mtc é o

The power of replay appears to stem from at lea‘st two factors. g}s . lidpm:i’e
ing a step is more robust than copying a module, in the sense th.a;.the qrcuit e
may ssill be appropriate for implementing tl?.e new module, even 1f e I?fmm !
created for the old module is not. If we .thmk of a rule as a function fom &
specification s 10 @ (partial} implementation F(s )., we 5ee t}'xat when an %e g:tr;;e
plementation F(s) is inappropriate for a new specification 5, replay may

to create an acceptable new implementation F (s') = F{s).
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Second, it is sometimes useful to replay the same portion of a design plan
more than once in a single design. This effect is clearest in the datawidth varia-
tion experiment, where alt 20 design steps were performed by using BOGART
to replay a 12-step plan. When BOGART replays a rule that contains a loop for
creating a sequence of n submodules, it replays the same subplan for each new
submodule. If n is greater in the new problem than in the old one, this subplan
will be replayed more than once. While such iterated structures are the clearest
case of repeated replay, even the construction of the initial design illustrates the
point that a design subplan can be useful more than once in the same design: al-
though the design plan for the initial ALU has 12 steps, replay performs two of
them by repeating steps used earlier in the plan. Of course, copying can also
reuse the same part of a design more than once. But the opportunity for repeated
reuse is magnified by the ability of replay to reuse the design plan of one
module to help implement another even when their specifications differ.

Figure 2-17 indicates the few instances where using BOGART required more
decisions of the same type than using Copy-Module. In every case where the

number of decisicns stayed the same or increased, it was traceable to one or both
of the following causes:

¢ BOGART's inability to replay Get-Signal steps completely
automatically. Since Get-Signal does not fit VEXED's top-down
design paradigm, BOGART relies on the user to choose which port
to steal the signal from, This type of decision was the most difficult
one in our experiments, since it requires choosing from among all
the ports in the circuit. Its effect was most pronounced in the case
where DATA-2 was eliminated and the ALU was modified to use
the previous value of DATA-1 instead. This specification change
was implemented by storing DATA-I in an accumulator and using
Get-Signal to share its value with all three operations.

e Inconsequential differences in the user interface. Both copying and
replaying require the user to decide what portion of the old design
to reuse. This decision is of similar difficulty whether the user is
copying or replaying. When copying, the user selects a module
with a single mouse-click from a menu of the names of all modules
in VEXED’s knowledge base, from previous designs as well as the
current one. But the Replay command first asks the user to specify
the circuit name, displays the selected circuit, and then asks the user
to select a module within it. Qur experimental user (Weinrich)
found that the latter method actually made the decision easier, since
it was easier to remember which circuit the desired module was in
than to recognize its name in a long list. However, this difference
was reflected in our summary as requiring an extra decision to
choose which node in the design plan to start replaying from. This
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discrepancy illustrates the fact that our e§timate of decision dif-
ficulty is only approximate. A more precise model of user eff?n
would need to take into account not only the number of options o(xi'
a decision, but the kind of thought required to understand them an
select among them,

In summary, the results of our expcrhner{t support two claims. First, ;slm%
replay can be much easier than reimplementing from sc_ratch. Second, and les
obviously, replay can be much more pOWf':‘I’ful than copying. ' -

In particular, copying an old module is most helpflul in nnplementcllng_ a nl \
module whose specification is identical (ex_cept posslxbly'for rename ]s;gna s),
especially when the medule’s implementation exploxts mgnal—sh_armg erween
different parts. Most of the user effolxt then consists of connecting the proper

i s to the ports of the copied module. ) .
S]glrjlzalcontrast,preplay is most helpful when the specification of the new modul; is
similar but not identical to that of an old module. "I’he user efforF then c.onswt?
of performing steps that are not replayed automatically, namely invocations o
Get-Signal, and performing the additional steps needed to complete the design.

2.6. DISCUSSION

The ability of a replay mechanism to reduce.the burdeq on thg demg{;?r
depends on how well it addresses the five issues 1n£r0‘duced in Section 1. We
now examine how BOGART addresses each of these issues, and the degree to
which its solution is facilitated by VEXED and its underlying model of design
as top-down refinement plus constraint propagation.

