
Designing and Implementing
a Dynamic Camera System

Phil Wilkins

Objectives

• Flexible

• Designer driven

• Smooth

• Not require player intervention

• No collision

No collision with the environment. By which I mean that it is up to
the designer to constrain the camera such that it doesn’t go
through walls. Whenever I’ve tried resolving camera collision with
the environment in the past, it’s always introduced pops, or it
gets hung up on geometry. Collision geometry is designed to
constrain the player, not the camera.

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Zoning deals with the use of a spatial database to select cameras,
Dynamics is the calculation of a single dynamic camera
Blending is where we smooth out the transitions between cameras
Rails deals with constraining the camera to a path
and in Fields I’ll present a more advanced way of controlling
Blending

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Zoning : Objectives

• Stationary Cameras

• Chosen by Player Position

• Alone in the Dark

A

B

A

B

Zoning : Design

The game has a spatial database of zones. Each referencing one
or more cameras, although for the moment we’ll just deal with the
case where a zone references a single camera.

A

B

A

B

Zoning : Design

The game has a spatial database of zones. Each referencing one
or more cameras, although for the moment we’ll just deal with the
case where a zone references a single camera.

A

B

A

B

Zoning : Design

The game has a spatial database of zones. Each referencing one
or more cameras, although for the moment we’ll just deal with the
case where a zone references a single camera.

Zoning : Design

A

A

B

B

When the player moves into a zone that references a camera that
isn’t the currently active one, we activate that camera.

This allows us to loosen up the boundaries between cameras. To
add hysteresis to our system, by playing with the boundaries of
the zones.

Zoning : Design

A

A

B

B

When the player moves into a zone that references a camera that
isn’t the currently active one, we activate that camera.

This allows us to loosen up the boundaries between cameras. To
add hysteresis to our system, by playing with the boundaries of
the zones.

Zoning : Design

A

A

B

B

When the player moves into a zone that references a camera that
isn’t the currently active one, we activate that camera.

This allows us to loosen up the boundaries between cameras. To
add hysteresis to our system, by playing with the boundaries of
the zones.

Zoning : Design

A

A

B

B

When the player moves into a zone that references a camera that
isn’t the currently active one, we activate that camera.

This allows us to loosen up the boundaries between cameras. To
add hysteresis to our system, by playing with the boundaries of
the zones.

Zoning : Design

A

A

B

B

When the player moves into a zone that references a camera that
isn’t the currently active one, we activate that camera.

This allows us to loosen up the boundaries between cameras. To
add hysteresis to our system, by playing with the boundaries of
the zones.

Zoning : Design

A

A

B
B

Alternatively we can overlap the zones. In which case, when we
enter the overlap space, we always change to the new camera.

Zoning : Design

A

A

B
B

Alternatively we can overlap the zones. In which case, when we
enter the overlap space, we always change to the new camera.

Zoning : Design

A

A

B
B

Alternatively we can overlap the zones. In which case, when we
enter the overlap space, we always change to the new camera.

Zoning : Design

A

A

B
B

Alternatively we can overlap the zones. In which case, when we
enter the overlap space, we always change to the new camera.

Zoning : Design

A

A

B
B

Alternatively we can overlap the zones. In which case, when we
enter the overlap space, we always change to the new camera.

A

C

B

Zoning : Implementation

So at runtime, each frame, we query the spatial database of
zones, and get back a collection of camera references. Since we
can’t, or don’t want to make too many assumptions about the
zone database, we treat the results as essentially unordered.

Camera A

A

C

B

Zoning : Implementation

So at runtime, each frame, we query the spatial database of
zones, and get back a collection of camera references. Since we
can’t, or don’t want to make too many assumptions about the
zone database, we treat the results as essentially unordered.

Camera C

Camera A

A

C

B

Zoning : Implementation

So at runtime, each frame, we query the spatial database of
zones, and get back a collection of camera references. Since we
can’t, or don’t want to make too many assumptions about the
zone database, we treat the results as essentially unordered.

Camera B

Camera C

Camera A

A

C

B

Zoning : Implementation

So at runtime, each frame, we query the spatial database of
zones, and get back a collection of camera references. Since we
can’t, or don’t want to make too many assumptions about the
zone database, we treat the results as essentially unordered.

Camera B

Camera C

A

C

B

Zoning : Implementation

So at runtime, each frame, we query the spatial database of
zones, and get back a collection of camera references. Since we
can’t, or don’t want to make too many assumptions about the
zone database, we treat the results as essentially unordered.

Camera B

A

C

B

Zoning : Implementation

So at runtime, each frame, we query the spatial database of
zones, and get back a collection of camera references. Since we
can’t, or don’t want to make too many assumptions about the
zone database, we treat the results as essentially unordered.

Camera A

A

C

B

A B C

Zoning : Implementation

A naive implementation would just compare the results from the
query, against the currently active camera, and if there’s a
difference, swap to the new camera. This works fine, unless your
zones overlap.

In this example, when we move from zone A into the overlap
between zones A and C, we start off right, by switching to camera
C,

but next frame, we’re still in the overlap, still getting A and C
back from the query, but now C is the active camera, and A looks

Camera C

Camera A

A

C

B

A B C

Zoning : Implementation

A naive implementation would just compare the results from the
query, against the currently active camera, and if there’s a
difference, swap to the new camera. This works fine, unless your
zones overlap.

In this example, when we move from zone A into the overlap
between zones A and C, we start off right, by switching to camera
C,

but next frame, we’re still in the overlap, still getting A and C
back from the query, but now C is the active camera, and A looks

Camera C

Camera A

A

C

B

A B C

Zoning : Implementation

A naive implementation would just compare the results from the
query, against the currently active camera, and if there’s a
difference, swap to the new camera. This works fine, unless your
zones overlap.

