
Measurement Based Intelligent Prefetch and Cache Technique in Web

Zheng Zhao, Jie Yang, Song Wang, Gang Zhang, Yantai Shu
Department of Computer Science, Tianjin University, Tianjin 300072, P.R.China

Tel.: +86-22-27404394, Fax: +86-22-27404544
E-mail: zhengzh@tju.edu.cn

Abstract
In Web, users in the same workgroup might have

similar interests and habits. In this paper we study
intelligent proxy techniques for people who use a proxy to
access Web. Our intelligent proxy has two parts: cache and
prefetch.

We researched three replacement policies for proxy
cache: LRU and two variations of LRU. Our simulation
showed that basic LRU produces worst hit rate, while the
other two policies achieve roughly the same results.
Therefore, we choose a mixture of them as our proposed
scheme.

By introducing the prediction algorithm and
threshold algorithm, The proxy can predict which Web files
will be needed in the near future and download some of
them before they are really requested by the user group. We
can get a more accurate probability by running it on the
proxy server than on the client site, when client user has
not visited a file in a Web server often enough.

By implementing the techniques of prefetch and cache
on the proxy server, we can reduce the Web latency
perceived by users and also the total number of access
requests to Web server, thus propose a reasonable way of
decreasing their cost to access the Web for developing
countries.

1. INTRODUCTION

Generally speaking, people working in the same
group may have similar interests and habits. In other words,
it's very likely that the pages they've requested may relate
to each other or even be the same one from the Web.
According to this characteristic, we proposed an intelligent
proxy technique for these people, who access the Web
through a proxy server.

Compared to the existing proxy techniques, our
intelligent proxy has two main distinguishing features.
First, we enhanced the general proxy by adding a prefetch
function to it. The prefetch technique has been used to
combine with the client browser [1], but has never been
implemented in a proxy. The proxy, being exposed to the
Web accesses of multiple users who have similar interests,
has the potential to predict more accurately which pages a
user might access next, thus it can prefetch those pages to
the user's machine on behalf of the user. Second, we made

some improvements on the cache replacement algorithm of
the general proxies, which usually use simple FIFO or pure
LRU (Least Recently Used) algorithm. We use a variant of
LRU algorithm, which achieved a much higher hit rate in
the limited cache space.

In this paper, we first analysis group interests
distribution, then we design our cache algorithm to be used
on the proxy and investigate an approach to reduce the
user-perceived latency — by prefetch from the Web server
to the proxy. In the last section, we present the
implementation scheme of our intelligent proxy server.

2. THE ANALYSIS OF GROUP INTERESTS

DISTRIBUTION

We assume that members in one group may have
similar interests and will access the Web for similar pages.
To analyses this situation we have studied three different
groups for their Web access traces. In studying the log files
of three months, we count statistical data for all the visited
URLs and their frequencies. We define

countaccesspagesall

countaccesspagespecified
Qn =

pagesaccessofcounttotal

Qspecifiedhavingcountpage
P n

n =

∑
>

=
nn qQ

nn PX

The relation between nX and nQ is shown in Figure 1.

Figure 1: Distribution of group interests

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Q n (%)

X
n

 (
%

)

The figure can be used to determine the similarity of
the group. In this figure, we have observed that Xn (qn =5%)
of the three groups are 10%~20%, which denotes that
group users have enough similarity.

3. IMPROVEMENT TO CACHE ALGORITHM

If a document is cached when it is accessed first time
by a user, it will be retrieved more efficiently on
subsequent accesses by the same user or by the same group
members. A caching proxy does a difficult job. First, in
order to have a cache hit, the same document has to be
either requested by one user twice or more, or be requested
by two or more users. Second, since most web browsers
today have a built-in cache, a user is unlikely to request a
single document twice in its life cycle. Thus the cache
proxy can only have a hit when two or more users request
the same document. This reduces the fraction of requests
that the proxy can satisfy from its cache, known as the "hit
rate".

How effective could a caching proxy ever be? We
first simulate a proxy server with unlimited disk space, so
that cached documents are never deleted due to space
limitations. This gives an upper bound on the hit rate a real
proxy server can ever achieve. The simulation input was
gathered from several traces of all Web accesses during 3
months. We observed 30-50% hit rate. We then considered
the situation when we have only limited disk space. Some
files have to be replaced due to space limitations. Three
replacement policies were examined: LRU and two
variations of LRU.

Our simulation showed that basic LRU produces
worst hit rate, while LRU-MIN and LRU-THOLD [2]
achieve roughly the same results. So we choose a mixture
of LRU-MIN and LRU-THOLD as our proposed cache
scheme.