2.6.1. Design Acquisition

VEXED’s underlying mode} of design leaves the user two kinds of dec1s1oni93:
which module to refine next, and whic}} .refim‘:ment rule‘ to use. VEXI?1
automatically captures both kinds of decisions m .the design plan it \r;ié:;)(rEls;
Fach step in the plan includes the rule used to refine a module, and
records the order in which the steps were performe;d. _

Recording a design plan is of little use unless it can be replayed in a reason-
able range of situations. VEXED meets this requlrement by recording c;llelms;}clms
in terms of general rules that can easily be replayed in a new context, rather than
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low-level operations like "connect F:AQ025,,, to G:A0029,)" or "draw a wire
from point <489,563> to point <723,894>." Such low-level operations become
meaningless or inappropriate in a new context where modules named F:A0025
and G:A(029 do not exist, or where there are no module ports at <489,563> and
<723,894>. Thus capturing the design plan at an appropriate level of
description makes it replayable in more situations.

To replay refinement steps performed by hand, we use LEAP [5], VEXED’s
"learning apprentice,” to handle the problem of re-expressing manual steps at the
level of general rules. Although LLEAP works, the rules it synthesizes are not
expressed in VEXED’s rule language, which was designed to facilitate writing
rules by hand, but in a simpler language designed to facilitate learning rules
automatically. It was therefore necessary to implement a LEAP-to-VEXED
translator. When the user refines a module by hand, LEAP generalizes the
refinement step into a new rule, and the translator converts it into VEXED's rule
language. The manual step is recorded just as if it had been performed using the
new rule; consequently, it can be replayed just like any other rule. However,
there are two caveats to this account.

First, the manual step is actually recorded by retracting it and then applying
the new rule. This procedure serves to confirm that the new rule has the same
effect as the manual step, but the real reason for it is simply that LEAP is not
fully integrated with VEXED and BOGART, and cannot record the step itself.

Second, we discovered to our surprise that the new rule does not always fully
reproduce the refinement step from which it was learned, The reason is that in
order to learn as general a rule as possible, LEAP drops any details that appear
specific to the example, i.e., are not needed to prove why the refinement step
was correct. These details represent commitments like labelling a module as a
primitive component, or choosing an arbitrary data encoding. Since such details
are needed to create a complete design, we implemented some "residual” rules
that can be used to fill them in. This issue did not arise during BOGARTs trial-
by-students or our comparison experiment, because LEAP is not widely used,
partly because manual refinements require specifying the submodules in a rather
unwieldy language.

While the extra rules enable the user to fill in the details omitted by replay, it
appears conceptually straightforward to fill in these details automatically by ex-
tending LEAP to produce a design plan instead of a single rule. This plan would
combine the general rule with the residual rules needed to fill in the details. It
would then be spliced into the overall design plan so it could be replayed. In
cases where some of the original details (e.g. data encoding) were incompatible
with the new design, only the applicable portion of the learned plan would be
replayed, and any inappropriate residual rules would be skipped. However, this
extension has not been pursued, both because it appears less scientifically im-
portant than other extensions to LEAP, and because its absence has not been a
practical limitation in using BOGART.



92 MOSTOW, BARLEY, AND WEINRICH

2.6.2, Design Retrieval

BOGART relies on the user to decide when replay is relevant and to retrieve a
suitable design plan, although VEXED's circuit-browsing facilities do provide
some help in finding the relevant part of a given design to replay.

The difficulty of the design retrieval problem varies with how replay is used.
For design iteration, the retrieval problem goes away -- the current design plan is
the relevant one. For design by analogy, finding a suitable design to retrieve
from a repository of previous designs requires knowing where to look. How can
designers avoid a time-consuming search through such a repository when
they’ve never seen the relevant entry or can’t remember where to find it? If we
developed a larger database of design plans, we would expect the process of
finding relevant ones to become a bottleneck in using BOGART.

Precedent-finding is an active area of investigation in Al research on
analogy [4]. It is not clear how 1o automate the retrieval of the designs -- or
parts of designs -- most relevant to refining a given module. We expect a good
index to help a great deal, just as it does in a databook. VEXED's taxonomy of
module types (memory, computational, primitive, etc.) suggests the beginnings
of a helpful indexing scheme. A database query mechanism that retrieves all
modules with a given set of features could help the user browse for relevant
designs -- assuming the user can articulate the relevant features and the system
can efficiently find the modules with those features.