In this example, when we move from zone A into the overlap
between zones A and C, we start off right, by switching to camera
C,

but next frame, we’re still in the overlap, still getting A and C
back from the query, but now C is the active camera, and A looks

Camera C

Camera A

A

C

B

A B C

Zoning : Implementation

A naive implementation would just compare the results from the
query, against the currently active camera, and if there’s a
difference, swap to the new camera. This works fine, unless your
zones overlap.

In this example, when we move from zone A into the overlap
between zones A and C, we start off right, by switching to camera
C,

but next frame, we’re still in the overlap, still getting A and C
back from the query, but now C is the active camera, and A looks

• Submission List

• List of all cameras that were submitted
last frame.

• Used to distinguish newly submitted
cameras from old ones

• New cameras inserted at top

• Effectively sorted by age

Zoning : Implementation

A

A

C

B

A B C

Query
Result

Submission
List

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

A

A

C

B

A B C

Query
Result

Submission
List

A

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

A

A

C

B

A B C

Query
Result

Submission
List

A

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

C

A

A

C

B

A B C

Query
Result

Submission
List

A

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

B

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

B

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

B

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

B

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

B

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

B

C

A

C

B

A B C

Query
Result

Submission
List

A

C

B

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

B

C

A

C

B

A B C

Query
Result

Submission
List

C

B

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

C

A

C

B

A B C

Query
Result

Submission
List

C

B

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

C

A

C

B

A B C

Query
Result

Submission
List

C

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

C

A

C

B

A B C

Query
Result

Submission
List

C

Zoning : Implementation

* Camera A is not in the submission list, so we’ll add it.
* The top item in the submission list has changed, so we’ll switch
to that camera.
* When we move here, we get cameras A and C back from the
query.
* Camera A is already in the submission list, but camera C isn’t,
so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again,
but both are already in the submission list, so we don’t need to
change camera.

Camera A
Priority 1

Camera B
Priority 2

A

B

Zoning : Implementation

Higher priorities always override lower ones.
So in this example, we can see that, whenever the player is in
zone B, camera B is active, because when we’re in the overlap, it
has a higher priority.

Camera A
Priority 1

Camera B
Priority 2

A

B

Zoning : Implementation

Higher priorities always override lower ones.
So in this example, we can see that, whenever the player is in
zone B, camera B is active, because when we’re in the overlap, it
has a higher priority.

Camera A
Priority 1

Camera B
Priority 2

A

B

Zoning : Implementation

Higher priorities always override lower ones.
So in this example, we can see that, whenever the player is in
zone B, camera B is active, because when we’re in the overlap, it
has a higher priority.

Camera A
Priority 1

Camera B
Priority 2

A

B

Zoning : Implementation

Higher priorities always override lower ones.
So in this example, we can see that, whenever the player is in
zone B, camera B is active, because when we’re in the overlap, it
has a higher priority.

Camera A
Priority 1

Camera B
Priority 2

A

B

Zoning : Implementation

Higher priorities always override lower ones.
So in this example, we can see that, whenever the player is in
zone B, camera B is active, because when we’re in the overlap, it
has a higher priority.

Camera A
Priority 1

Camera B
Priority 2

A

B

Zoning : Implementation

Higher priorities always override lower ones.
So in this example, we can see that, whenever the player is in
zone B, camera B is active, because when we’re in the overlap, it
has a higher priority.

A

A

C

B

A B C

Query
Result

Submission
List

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

A

A

C

B

A B C

Query
Result

Submission
List

A

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

A

A

C

B

A B C

Query
Result

Submission
List

A

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

C

A

A

C

B

A B C

Query
Result

Submission
List

A

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

B

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

B

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

B

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

B

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

B

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

B

C

A

C

B

A B C

Query
Result

Submission
List

A

C

B

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

B

C

A

C

B

A B C

Query
Result

Submission
List

C

B

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

C

A

C

B

A B C

Query
Result

Submission
List

C

B

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

C

A

C

B

A B C

Query
Result

Submission
List

C

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

C

A

C

B

A B C

Query
Result

Submission
List

C

Priority 2 2 1

Zoning : Implementation

* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A.
This is because in order to respect priorities, we maintain the
submission list in priority order. So now this time, the top hasn’t
changed, and we don’t change camera.
* when move into zone B
* we insert camera B above camera A, because it’s of equal
priority, and between cameras of equal priority, we want to retain
the behaviour we had before we introduced priorities.

Zoning Implementation
• Submission List

• Insert and delete entries to match
query results

• Unless query result was empty

• Sorted by priority

• Then by age

• Top entry is active camera

the submission list contains the current set of cameras up for
consideration

insert and delete entries to match the current query results,
assuming we got any

If the query was empty, then we hold the previous frames
submissions

Sorted by priority, then age, or rather, by how recently the camera
was submitted

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Dynamics : Objectives

• Control the display of the Player

• Position

• Angle

• Size

So when we talk about dynamics, we’re really talking about
moving and orienting the camera to control certain display
characteristics of the player.

The players position on the screen

The angle that we are looking at them from.

and their size, which is a function of their distance from the
camera, and the Field of View

Dynamics : Design

In order to control the players position on the screen, we define
an area of it, within which it is safe for him to move. Safe to move
without having to move the camera to keep him in that zone.

We define a rectangular space on the screen, known as the Safe
Zone. If we want the player to always be at a particular position,
we can shrink the boundaries down to that point.

This is represented to the designer as a pair of resolution
independent co-ordinates

Dynamics : Design

Next we calculate the angle. We can specify the angle that we’re
viewing the player from as a fixed value. In which case we use the
orientation of the camera in Maya to define that value.