3.1. Cache Replacement Policy
Suppose that the size of an incoming request

document is S, and the file is not in the cache.

3.1.1. LRU Policy

Classic least recently used: When the free space in
the cache is smaller than S, repeat the following until the
free space is at least S: replace the LRU document. (LRU
may discard many small documents to make room for one
large document.)

3.1.2. LRU-MIN Policy

A variant of LRU that tries to minimize the number
of documents replace: Let L and T denote, respectively, a
list and an integer. (1) Set T to S. (2) Set L to all documents
equal to or larger than T. (L may be null.) (3) Remove the

LRU documents of list L until the list is empty, or the free
cache space is at least T. (4) If the free cache space is not at
least S, set T to T/2 and goto (2).

3.1.3. LRU-THOLD Policy

A variant of LRU can avoid the situation in which a
document that is large compared to the cache size causes
replacement of a large number of smaller documents. This
policy is identical to LRU, except that no document larger
than a threshold size is cached. (Even if the cache still has
room.)

3.2. Simulation Results

We compared document replacement policies LRU,
LRU-MIN and LRU-THOLD, to identify which
maximizes hit rate and minimizes disk size required for the
cache. The results are in Table 1.

Table 1: Comparison of three cache replacement policies

Hit Rate

(%)

Cache Size

(Mbytes)

Lifetime

(Hours)

Min Max Min Max Min Max

LRU 23.8 26.4 22.9 61.4 1.3 15

LRU-M 27.4 40.8 23.0 62.8 2.8 47.3

LRU-T 29.5 32.9 14.8 26.2 7.2 151.6

In this table, given an infinite disk space we
confirmed that a caching proxy has an upper bound of 30-
50% in its hit rate as described in the reference [3]. In no
case did LRU outperform the other replacement policies in
Table 1. Given that the optimal threshold for LRU-
THOLD is a function of the workload and the ratio of the
disk size available for the cache compared to the cache size
needed for no replacement, LRU-MIN is the best policy. It
requires no parameters and achieves the best performance
most of the time. On the other hand, LRU-THOLD
achieves dramatically smaller cache sizes with a small
penalty in hit rate compared to LRU-MIN, thus LRU-
THOLD is recommended when disk size is limited
compared to the cache size required for no replacement.
Finally, the lifetime reported in the table shows that a
document stays in the cache for greatly varying times —
as much as ten times longer for LRU-THOLD compared to
LRU. The short lifetimes for LRU might explain why its
hit rates are never higher than the other policies:
documents are replaced too frequently.

Therefore we decide to use the adaptive policy: use
LRU-MIN until the cache size approached 100% of the
available disk size and then change to LRU-THOLD with a
threshold that is gradually reduced until the cache size
reaches a low water mark.

4. THE PREDICTION ALGORITHM

The prediction algorithms in this study observe
information collected from past accesses from all the users
to predict what each user might access next. The proxy
needs to log all HTTP requests of the users and adapts its
prefetch activity based on them. In our scheme, the proxy
is required to maintain two kinds of counters, the page
counters and the link counters, to keep track of each user's
access history. Each page A is associated with a page
counter CA. In addition, if page B can be accessed directly
from page A, in other words, there exists a hyperlink of B
on page A, then we use counter C(A,B) to denote this link.
Whenever page A is accessed, the counter CA is increased
by one. Similarly, the counter C(A,B) is also increased by one,
if page B is accessed by clicking on the corresponding link
on page A. The cumulative value of counter CA and C(A,B)

can be achieved by adding up each user's CA and C(A,B)

respectively.

We use conditional probability P(B|A) to denote the
probability of "a user is to access page B right after he or
she accesses page A". Therefore, the personal access
probability is obtained in the following way. When a page
A is being viewed by the user, for each page Bi linked to A,
the access probability of Bi is computed as P(Bi|A) =
C(Bi,A)/CA.

As described above, the group using the proxy has
very similar interests. Therefore, the definition of group
access probability has significant meaning in the proxy-
based prediction algorithm. Assuming there are k members
in the group, the group access probability of Bi is defined
as

∑

∑

=

==
k

j

j
A

k

j

j
BA

i

C

C

ABP
j

1

1
),(

)|(

where j
AC denotes the jth group member's CA.