2.6.3. Flexible Reuse

Rarely can a previous design be used in its entirety. BOGART makes reuse
more flexible in several ways:

o BOGART reuses the design process (le., a design plan), not the
product of design (e, & specific circuit schematic). Design plans
are more general than their resulting designs: the same design plan
can produce different circuits when applied to different specifica-
tions.

e BOGART allows partial reuse of a design plan. Instead of replay-
ing the top-level design plan for a circuit, the designer can choose to
replay the subplan associated with any module.

e BOGART allows reuse of an abstracted design plan. The designer
can reuse a design plan without replaying it all the way down, and
choose other means to fill out the details. The abstracted plan may
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apply to a wider class of problems. Abstracted pl
in the ARGO system (Chapter 3). plans are also used

* BOGART represents design plans as irees, rather than linear se-
quences, exploiting the hierarchical design structure imposed by the
top-down refinement paradigm. Since different branches can be
repl.ayed to different depths, an additional degree of flexibility is
achieved, in that the user can select any subtree to replay.

The number of replayable subplans is one way to measu ibili
partial reuse. While an n-step linear plan has or};ly nin+1 )g zgitiixégéhgogf
gg}?ty subsequences, 8 VEXED design plan consisting of n steps has ’up to
+n-I non-empty subtrees, depending on its shape. Complete flexibilit
would allow any subset of the steps in a design plan to be replayed. An n—stey
?;a?ah-aik%”-{ non-empty subsets. Of course, not every subset makes sense tg
th};t ri-ﬁne]gpgj{l;i] z:) ;ﬁgl that creates a module makes it difficult to replay a step
BQGART can already replay disjoint subtrees of a design plan, but the user
must mvoke BQ_GART separately on each one, and indicate whiz:h module to
apply it to. lemg BOGART a list of subtrees would let it replay (or try to
replay) an arbitrary subset of the steps in a design plan. Specifying the Zor-
respgnder}ce between modules to be refined and subtrees to be replayed would
be trlchy in cases where a module refined by one subtree must first be created b
replaytr.lg a}noth.er, a_nd hence is non-existent when the list of subtrees is given g
In I_)nnczple, it might appear that the flexibility of being able to replay any (.)f a
cgm‘bmatonz.ﬂ}y large number of subtrees of a design plan would impose a ve
d.xfﬁcult decision on the user who had to choose among them. However, in pra?f
:(f:::c;&;zsa Igl—?evedi?:n?lctl (t)hfat thle user choosesh the root of the subplan to rei:lay but
( replaying as much of it as possible. i ice
snn_ply reﬂe.ct_the_ difficulty of deciding a priori whilc):h lo“};clevz;hclises?glglgfe I?aty
omit, but it is justified if all replayable steps are actually appropriate to replal; ’

2.6.4. Appropriateness of Reuse

When is it appropriate to repl i isti
play a design step? i i
degrees of appropriateness [8]: ¢ en siept We distinguish different

1, The design step is syntacticall
y executable. For example, "connect
F:A0025,,, to G:A0029;," is executable if th st po e
: ere exist port
F:A0025,., and G:AG029, . ports named
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2. Repiaying the step produces a correct result. For example, apply-
ing the OR-DECOMP rule correctly refines any module that
matches its "if" part.

3. Replaying the step leads to a good design. Whether a design
should be considered good is a function of the designer’s goals,
and depends on such factors as layout area, power Tequirements,
and even the time available to do the design {sec {7} and Chapter
9).

BOGART relies on VEXED to guarantee the correctness of replayed steps. A
VEXED rule is written to preserve correctness when applied to any module that
satisfies its "if" part. As we saw earlier, BOGART retests rules when replaying
a design plan, and refrains from replaying steps that are no longer correct in the
new context. VEXED’s constraint propagator, CRITTER (Volume 1, Chapter
83, provides an additional check on correctness by detecting constraint viola-
tions.

BOGART cannot tell whether replaying a step will lead to a good design, be-
cause without knowing the designer’s goals [7], it has no idea what "good" is.
The only goals represented in VEXED's model of the design process are of the
form “refine this module." VEXED does not capture the designer’s rationale for
a design plan in terms of the goals it is intended to achieve, relative to speed,
area, power, heat, cost, yield, etc. When replaying the plan, BOGART does not
even know whether these goals are still in effect. Even if BOGART were given
this knowledge, it would be difficult to ensure that replay would lead to a good
design. Predicting the eventuai consequences of a design decision is a hard task
to automate, although some progress has been made recently (this volume,
Chapter 9).