Dynamics : Design

Next we calculate the angle. We can specify the angle that we’re
viewing the player from as a fixed value. In which case we use the
orientation of the camera in Maya to define that value.

Dynamics : Design

Slightly more interesting, is to calculate it relative to a fixed
position in space. Now because each dynamic camera is still
defined by a camera in Maya, we already have a convenient fixed
position. That of the camera node in Maya.

Dynamics : Design

Slightly more interesting, is to calculate it relative to a fixed
position in space. Now because each dynamic camera is still
defined by a camera in Maya, we already have a convenient fixed
position. That of the camera node in Maya.

Dynamics : Design

Slightly more interesting, is to calculate it relative to a fixed
position in space. Now because each dynamic camera is still
defined by a camera in Maya, we already have a convenient fixed
position. That of the camera node in Maya.

Dynamics : Design

Slightly more interesting, is to calculate it relative to a fixed
position in space. Now because each dynamic camera is still
defined by a camera in Maya, we already have a convenient fixed
position. That of the camera node in Maya.

Dynamics : Design

...and we can constrain it to within a fixed range.

Now to specify that range, we again, use the orientation of the
camera node in Maya,

plus or minus a fixed amount defined in the cameras attributes.

Dynamics : Design

...and we can constrain it to within a fixed range.

Now to specify that range, we again, use the orientation of the
camera node in Maya,

plus or minus a fixed amount defined in the cameras attributes.

Dynamics : Design

...and we can constrain it to within a fixed range.

Now to specify that range, we again, use the orientation of the
camera node in Maya,

plus or minus a fixed amount defined in the cameras attributes.

Dynamics : Design

...and we can constrain it to within a fixed range.

Now to specify that range, we again, use the orientation of the
camera node in Maya,

plus or minus a fixed amount defined in the cameras attributes.

Dynamics : Design

...and we can constrain it to within a fixed range.

Now to specify that range, we again, use the orientation of the
camera node in Maya,

plus or minus a fixed amount defined in the cameras attributes.

5 metres

Dynamics : Design

Finally we control the size of the player on screen, by controlling
his distance to it.

The simplest way of specifying this, is to fix it to a set value.

Dynamics : Design

Or we can specify it as a proportion of the distance from the
camera node to the player

With negative values being behind the player, and in those cases,
we automatically turn the camera around, to look back at the
player

1.0 0.5 0.0 -0.5

Dynamics : Design

Or we can specify it as a proportion of the distance from the
camera node to the player

With negative values being behind the player, and in those cases,
we automatically turn the camera around, to look back at the
player

1.0 0.5 0.0 -0.5

Dynamics : Design

Or we can specify it as a proportion of the distance from the
camera node to the player

With negative values being behind the player, and in those cases,
we automatically turn the camera around, to look back at the
player

1.0 0.5 0.0 -0.5

Dynamics : Design

Or we can specify it as a proportion of the distance from the
camera node to the player

With negative values being behind the player, and in those cases,
we automatically turn the camera around, to look back at the
player

Minimum
Maximum

Dynamics : Design

We allow the designer to set a range of valid distances for the
camera.

Ensuring that it never gets too far from, or too close to, the
player.

Similarly to the safe zone, we can collapse these constraints to
represent a fixed distance.

Minimum
Maximum

Dynamics : Design

We allow the designer to set a range of valid distances for the
camera.

Ensuring that it never gets too far from, or too close to, the
player.

Similarly to the safe zone, we can collapse these constraints to
represent a fixed distance.

Dynamics : Implementation

So that’s how we let the designer control the three defining
properties of the camera
the position of the player on screen
the angle we’re looking at him from, or rather, the orientation of
the camera
and his size, or rather, the distance from the camera to the plane
of the target, perpendicular to the look vector

internally we calculate, constrain, and store these as
* the angle from the look vector of the camera, to the target. This
is a 2d diagram, but in 3d this is a pair of angles, from the

Dynamics : Implementation

Angle to
Target

So that’s how we let the designer control the three defining
properties of the camera
the position of the player on screen
the angle we’re looking at him from, or rather, the orientation of
the camera
and his size, or rather, the distance from the camera to the plane
of the target, perpendicular to the look vector

internally we calculate, constrain, and store these as
* the angle from the look vector of the camera, to the target. This
is a 2d diagram, but in 3d this is a pair of angles, from the

Dynamics : Implementation

Angle to
Target

Angle to
World

So that’s how we let the designer control the three defining
properties of the camera
the position of the player on screen
the angle we’re looking at him from, or rather, the orientation of
the camera
and his size, or rather, the distance from the camera to the plane
of the target, perpendicular to the look vector

internally we calculate, constrain, and store these as
* the angle from the look vector of the camera, to the target. This
is a 2d diagram, but in 3d this is a pair of angles, from the

Dynamics : Implementation

Distance
to Target Plane

Angle to
Target

Angle to
World

So that’s how we let the designer control the three defining
properties of the camera
the position of the player on screen
the angle we’re looking at him from, or rather, the orientation of
the camera
and his size, or rather, the distance from the camera to the plane
of the target, perpendicular to the look vector

internally we calculate, constrain, and store these as
* the angle from the look vector of the camera, to the target. This
is a 2d diagram, but in 3d this is a pair of angles, from the

Dynamics : Implementation

Target
Position

Distance
to Target Plane

Angle to
Target

Angle to
World

So that’s how we let the designer control the three defining
properties of the camera
the position of the player on screen
the angle we’re looking at him from, or rather, the orientation of
the camera
and his size, or rather, the distance from the camera to the plane
of the target, perpendicular to the look vector

internally we calculate, constrain, and store these as
* the angle from the look vector of the camera, to the target. This
is a 2d diagram, but in 3d this is a pair of angles, from the

• Calculate Angle from Camera to Target

• Constrain Angle from Camera to Target

• Calculate Angle from Camera to World

• Constrain Angle from Camera to World

• Calculate Distance from Camera to Target Plane

• Constrain Distance from Camera to Target Plane

Dynamics : Implementation

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Blending : Overview

• Timers

• Ease

• Blend Space

Timers, which track and update each blend

Ease, which controls the smoothness of a blend

and Blend Space, where I’ll define what a blend between two
cameras actually does.