We have three choices to define our final used access
probability. The first one is to use personal access
probability pu. It is known that the accuracy of prediction is
closely related to personal interests, which is well
indicated by this probability. However, when the user's
Web access history information is rather scant, the
probability may not really reflect his or her real interests.
The second choice is to use the group access probability pg.
Just as the group has some common interests, the
accumulative data can represent the popularity of the pages
over the group members. Therefore, this probability may
reflect the user's interests to a certain extent, especially, the
more similar the group members' interests are, and the
better this probability fits. Last but not the least, we
introduce the third choice, which we have adopted in this
paper, integrating the advantages of first two choices. By
introducing a weight β, here we present the integrated
access probability as

p = β pu + (1 - β) pg (1)

where 0< β <1. We can emphasize the personal data or
group data by adjusting the value of β.

5. THE THRESHOLD MODULE

Our threshold algorithm is based on that described by
Zhimei Jiang [1]. However, there are a few noteworthy
differences. First, their scheme was designed for use by a
single user to prefetch files on the Web, in which the
prefetch engine was located on the user's local machine.
Our model is to put the prefetch engine on the proxy server,
taking advantage of the accumulative data collected on the
proxy to achieve a better prediction result. Therefore, our
threshold algorithm is designed for users in a group, who
share the same proxy server. Second, by adjusting the
parameter β, we can obtain their results as a limit case of
our algorithm; that is to say, our model has a wider
application in some senses.

In order to get a better tradeoff between system
resource usage and latency, our prefetch strategy first
predicts which files are likely to be needed soon and
chooses some of them to download beforehand. The first
part of this task is accomplished by the prediction module
that we discuss in the last section. In the threshold module,
we determine the prefetch threshold for the Web server in
real time to determine which files to prefetch.

We use the term cost to measure the system
performance, which is comprised of the delay cost (αT

$/time unit) and the system resource cost (αB $/time unit).
The delay cost indicates how valuable the time is to the
user. The system resource cost includes the cost of
processing the packets at the end nodes and that of
transmitting them from the source to the destination. In this
section, we study how to determine which files to prefetch
in order to minimize the average cost of requesting a file
for several system models.

5.1 The cost function C

For a given system, let λ be the arrival rate of user
requests for pages when no prefetch is applies. We assume
that prefetch does not affect the user's behavior regarding
the likelihood of accessed pages. In other words, when
prefetch is employed, users still issue requests at rate λ in
the same pattern, although they can get some pages faster
due to prefetch. Let the arrival rate of normal requests and
prefetch requests are λ1 and λ2 respectively. Hence the rate
at which user requests are satisfied by the prefetched files
is λ - λ1, which is simple pλ2 because prefetched pages are
eventually requested by the user with probability p, where
p is the access probability of the prefetched pages. Thus

λ1 + pλ2 = λ, or
λ1 + λ2 = λ + (1 - p) λ2 (2)

In a Round-Robin processor-sharing system, the
average response time for requests requiring an average of

x time units of processing is

)1(1 ρρ −
=

−
=

b

sx
t (3)

where ρ is the system load, s is the average file size, and b
is the system capacity. For the system shown in Figure 2, ρ
= s (λ1 + λ2) / b. Therefore, the cost of a normal request,
which is the sum of the system resource cost and the delay
cost, becomes

)(
 c

21
1 λλ

αααα
+−

⋅+⋅=⋅+⋅=
b

s
sts TBTB

(4)

Figure 2: The prefetch system model

We can see that in the above equation, as more files
are prefetched, the cost of normal requests increases
because prefetch increases the system load, which will
increase the delay of retrieving files.

The average cost of a prefetched request is
sc B ⋅= α2

(5)

We obtain the final average function of cost as
follows:

λ
λλ 2211 cc

C
⋅+⋅

=

}
])1([

)(
])1({[

2

2
2 spb

p
p

s T
B λλ

αλλ
αλλ

λ −+−
−

+−+= (6)

Put (1) into (6), we obtain our objective cost function.

}
]] p) -(1 - p 1[[

])p) -(1 + p([

]])p -(1 - p1[{[

2gu

2gu

2gu

sb

s
C

T

B

λββλ

αλββλ

αλββλ
λ

⋅−+−

⋅⋅−
+

⋅−+=
(7)

5.2 The optimum value of the prefetch rate λ2

Let's assume the value of p and λ are known, we wish
to find at which point of λ2, the average request cost in the
system can get its minimized value. From the equation (7),
we take the second order derivative of C with respect to λ2,
and obtain

]
))))1(1(((

))1(1))()1(((
[

2
3

2

2

2
2

2

gu

guguT

ppsb

ppppbss

d

Cd

ββλλ

ββββλα

λλ −−−+−

−−−−+−
= (8)

The prerequisite of a system to be stable is that λ1 + λ2

must be less than b/s, that is to say
s (λ + (1 – β pu - (1 - β) pg)λ2) < b
Therefore, as long as λs < b (β pu+(1 - β) pg), the

value of (8) will definitely below the zero.
It implies if λs < b (β pu+(1 - β) pg), the equation (7)

will get its maximum value at the zero point of
2λd

dC .