2.6.5. Correspondence Problem

Section 2.3.3 described BOGART’s heuristic for finding the correspondence
between modules in the old and new designs, and showed how it can fail. This
heuristic constrains the correspondence problem in two ways. First, based on
the top-down refinement model of design, it assumes that the submodules of two
corresponding modules should be put in correspondence with each other, not
with modules elsewhere in the hierarchy. Second, it assumes correspondence
between modules bound to the same rule variable. In practice, this heuristic
seems to work most of the time, but it fails often enough to be worth improving
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on. As we saw, it can be fooled merel i i

y by transposing the ord
module specification. PO roer of elases fn ¢

The purpose of deciding which module in the i

' ling old design corresponds to a
module in th‘e new Qeszgn is to find a suitable subplan for reﬁnin% the new
module, Thxns decision should be sensitive to how far the subplan can be
replayed; the "bound-to-same-variable" heuristic ignores this factor.

SUM-OF-PRODUCTS
|F:A0033]-]G:A0044]— |-

F:A0033 outputs input-1 AND input-2
G:A0044 outputs G:A0044;, OR (input-3 AND input-4)

Figure 2-18: Result of Applying OR-DECOMP to SUM-OF-PRODUCTS

Ip fact, we can view the correspondence problem as a lo i

retrieval problem: given a module to reﬁne,pﬁnd a suitable zﬁ}:);fa?toonr:;?e
Tht? correspondence need not be one-ro-one. For example, consider Figure 2-1%}.
Whl‘Ch shows the result of applying the first step of the COMPARATOR-CELI:
design plan to the specification for a boolean sum-of-products. BOGART’s cor
respondence heuristic identifies F:A0033 with F:A0025 and G:AQ044 wit];
G:A0029. However, F:AQ0033 is less similar to F:A0025 than it is t'o G:A0029’s
submodule F:A0060, whose specified output value is the same as F‘A0633’s It
would_make more sense to refine F:A0033 by replaying the subplan .for F'A0660
(see Figure %—5), even though the same subplan would alsc be used 1o reﬁne one
of G:AOO44_5 submodules, and the subplan for F:AG025 would not be replayed
at al. While th;s broader approach to correspondence-finding may ex )ljoit
repla_y more fully in solving a given design problem, it may be very expensi\l?e to
consider every subplan in a design plan as a candidate for refining each module
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2.7. APPLICATIONS TO OTHER DOMAINS

Since the general idea of replaying design decisions does not appear specific
to circuit design, it makes sense to ask whether BOGART's approgch to replay
could be applied to other design domains as well. So far we have tried two such
domains: mechanical design and algorithm design. The answer seems (o be a
qualified "yes."

2.7.1. Application of BOGART to Mechanical Design

The mechanical design system we investigated was MEET (Chapter 8,
Volume T), which designs rotation transmitters composed of gears, shaft.s, and
belts. MEET is based on the same top-down refinement model of design as
VEXED. In fact, MEET is implemented on top of EVEXED, the doma'm-
independent kemel of VEXED. Thus MEET uses the same modu}e-h‘ke
representation language and constraint propagator as VEXED. Howgver, in-
stead of circuit features like data value, its representation uses mechanical fea-
tures like rotational speed. Similarly, in place of VEXED's knowledge base of
circuit decomposition rules, MEET uses a knowledge base of dec_ompos:gon
rules for mechanical design. Thus it was both enticing and convenient to ffmd
out whether the BOGART approach would work for MEET. In fact, since
MEET was based on the same EVEXED kemel, would the BOGART C(-)de 1t§e1f
work, or did it somehow implicitly depend on properties of the circuit design
domain? .

It turned out that BOGART was indeed abie to replay design plans in ’MEET.
Nonetheless, this capability was of little use. The reason is that VEXEI? § inter-
active top-down refinement model of design, on which B.O‘GAR’I‘ is bas‘ed,
covers only a small part of mechanical design. For example, it is not appropriate
for parametric design tasks, like designing individual gears. MEET was there-
fore augmented with other programs to perform parts of the design process
where this model broke down. For example, DPMED solves parameter ‘de.51.gn
problems by hillclimbing [14]. DPMED selects parameter valu'cs-for primitive
components (like gears) in designs constructed by MEET. Su'rular}y, S'PIKE
helps design geartrains by finding a sequence of stanfiard gear ratios to achieve a
desired rotational speedup or reduction [13]. Whﬂfa BOGAF_{T S:an_replay. a
MEET design plan, including calls to DPMED, this capability is simply ir-
relevant to the bulk of the design problem. . _

In fact, one of the main lessons of MEET is the inefficiency of using a generic
expert "shell" like EVEXED to interpret a domain-specific kn_owledgc base.
While this approach made it possible to implement MEET quickly, the very
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generality of the shell precludes taking full advantage of domain-specific
representations and control strategies. For example, SPIKE designs geartrains
much faster than MEET in part because instead of using a general-purpose
module-based representation, it represents geartrains as simple sequences of
gear ratios, and instead of using a general-purpose constraint propagator, it
simply multiplies the ratios.