Timers : Design

A

A

B

B

when we start a new camera, we don’t cut to it, but blend into it
over a fixed period of time.

Timers : Design

A

A

B

B

when we start a new camera, we don’t cut to it, but blend into it
over a fixed period of time.

Timers : Design

A

A

B

B

when we start a new camera, we don’t cut to it, but blend into it
over a fixed period of time.

Timers : Design

A

A

B

B

And when I say blend, I mean creating a third camera from varying
proportions of two other cameras.

So when we start the second camera, what actually happens is
that a phantom third camera moves from the first camera to the
second. It’s position and orientation determined by a blend of the
two cameras, driven by a timer.

When we move into a zone that references a new camera, as well
as starting that new camera, we also start a timer for it.

Timers : Design

A

A

B

B

And when I say blend, I mean creating a third camera from varying
proportions of two other cameras.

So when we start the second camera, what actually happens is
that a phantom third camera moves from the first camera to the
second. It’s position and orientation determined by a blend of the
two cameras, driven by a timer.

When we move into a zone that references a new camera, as well
as starting that new camera, we also start a timer for it.

Timers : Design

A

A

B

B

And when I say blend, I mean creating a third camera from varying
proportions of two other cameras.

So when we start the second camera, what actually happens is
that a phantom third camera moves from the first camera to the
second. It’s position and orientation determined by a blend of the
two cameras, driven by a timer.

When we move into a zone that references a new camera, as well
as starting that new camera, we also start a timer for it.

• Timer List

• Entry is a camera fading in

• Camera can have multiple timers in list

• FIFO

• New timers inserted at the top

• When a timer completes, all timers below
it are removed

Timers : Implementation

Now if the player is moving between zones, faster than their
cameras fade in, then it’s entirely possible that we’ll be running
multiple timers, simultaneously, so we need to store these timers
in a list.

In fact, you may be fading back into a camera you’re already
fading out of. In these cases you may be tempted to try and
reverse a running timer. I initially tried this, but couldn’t get it to
work smoothly, as you need to correct all the timers between the
two instances.

A

C

B

A B C

Submission
List

Timer
List

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

A

Timer
List

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

A

Timer
List

A 1/1

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

A

Timer
List

A 1/1

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

A

Timer
List

A 1/1

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

A

Timer
List

C 1/3

A 1/1

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

A

Timer
List

C 1/3

A 1/1

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

B

A

C

B

A B C

Submission
List

C

A

Timer
List

C 1/3

A 1/1

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

B

A

C

B

A B C

Submission
List

C

A

Timer
List

A 1/1

C 2/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

B

A

C

B

A B C

Submission
List

C

A

Timer
List

B 1/4

A 1/1

C 2/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

B

A

C

B

A B C

Submission
List

C

Timer
List

B 1/4

A 1/1

C 2/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

B

A

C

B

A B C

Submission
List

C

Timer
List

A 1/1

C 3/3

B 2/4

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

B

A

C

B

A B C

Submission
List

C

Timer
List

C 3/3

B 2/4

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

Timer
List

C 3/3

B 2/4

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

Timer
List

C 3/3

B 3/4

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

C 1/3

A

C

B

A B C

Submission
List

C

Timer
List

C 3/3

B 3/4

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

Timer
List

C 3/3

B 4/4

C 2/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

Timer
List

B 4/4

C 2/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

Timer
List

B 4/4

C 3/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

Timer
List

C 3/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

A

C

B

A B C

Submission
List

C

Timer
List

C 3/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of
the submission list, and the top of the timer list should be the
same camera. This is the active camera. The camera that we
would cut to if we weren’t fading it in.

zone a -> top of submission list -> starts new timer, timer list is
empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is
now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a
blend of a,b and c

C 1/3

Timer
List

B 3/4

C 3/3

Timers : Implementation

So that’s how we maintain the timers, but how does this affect the
actual blend of cameras we want?

Lets look at one of those blends in detail. I this case we have two
entries for camera c, because we moved out of it’s zone, and back
into it before the camera in-between, camera b, finished fading
in.

We start with the oldest camera, and blend the next one in, using
camera b’s timer to define the proportion of camera b to use. So
in this case, it’s 3 seconds in, out of a total of 4, so that’s three

C 1/3

Timer
List

B 3/4

C 3/3

3/4

Timers : Implementation

So that’s how we maintain the timers, but how does this affect the
actual blend of cameras we want?

Lets look at one of those blends in detail. I this case we have two
entries for camera c, because we moved out of it’s zone, and back
into it before the camera in-between, camera b, finished fading
in.

We start with the oldest camera, and blend the next one in, using
camera b’s timer to define the proportion of camera b to use. So
in this case, it’s 3 seconds in, out of a total of 4, so that’s three

C 1/3

Timer
List

B 3/4

C 3/3

3/4 3/4 B + 1/4 C

Timers : Implementation

So that’s how we maintain the timers, but how does this affect the
actual blend of cameras we want?