Therefore, we can get the critical value λ2', which is

)
))1(1(

)))1(((
(

))1(1(

1
'2

guB

guT

gu pp

sppb
sb

pps ββα

λββα
λ

ββ
λ

−−−

−−+
−−

−−−
=

(9)

Since function (7) is maximized at λ2', where
2λd

dC = 0 for

b (β pu+(1 - β) pg) <λs, it follows that the cost decreases as
λ2 increases for λ2 > λ2'. Specifically, if λ2' ≤ 0 for the
given p, λ, and r (=αT/αB), then for any λ2 in the range of
[0,λ/p], the higher the λ2, i.e. the more that files with access
probability p are prefetched, the lower the cost is. Thus, for
the given p, λ, and r, if λ2' <0, then prefetch all the files
with access probability p will minimize the cost.

5.3 The prefetch threshold H
Let us now find the prefetch threshold H such that the

cost can be minimized by prefetch all the files with access
probabilities p, for p greater than H. From equation (9), we
obtain that λ2' 0≤ if and only if

rb

r
pp gu +−

−
−≥−+

2)1(

)1(
1))1((

ρ
ρ

ββ
 (10)

where ρ=λs / b. We then set the prefetch threshold to be

rb

r
H

+−
−

−=
2)1(

)1(
1

ρ
ρ (11)

Equation (10) shows that if the access probability p is
greater than or equal to the threshold H, then λ2'

0≤ according to (9). Moreover, following our previous
analysis, this implies that prefetch all the files with access
probability p minimize the cost, for p H≥ . The threshold
H is plotted in Figure 3 as a function of system utilization ρ
for several different values of r.

Figure 3: Prefetch threshold H as a function of utilization
for different value of r.

Figure 3 shows that as system load ρ increases, the
prefetch threshold tends to increase as well, which means
that fewer files should be prefetched. But the increase is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

P
re

fe
tc

h
T

hr
es

ho
ld

 H

r=5

r=10
r=20

r=50
r=100
r=200

r=500

Prefetch requests λ2

S

Normal requests λ1

Processor sharing

not monotonic for small values of r. The reason is, in those
cases, when the load is low, prefetch does not save much
time. As the load increases, it takes longer to transmit files
and prefetch can save more time, thus the threshold
decrease. As the load continues to increase, prefetch files
will add relatively long delay to the normal user requests,
so the threshold needs to be increased again.

In determining the prefetch threshold, we should also
take into consideration other network performance
parameters, such as Web server load, number of routers in
the end-to-end connection, bandwidth of links between
routers and volume of traffic on each router. With the aid of
some existing measurement software, we can obtain the
accurate value of these data.

Here we use Response-time as composite index of
network performance. We introduce a network
performance factor fn. The new threshold HR is obtained by
the following function:

HfH nR ⋅= (12)

The relationship between Response-time and fn is
shown in Table 2, which is determined by the thousands of
measurement. Our results showed that settings in the table
could achieve optimized effects.

Table 2: Relationship of Response-time and network
performance factor fn

Response
Time
(ms)

<100
100-
300

300-
500

500-
1000

>1000

fn 0.8 0.9 1 1.1 1.2

6. IMPLEMENTATION OF INTELLIGENT PROXY

Conceptually, a proxy server transfers characters
between the clients’ network application and the remote
web servers. To provide a full-duplex connection between
them, a proxy server must wait for and read data from two
sides. Because the proxy cannot know which source of data
will become available first, it cannot block indefinitely
waiting for input from one of the two sources without also
checking for input from the other.

The proxy server should be used for a group of people
and an iterative implementation can perform poorly
because it requires a given client to wait while it handles all
prior requests. And the prefetch function will increase the
response time for multiple users. A concurrent
implementation avoids long delays because it dose not
allow a single client to hold all resources. Finally,
concurrency can help designer separate control and
processing from normal input and output. Thus, we choose
the concurrent and connection-oriented implementation
for better-observed response.

We employ multithread method to realize such target.
We have two main threads: one to read and manipulate

console commands and the other to accept clients
connecting request. When a client send requests, the server
begin two new threads for every client, one for transferring
data from the web server to the clients and the other for
transferring data reverse direction. The proxy server
responses as soon as possible whenever data is available on
either end.