2.7.2. Extending BOGART to Heuristic Algorithm Design

The efficiency of specialized synthesis algorithms like SPIKE’s motivated the
creation of the DICGENES project, whose goal is to help automate the develop-
ment of heuristic search algorithms like SPIKE from explicit representations of
domain knowledge, thereby combining the efficiency of the "specialized algo-
rithm" approach with the generality of the "generic shell" approach [11]. To
convert a problem class specification, expressed as a straightforward but in-
efficient generate-and-test algorithm, into an efficient heuristic algorithm for
solving instances of that class, DIOGENES applies a sequence of speedup trans-
formations selected by the user from a catalog of general rules. The problem of
reimplementing the algorithm to incorporate a change in the specification is
therefore analogous to reimplementing a circuit in VEXED when its specifica-
tion is changed. This similarity raised the natural question of whether
BOGART’s replay techniques could be extended to work in DIQGENES.

While BOGART is based on a model of design by top-down refinement,
DIOGENES is based on a less constrained transformational model. The key dif-
ference has to do with the form of rules in VEXED and DIOGENES for trans-
forming specifications into circuits and algorithms, respectively. VEXED is
based on the assumption that a rule refines a single unimplemented module into
one or more interconnected submodules. BOGART exploits this assumption in
its tree-structured representation of design plans, and in its correspondence
heuristic. Each node in the tree corresponds to a module in the circuit. Each
design step expands a leaf of the tree. While a few rules (e.g., Refinement-Get-
Signal) viclate this assumption, BOGART is unable to replay them, at least fully
automatically.

In contrast to VEXED, DIOGENES allows transformation rules that rearrange
previously created structure. DIOGENES represents search algorithms as parse
trees in an object-oriented language of algorithm components like generators
and tests [10]. However, instead of expanding a leaf of this tree, a transfor-
mation in DIOGENES can replace or rearrange any subtree. Therefore, some of
BOGART’s solutions to the replay issues discussed here did not work for
DIOGENES.

Fortunately, we were able to implement a replay mechanism for DIOGENES
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by extending the approach used in BOGART. This mechanism, called XANA
(Greek for "again"), is reported in [12]. While a detailed description of XANA
is outside the scope of this article, it is worth describing in brief how XANA ad-
dresses each of the issues raised here, in order to compare it with BOGART.

Design acquisition: Like BOGART, XANA represents a design step as an
application of a transformation rule chosen from a catalog, For each step,
¥ ANA records the name of the rule, the subtree to which it was applied, and the
new subtree that replaced it. This subtree may contain newly created nodes as
well as copies of nodes in the old subtree. A design plan in DIOGENES en-
codes the dependency structure among steps. Step 2 depends on step 1 if step 1
creates a node accessed by the rule applied in step 2. The directed graph of
dependencies is acylic but not necessarily a tree, and is not isomorphic to the
tree representation of the algorithm itself. Thus DIOGENES lacks VEXED's
one-to-one mapping between modules and design steps.

Design retrieval: Unlike BOGART, which can apply a previous design plan
to a completely new module, XANA assumes that it is being applied to a
modified version of the previous initial specification, That is, XANA assumes it
is being used for design iteration, rather than to solve a completely novel
problem by analogy. Removing this limitation would require providing some
means to identify the correspondence between the oid and new specifications.

Flexibie reuse: XANA can replay any coherent subset of recorded steps,
where "coherent” means that if step 2 depends on step 1, step 1 must be replayed
before step 2. However, it is possible to replay step 1 without step 2. Thus
XANA can replay truncated versions of the design plan, but (unlike BOGART)
must replay starting from one or more (though not necessarily all) of the roots in
the dependency graph. In practice, we try to replay as many steps as possible.

Appropriateness:  Like BOGART, XANA’s appropriateness criterion for
replaying a design step is whether the preconditions of the transformation rule
are still satisfied, However, XANA imposes an additional requircment: it will
not replay a step unless it can find new objects corresponding to all of the old
objects on which the step depends.