Lets look at one of those blends in detail. I this case we have two
entries for camera c, because we moved out of it’s zone, and back
into it before the camera in-between, camera b, finished fading
in.

We start with the oldest camera, and blend the next one in, using
camera b’s timer to define the proportion of camera b to use. So
in this case, it’s 3 seconds in, out of a total of 4, so that’s three

C 1/3

Timer
List

B 3/4

C 3/3

3/4 3/4 B + 1/4 C

1/3

Timers : Implementation

So that’s how we maintain the timers, but how does this affect the
actual blend of cameras we want?

Lets look at one of those blends in detail. I this case we have two
entries for camera c, because we moved out of it’s zone, and back
into it before the camera in-between, camera b, finished fading
in.

We start with the oldest camera, and blend the next one in, using
camera b’s timer to define the proportion of camera b to use. So
in this case, it’s 3 seconds in, out of a total of 4, so that’s three

C 1/3

Timer
List

B 3/4

C 3/3

3/4 3/4 B + 1/4 C

1/3 C + 2/3 (3/4 B + 1/4 C)1/3

Timers : Implementation

So that’s how we maintain the timers, but how does this affect the
actual blend of cameras we want?

Lets look at one of those blends in detail. I this case we have two
entries for camera c, because we moved out of it’s zone, and back
into it before the camera in-between, camera b, finished fading
in.

We start with the oldest camera, and blend the next one in, using
camera b’s timer to define the proportion of camera b to use. So
in this case, it’s 3 seconds in, out of a total of 4, so that’s three

C 1/3

Timer
List

B 3/4

C 3/3

3/4 3/4 B + 1/4 C

1/3 1/2 B + 1/2 C

Timers : Implementation

So that’s how we maintain the timers, but how does this affect the
actual blend of cameras we want?

Lets look at one of those blends in detail. I this case we have two
entries for camera c, because we moved out of it’s zone, and back
into it before the camera in-between, camera b, finished fading
in.

We start with the oldest camera, and blend the next one in, using
camera b’s timer to define the proportion of camera b to use. So
in this case, it’s 3 seconds in, out of a total of 4, so that’s three

Ease : Design

The trouble with using the timers raw, is that you get these simple
linear blends. You can see the sharp corners here, and when you
use them to blend cameras, you can see the jerk as it starts to
move, and again when it stops. While sometimes this is desirable,
mostly it’s just ugly.

What we want, is to add what animators call ease.

To do this, we feed the linear blend, into a spline.

Ease : Design

The trouble with using the timers raw, is that you get these simple
linear blends. You can see the sharp corners here, and when you
use them to blend cameras, you can see the jerk as it starts to
move, and again when it stops. While sometimes this is desirable,
mostly it’s just ugly.

What we want, is to add what animators call ease.

To do this, we feed the linear blend, into a spline.

Ease : Implementation

• Hermite Spline

• Fixed endpoints at 0 & 1

• Controllable tangents

• ease = 1 - tangent

• Ease in and out

Specifically a Hermite spline, which lets you control the position
and tangent of the endpoints of the curve.

We fix the endpoints at 0 and 1, and map the tangents into a
range that makes sense as an ‘ease’ control.

With 1 representing full ease, 0 no ease, or linear, and -1 giving
us negative ease, for those special times when you need a really
harsh blend.

We allow the designer to control ease in and out separately.

B 3/4

C 3/3

3/4

Ease : Implementation

We apply ease when we calculate the blend factor between two
cameras.

We take the timer, and feed it into the ease function, which just
evaluates the hermite, taking ease in and out values from the new
camera.

B 3/4

C 3/3

Ease (3/4, B.EaseIn, B.EaseOut)

Ease : Implementation

We apply ease when we calculate the blend factor between two
cameras.

We take the timer, and feed it into the ease function, which just
evaluates the hermite, taking ease in and out values from the new
camera.

Blend Space : Design

Blend Space : Design

Blend Space : Design

Blend Space : Design

Blend Space : Design

Blend Space : Design

Blend Space : Design

Blend Space : Design

Blend Space : Design

Distance
to Target Plane

Angle to
Target

Angle to
World

Blend Space : Implementation

In fact, what we do, is to blend the values we calculated during
the dynamics phase. The position, size, and orientation of the
player in screen space. Represented by the angle to the world, the
angle to the target, and the distance to the target plane.

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Rails : Objectives

So in order to deal with this, we borrow an idea from the film
industry. One of their solutions to this problem, is to construct
rails, and put the camera on a little cart, known as a Dolly, that
rides on the rails.

Rails : Design

Now for us, the rail is spline, specifically a NURB, constructed in
Maya.

And the Dolly is a point on that spline, represented by the
parametric value of the spline at that point.

Rails : Design

Now for us, the rail is spline, specifically a NURB, constructed in
Maya.

And the Dolly is a point on that spline, represented by the
parametric value of the spline at that point.

Rails : Design

Now for us, the rail is spline, specifically a NURB, constructed in
Maya.

And the Dolly is a point on that spline, represented by the
parametric value of the spline at that point.

Rails : Design

So we have rail, we have a dolly on that rail, and we have the
camera sitting on the dolly.

What we want to do, is only move the dolly by enough to keep the
player within the constraints defined by the camera.

The player is free to move within the constraints, but when he
tries to move outside them, the dolly moves to compensate as
best it can.

Rails : Design

So we have rail, we have a dolly on that rail, and we have the
camera sitting on the dolly.

What we want to do, is only move the dolly by enough to keep the
player within the constraints defined by the camera.

The player is free to move within the constraints, but when he
tries to move outside them, the dolly moves to compensate as
best it can.

Rails : Design

So we have rail, we have a dolly on that rail, and we have the
camera sitting on the dolly.