The prefetch function includes three main parts: the
management of prefetched files, the interaction of prefetch
threads and normal fetching threads, and prefetch
algorithm. In order to control all the threads, we design
global structure links to control all prefetch threads and
other threads. Every user has one link. The link node is
called as “Control Node”. Each thread has one Control
Node. A Control Node includes data fields to record
threads’ status and properties. It also has data fields for
signals in order to deal with multithread synchronization
and mutual exclusion.

In the next section we discuss the details of our
implementation.

6.1 The computation of predictive access
probability:

In order to compute the final used accessed probability
in formula (1) we have to record all the access history for
every user’s personal counters and group counters as well.
Using all these data, we can get the personal access
probability and the access probability of the special group.
As to the weight , we choose an adaptive method to
determine it. When one special user uses the proxy for
longer time, we can get enough historical data to predict
for him. That means the weight will be increased slowly.
We choose the following steps to determine the weight,
and the steps are proved effective in practice. In following,
we use Cu to denote the access frequency for a special page
of one single user and use Cg for the collective access
frequency of group.

<<

>

><

=

−

−

10010,
10

tan
2

10,
10

tan
2

10010,

1

1

g
g

u
u

gu
g

u

CandC
C

C
C

CandC
C

C

π

π
β

When Cu is less than 10 and Cg is more than 100, the
group access probability will take the significant part in the
final probability. If Cu is less than 10 and Cg is also less than
100, we consider that using Cg is more accurate. This
situation will vanish when the proxy server is used.

6.2 The modification of computed HR

In formula (12) we get the threshold HR for predictive

purpose. In practice, we have to include the influence of
computer performance. We must take into account the
number of concurrent multithreads, memory used and
other network performance parameters.

To enhance the proxy server’s whole performance, we
arrange the threads to several ranks having different
processing privilege. All the normal fetching threads have
the highest level privilege and the prefetch threads have
lower privilege sorted according to the access probability.
The privilege will induce a bias in manipulation of
perspective prefetch acts.

When the CPU is rather busy to deal with clients’
normal requests, we have to reduce prefetch threads. So in
practice we modify the threshold HR to a little higher as
follows: UHHH RR **1.0' += . The U is defined as the

utilization of computer resource and can be computed
approximately using a given number dividing the number
of current threads. In our realization, we use a computer
with Intel Pentium II 350, 128M RAM and 6.3G HD as a
proxy server for 20 users. We set the given number to 500.
In practice, the number of threads existed generally is less
than 150 and the clients are satisfied with the response
time.

Figure 4 is the logic diagram of our prefetch proxy
server.

Figure 4: The implementation of intelligent proxy server

7. CONCLUSION

The Web traffic continues to increase at exponential
rates [4]. Caching documents closer to users reduces the
number of server requests and the traffic associated with
them. Unfortunately, several recent studies suggest that the
maximum hit rate achievable by any caching algorithm is

usually no more than 30% to 50%. The reason is simple:
Most people browse and explore the web, trying to find
new information.

One way to further raise the caching hit ratio is to
anticipate future document requests and prefetch these
documents in a local cache. Thus, successful prefetch plus
cache reduce the web latency observed by users, and lower
both server and network load.

It is known that limited network bandwidth in the
developing countries are the main reason to the Web access
latency perceived by the users. Our intelligent proxy
techniques in the Web can reduce the users' waiting time,
and reduce the total number of access requests to Web
server and network communication cost. One practical
application is for people in developing countries to make
frequent access to the Web servers to obtain technology
and economic information from developed countries.

ACKNOWLEDGMENTS

This research was supported in part by the National
Natural Science Foundation of China (NSFC) under grant
No. 69672031. Here we thank Oliver W. W. Yang,
professor of School of Information Technology and
Engineering at University of Ottawa, who provided useful
comments on a draft of this paper.

REFERENCES:
[1] Zhimei Jiang, “An Adaptive Network Prefetch

Scheme,” IEEE International Conference on
Communications, Part 1 (of 3), vol. 1, June 8-12 1997.

[2] Marc Abrams, Charles R. Standridge, “Caching
Proxies: Limitations and Potentials,”
 http://ei.cs.vt.edu/~succeed/www4/www4.html.

[3] S. Glassman, “A Caching Relay for the World-Wide
Web,” In First International World Wide Web
Conference, pp. 69-76, May 1994.

[4] J. Gwertzman, “Autonomous Replication in Wide-
Area Networks,” Technical Report, Harvard
University, pp. 17-95, 1995.

In Cache, not in
prefetch

Not in both

 Expire

Not Expire

Listening

Consistency
Verify

Waiting for
Web Server

Prefetch
Take-over

Send Data
to Client

Prefetch
chosen link

Prefetch
algorith

Initialization

In Both
Not in cache, in prefetch

Cache and Prefetch File Searching