Correspondence;  Extending BOGART's "bound-to-same-variable™ cor-
respondence heuristic to work in XANA was probably the trickiest aspect of
developing XANA. BOGART uses a rule variable name to identify a sub-
module -- the jmmediate offspring of a node in the tree of modules that
represents the circuit. XANA extends this idea by using an access path to iden-
tify an algorithm component -- a descendant of a node in the tree of objects that
represents the algorithm. The access path consists of the sequence of labels on
the arcs leading from the node to its descendant. XANA's correspondence
heuristic is defined recursively, as follows. If the old object was part of the in-
itial specification, the corresponding new object is found by starting at the root
that represents the new specification, and traversing the same access path. If the
old object was created by a design step, the corresponding new step is identified,
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and j:hc corresponding new object is found by following the same access path
starting from the root of the subtree created by the step.

A clearer description of XANA involves the details of how it represents
fles1gn plans; see [12]. The main lesson relevant here is that the approach used
in BO(?ART was successfully extended to replay a much broader class of trans-
fonnah'on‘ rules. ‘While XANA is still at an early stage, a preliminary experi-
ment similar to the one described in Section 2.5 showed that XANA replayed
most of the steps that DIOGENES"® user would otherwise have had to repeat.

Thus_ it appears that XANA will be more useful in DIOGENES than BOGART
was in MEET.

2.8. RELATED WORK

Few design-replay systems have been implemented. Derivational analogy [2]
was proposad as a general method for solving problems by patching and replay-
ing the solution plans for similar previous problems. The POPART system [20]
repl;ys program derivations, but records the design plan at the level of structure-
edumg, .rehes on the user to solve the correspondence problem by hand-crafting
descriptions pf the program objects manipulated by each step in the plan, and
tests appropriateness only to the extent of checking syntactic executability., The
REDESIGN systent [16] used a design plan built by hand, but embodied many
of thg ideas later used in VEXED and BOGART, and included some structure-
patching heuristics for modifying a design to fit a modified specification or
Tepair a cpnstrgint violation. The ARGO system for refining VHDL behavioral
specnﬁcatmns into digital circuits (Chapter 3) represented design plans as par-
tially ordered sets of rules, allowed design plans to be abstracted by omitting
lower-level steps, and was used to synthesize circuits containing up to a few
hundred transistors. It was later extended to handle more automatically several

of the issues discussed above (Chapter 3). For a detailed i i
- comparat 1
of these and other systems, see {9], parative analysis
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2.9. CONCLUSION

What conclusions can we draw from our experience with BOGART? First,
although BOGART is an experimental system, it works well enough to be used
by people other than its creator. Students were able to create complete, correct
(though suboptimal) small designs in a few hours the first time they used
VEXED and BOGART, even though they were unfamiliar with VEXED's
specification language and inexperienced in VLSI design,

Despite the limitations of both systems, students found BOGART useful; in
fact, they used BOGART to compensate for VEXED's lack of facilities for
structure-copying and dependency-directed backtracking, We found that a
replay facility can be useful even when simply using it to apply a set of rules
that was already applied elsewhere in the circuit. When the designer is allowed
to save and name design plans at different points during the design process, the
replay facility can help salvage portions of a design that are still applicable after
a change in the specification or the implementation strategy.

Although the lack of a repository of previous designs, the limited time of the
experiment, and the simple nature of their designs left little scope for design-by-
analogy or systematic design exploration, students used BOGART to support a
semi-automatic design iteration cycle based on backtracking, patching the
specification or revising a design decision, and replaying.

To compare the usefulness of copying and replay, we counted the number of
user decisions required to design a small ALU and to implement several
specification changes, ranging from renaming the inputs to modifying the
functionality or the data width. Replay outperformed copying in ali but one
case, by factors ranging to almost 4.

To test the generality of BOGART’s approach, we applied it to two other
design domains. The approach -- in fact, the code itself -- carried over 1o &
mechanical design domain, but failed to help most of the design process because
it didn’t fit BOGART’s underlying model of design as top-down refinement.
We had more success with an algorithm design domain, where we were able to
extend BOGART’s methods to handle a less constrained transformational model
of design, so as to repiay a much broader class of design plans.

Our experience to date supports the hypothesis that even a simple replay
mechanism can automate many of the repetitious aspects of design, freeing
designers to concentrate more on the design problem itself. However, the
development of practical replay tools for realistic applications will require ad-
ditional work on the issues of design acquisition, retrieval, flexibility, ap-
propriateness, and correspondence.
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