What we want to do, is only move the dolly by enough to keep the
player within the constraints defined by the camera.

The player is free to move within the constraints, but when he
tries to move outside them, the dolly moves to compensate as
best it can.

Rails : Design

So we have rail, we have a dolly on that rail, and we have the
camera sitting on the dolly.

What we want to do, is only move the dolly by enough to keep the
player within the constraints defined by the camera.

The player is free to move within the constraints, but when he
tries to move outside them, the dolly moves to compensate as
best it can.

Rails : Design

So we have rail, we have a dolly on that rail, and we have the
camera sitting on the dolly.

What we want to do, is only move the dolly by enough to keep the
player within the constraints defined by the camera.

The player is free to move within the constraints, but when he
tries to move outside them, the dolly moves to compensate as
best it can.

0
1
2

0 1 2 3

W
ei

gh
t

Dolly Position

Rails : Implementation

So how do we do that.

Well remember that the Dolly is actually just a point on the spline
represented by a single parameter.

We use the constraints to calculate a weight at a given point on
the spline.

Here we see that the player is 10 units outside of the constraint,
so the value of the weighting function at this point, zero, is 10.

0
1
2

0 1 2 3

W
ei

gh
t

2.0

Dolly Position

Rails : Implementation

So how do we do that.

Well remember that the Dolly is actually just a point on the spline
represented by a single parameter.

We use the constraints to calculate a weight at a given point on
the spline.

Here we see that the player is 10 units outside of the constraint,
so the value of the weighting function at this point, zero, is 10.

0
1
2

0 1 2 3

W
ei

gh
t

Dolly Position

Rails : Implementation

So how do we do that.

Well remember that the Dolly is actually just a point on the spline
represented by a single parameter.

We use the constraints to calculate a weight at a given point on
the spline.

Here we see that the player is 10 units outside of the constraint,
so the value of the weighting function at this point, zero, is 10.

0
1
2

0 1 2 3

W
ei

gh
t

Dolly Position

Rails : Implementation

So how do we do that.

Well remember that the Dolly is actually just a point on the spline
represented by a single parameter.

We use the constraints to calculate a weight at a given point on
the spline.

Here we see that the player is 10 units outside of the constraint,
so the value of the weighting function at this point, zero, is 10.

0
1
2

0 1 2 3

W
ei

gh
t

2.0

Dolly Position

Rails : Implementation

So how do we do that.

Well remember that the Dolly is actually just a point on the spline
represented by a single parameter.

We use the constraints to calculate a weight at a given point on
the spline.

Here we see that the player is 10 units outside of the constraint,
so the value of the weighting function at this point, zero, is 10.

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

0

1

2

0 1 2

W
ei

gh
t

Dolly Position

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras
constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance
from the Dolly’s initial position to the weighting function. ...and
now the weights look like this.

Now there are a number of ways to locate the minima, but this is
how we do it.

We take a guess as to which direction the player has moved, and
take an experimental step in that direction.

1. Add distance from last frame to weight function

2. Guess a move based on previous frame

3. If weight decreases, keep going

4. If weight increases, slow down, turn around

5. Repeat 3 & 4 until moved less than threshold

Rails : Implementation

So to summarise

we start by adding the distance from the previous frames dolly
position to the weighting function
we then guess a first move, based on how far, and which direction
we moved last frame
if the weight at the new position decreases, we keep going
otherwise we slow down and turn around
until we’ve moved less than our threshold value

It’s important to calculate this threshold in world space, as a

• Additional Weights

• Distance from Player to Dolly

• Angle from Tangent of Rail at Dolly

• Amount Boss obscures Player

• Number of minor characters out of frame

Rails : Implementation

Which means it’s relatively easy to experiment with different
weighting functions.

For example, the distance from the dolly to the player, is fairly
simple, and gives you the classic, drag or push the camera down
the corridor, shot..

But the angle from the tangent of the rail at the dolly, which is the
weight we would use for the tracking shot in the example, is a bit
more complex.

Rails : Implementation

So, having calculated the position of our dolly, we combine it with
the camera dynamics we described earlier. Only instead of
calculating distance and angle from the position and orientation
of the camera node in Maya, we derive them from the position
and orientation of the dolly (where we consider the tangent of the
rail at the dolly, to be the direction the dolly is pointing).

In fact you can consider the camera node, to be a dolly on a zero
length rail.

Rails : Implementation

So, having calculated the position of our dolly, we combine it with
the camera dynamics we described earlier. Only instead of
calculating distance and angle from the position and orientation
of the camera node in Maya, we derive them from the position
and orientation of the dolly (where we consider the tangent of the
rail at the dolly, to be the direction the dolly is pointing).

In fact you can consider the camera node, to be a dolly on a zero
length rail.

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Fields : Design
A BA B

A B

Blending with timers is all well and good, but sometime we wish
we could control the progression of a blend, from the position of
the player.

So if they stop halfway, the blend stops too.

and if they reverse direction, so does the blend

Note that the zone in the middle here, references two cameras,
and has a direction.

Fields : Design
A BA B

A B

Blending with timers is all well and good, but sometime we wish
we could control the progression of a blend, from the position of
the player.

So if they stop halfway, the blend stops too.

and if they reverse direction, so does the blend

Note that the zone in the middle here, references two cameras,
and has a direction.

Fields : Design
A BA B

A B

Blending with timers is all well and good, but sometime we wish
we could control the progression of a blend, from the position of
the player.

So if they stop halfway, the blend stops too.

and if they reverse direction, so does the blend

Note that the zone in the middle here, references two cameras,
and has a direction.

Fields : Design
A BA B

A B

Blending with timers is all well and good, but sometime we wish
we could control the progression of a blend, from the position of
the player.

So if they stop halfway, the blend stops too.

and if they reverse direction, so does the blend

Note that the zone in the middle here, references two cameras,
and has a direction.

Fields : Design
A BA B

A B

Blending with timers is all well and good, but sometime we wish
we could control the progression of a blend, from the position of
the player.

So if they stop halfway, the blend stops too.

and if they reverse direction, so does the blend

Note that the zone in the middle here, references two cameras,
and has a direction.

0

0.5

1.0

Camera A Camera B

Fields : Design
A BA B

Last segment of line
anim is broken!

In fact what we want is to be able to convert a position within a
zone, into a value. A field value. In this definition, a field is just a
value that is determined from a position. Like a magnetic field,
has a particular strength at a particular position.

So as we cross this zone in the middle, we want the field value to
derived from the position within the zone, and then to turn that
field value, into a blend weight for the cameras in question.

0

0.5

1.0

Camera A Camera B

Fields : Design
A BA B

Last segment of line
anim is broken!

In fact what we want is to be able to convert a position within a
zone, into a value. A field value. In this definition, a field is just a
value that is determined from a position. Like a magnetic field,
has a particular strength at a particular position.

So as we cross this zone in the middle, we want the field value to
derived from the position within the zone, and then to turn that
field value, into a blend weight for the cameras in question.

0

0.5

1.0

Camera A Camera B

Fields : Design
A BA B

Last segment of line
anim is broken!

In fact what we want is to be able to convert a position within a
zone, into a value. A field value. In this definition, a field is just a
value that is determined from a position. Like a magnetic field,
has a particular strength at a particular position.

So as we cross this zone in the middle, we want the field value to
derived from the position within the zone, and then to turn that
field value, into a blend weight for the cameras in question.

0

0.5

1.0

Camera A Camera B

Fields : Design
A BA B

Last segment of line
anim is broken!

In fact what we want is to be able to convert a position within a
zone, into a value. A field value. In this definition, a field is just a
value that is determined from a position. Like a magnetic field,
has a particular strength at a particular position.

So as we cross this zone in the middle, we want the field value to
derived from the position within the zone, and then to turn that
field value, into a blend weight for the cameras in question.

0

0.5

1.0

Camera A Camera B

Fields : Design
A BA B

Last segment of line
anim is broken!

In fact what we want is to be able to convert a position within a
zone, into a value. A field value. In this definition, a field is just a
value that is determined from a position. Like a magnetic field,
has a particular strength at a particular position.

So as we cross this zone in the middle, we want the field value to
derived from the position within the zone, and then to turn that
field value, into a blend weight for the cameras in question.

Fields : Implementation

Dot(plane,position) /
Dot(plane,direction)plane (A,B,C,D) where

Ax+By+Cz+D = 0
position (x,y,z,1) direction (x,y,z,0)

Well the first thing we need, is to turn the position within a zone,
into a field value that we can use to weight the blend.

The direction of field is defined by a vector associated with the
zone.

Because all our zones are convex, a line through the player,
parallel to that vector, will intersect two planes of the zone.

calculate the distance from the player to the intersection point on
each plane, that’s the equation under the diagram

• Field values are returned from the query
and copied into Submission List

• Timer list becomes a Blend list

• Blend list tracks Timers and Field values

• Field blended cameras are flagged and only
blend with other field blended cameras at
the same priority level

• Field values are frozen if all members of the
group drop out of the query results

Fields : Implementation

So having calculated a field value, it gets returned as part of the
query, and copied into the entry in the submission list, and from
there into any entries for that camera in the Timer list.

The timer list no longer just contains timers, it now contains field
values as well, and so we rename it the Blend list, as now contains
a list of blending primitives.

I should note here that field blended cameras only blend with
other field blended cameras. The group of field blended cameras
still have timers, but they’re synchronised, so they will all fade in

A f1.0 1/1

A

B

C

C

D

E

Submission
List

Blend
List

A f1.0

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

A f1.0 1/1

A

B

C

C

D

E

Submission
List

Blend
List

A f1.0

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

A f1.0 1/1

A

B

C

C

D

E

Submission
List

Blend
List

C f0.5

B f0.5

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

C f0.5 1/2

B f0.5 1/2

A f1.0 1/1

A

B

C

C

D

E

Submission
List

Blend
List

C f0.5

B f0.5

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

C f0.5 1/2

B f0.5 1/2

A f1.0 1/1

A

B

C

C

D

E

Submission
List

Blend
List

C f0.5

B f0.5

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

C f0.5 1/2

B f0.5 1/2

A f1.0 1/1

A

B

C

C

D

E

Submission
List

Blend
List

D f0.5

C f0.5

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

D f0.5 2/2

A f1.0 1/1

A

B

C

C

D

E

Submission
List

Blend
List

D f0.5

C f0.5 C f0.5 2/2

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

D f0.5 2/2

A

B

C

C

D

E

Submission
List

Blend
List

D f0.5

C f0.5 C f0.5 2/2

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

D f0.5 2/2

A

B

C

C

D

E

Submission
List

Blend
List

D f0.5

C f0.5 C f0.5 2/2

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

D f0.5 2/2

A

B

C

C

D

E

Submission
List

Blend
List

E f1.0

C f0.5 2/2

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

E f1.0 1/2

D f0.5 2/2

A

B

C

C

D

E

Submission
List

Blend
List

E f1.0

C f0.5 2/2

Fields : Implementation

So lets see how that works in an example. Here our field blended
cameras are coloured blue. We start in zone a, a is in the
submission list, and we give it a nominal field value of 1, this is
just to make the maths for the blending a little simpler. note that
we’ve copied this field value into the blend primitive
* move into the field blended zone for b and c, and b and c
appear at the top of the submission list. Note that the red area,
indicating the currently active cameras has grown. That’s because
unlike before where we only had one camera nominally active at
any one time, we can now have many.
* the active set of the blend list, doesn’t contain either b or c, so

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

So, lets have a look at an example blend list, and see how we
calculate the overall weights
*first we copy our field values into a set of weights
*and sum them within their group so that we can
*normalise them
*we then blend between timers, remember that field blended
groups share timers
*and multiply the groups weight back into the individual weights

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.6

0.8

0.6

1.0

So, lets have a look at an example blend list, and see how we
calculate the overall weights
*first we copy our field values into a set of weights
*and sum them within their group so that we can
*normalise them
*we then blend between timers, remember that field blended
groups share timers
*and multiply the groups weight back into the individual weights

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.6

0.8

0.6

2.0

1.0

So, lets have a look at an example blend list, and see how we
calculate the overall weights
*first we copy our field values into a set of weights
*and sum them within their group so that we can
*normalise them
*we then blend between timers, remember that field blended
groups share timers
*and multiply the groups weight back into the individual weights

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.3

0.4

0.3

1.0

1.0

So, lets have a look at an example blend list, and see how we
calculate the overall weights
*first we copy our field values into a set of weights
*and sum them within their group so that we can
*normalise them
*we then blend between timers, remember that field blended
groups share timers
*and multiply the groups weight back into the individual weights

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.3

0.4

0.3

1.0

1.0

1/2

So, lets have a look at an example blend list, and see how we
calculate the overall weights
*first we copy our field values into a set of weights
*and sum them within their group so that we can
*normalise them
*we then blend between timers, remember that field blended
groups share timers
*and multiply the groups weight back into the individual weights

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.3

0.4

0.3

0.5

0.5

1/2

So, lets have a look at an example blend list, and see how we
calculate the overall weights
*first we copy our field values into a set of weights
*and sum them within their group so that we can
*normalise them
*we then blend between timers, remember that field blended
groups share timers
*and multiply the groups weight back into the individual weights

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.15

 0.2

0.15

0.5

So, lets have a look at an example blend list, and see how we
calculate the overall weights
*first we copy our field values into a set of weights
*and sum them within their group so that we can
*normalise them
*we then blend between timers, remember that field blended
groups share timers
*and multiply the groups weight back into the individual weights

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.15

 0.2

0.15

0.5

Having calculated our list of weights, we iterate along it blending
in pairs as before

We calculate each weight in the pair, as a proportion of their sum,
and give the result the sum as it’s weight

We the blend this with next entry in the blend list

Until we’ve blended the last entry. So that’s pretty much the same
as for timed blends, except that we pre-calculate the weights, and
calculate the blend factor from a pair of weights, rather than a

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.15

 0.2

0.15

0.5

0.43B + 0.57C0.35

Having calculated our list of weights, we iterate along it blending
in pairs as before

We calculate each weight in the pair, as a proportion of their sum,
and give the result the sum as it’s weight

We the blend this with next entry in the blend list

Until we’ve blended the last entry. So that’s pretty much the same
as for timed blends, except that we pre-calculate the weights, and
calculate the blend factor from a pair of weights, rather than a

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.15

 0.2

0.15

0.5

0.43B + 0.57C0.35

Having calculated our list of weights, we iterate along it blending
in pairs as before

We calculate each weight in the pair, as a proportion of their sum,
and give the result the sum as it’s weight

We the blend this with next entry in the blend list

Until we’ve blended the last entry. So that’s pretty much the same
as for timed blends, except that we pre-calculate the weights, and
calculate the blend factor from a pair of weights, rather than a

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.15

 0.2

0.15

0.5

0.5 0.3B + 0.4C + 0.3D

Having calculated our list of weights, we iterate along it blending
in pairs as before

We calculate each weight in the pair, as a proportion of their sum,
and give the result the sum as it’s weight

We the blend this with next entry in the blend list

Until we’ve blended the last entry. So that’s pretty much the same
as for timed blends, except that we pre-calculate the weights, and
calculate the blend factor from a pair of weights, rather than a

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.15

 0.2

0.15

0.5
0.5 0.3B + 0.4C + 0.3D

Having calculated our list of weights, we iterate along it blending
in pairs as before

We calculate each weight in the pair, as a proportion of their sum,
and give the result the sum as it’s weight

We the blend this with next entry in the blend list

Until we’ve blended the last entry. So that’s pretty much the same
as for timed blends, except that we pre-calculate the weights, and
calculate the blend factor from a pair of weights, rather than a

E f1.0 1/2

D f0.6 2/2

C f0.3 2/2

Fields : Implementation

B f0.6 2/2

0.15

 0.2

0.15

0.5
0.5A + 0.15B + 0.2C + 0.15D

Having calculated our list of weights, we iterate along it blending
in pairs as before

We calculate each weight in the pair, as a proportion of their sum,
and give the result the sum as it’s weight

We the blend this with next entry in the blend list

Until we’ve blended the last entry. So that’s pretty much the same
as for timed blends, except that we pre-calculate the weights, and
calculate the blend factor from a pair of weights, rather than a

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Overview

• Zoning

• Dynamics

• Blending

• Rails

• Fields

Other Stuff
• Dealing with multiple targets

• Target definition, and calculation

• Dealing with static and animated cameras

• Overriding cameras at arbitrary points to focus on dynamic
areas of interest

• Framing fights, using multiple targets

• Damping

• Fragility of rotational blends

• Physical post effects like shake and sway

